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ABSTRACT: 

 

Automatic image registration is a basic step in multi-sensor data integration in remote sensing and photogrammetric applications 

such as data fusion. The effectiveness of Mutual Information (MI) as a technique for automated multi-sensor image registration has 

previously been demonstrated for medical and remote sensing applications.  In this paper, a new General Weighted MI (GWMI) 

approach that improves the robustness of MI to local maxima, particularly in the case of registering optical imagery and 3D point 

clouds, is presented.  Two different methods including a Gaussian Mixture Model (GMM) and Kernel Density Estimation have been 

used to define the weight function of joint probability, regardless of the modality of the data being registered. The Expectation 

Maximizing method is then used to estimate parameters of GMM, and in order to reduce the cost of computation, a multi-resolution 

strategy has been used. The performance of the proposed GWMI method for the registration of aerial orthotoimagery and LiDAR 

range and intensity information has been experimentally evaluated and the results obtained are presented.  

 

 

1. INTRODUCTION 

The automatic registration of multi-sensor remote sensing data 

has generated much research interest in remote sensing and 

digital photogrammetry. This is driven by the increasing 

availability of large volumes of Earth observation data, and the 

need for automated integration of multi-sensor, multi-resolution 

imaging and ranging data to generate redundant and 

complementary spatial information products. Integration of data 

from complementary sensors such as LiDAR and electro-optical 

sensors plays a crucial role in many applications, especially in 

feature extraction and building reconstruction. These 

applications require accurately registered data to support 

subsequent information product generation.  

 

Although data supply companies invariably provide 

georeferenced and orthorectified data products, misregistration 

errors often exist between complementary data sets. Yet, 

accurate, automated registration is needed prior to data fusion 

and subsequent product generation. Conventional featured-

based image registration methods rely on the robust detection of 

corresponding features between images and this method can 

suffer from unevenly distributed features that degrade 

registration accuracy. In contrast, area-based methods quantify 

the similarity between images using selected similarity 

measures, such as the sum of squared intensity differences and 

normalized cross-correlation. While such measures have long 

proved effective, their application is limited to registration of 

data acquired from the same sensor type. Intensity-based image 

registration methods operate under the assumption that a strong 

relationship exists between the intensity distributions of images 

to be registered. They attempt to match intensity values by 

optimizing certain objective functions, such as the Mutual 

Information (MI) between two images (Maes et al., 1997; Viola, 

1995). 

 

MI, which originated from information theory, measures the 

similarity between the probabilities of intensity of images 

instead of measuring the similarity between intensities. In other 

words, MI is a measure of statistical dependency between two 

data sets and this particular property has made the method 

suitable for registration of images from either the same or 

different sensor types.  MI is based on the joint probability 

between the image intensities of corresponding pixels in both 

the reference and floating images. The maximum value of MI is 

expected to be achieved when the reference and floating images 

are geometrically aligned (Viola, 1995). MI-based image 

registration has been used in medical imaging in recent decades 

for a wide range of applications.  While MI has proven to be 

effective in multimodal registration, the method can exhibit 

several important drawbacks in non-ideal situations when the 

convergence planes of MI are highly non-monotonic, with many 

local optima (Roche et al, 2000). 

 

Up until now, the general approach to address the problem of 

local optima in convergence planes of MI has been either to 

reduce the effect of non-corresponding pixels or to emphasise 

the influence of corresponding pixels. Gu et al.(2006) define a 

normalized joint feature weight map which shows the spatial 

feature similarity between neighbourhoods of corresponding 

voxels in overlapped regions of two images. Junli et al. (2008) 

consider different levels of importance for the reference and 

floating image in order to achieve more robust and accurate 

registration. Hassen et al. (2009) propose a method for image 

registration based on a local phase coherence feature and they 

use a diagonal weighting function based on MI, where more 

weight is given to the features having greater correspondence 

between images. Leventon et al. (1998) introduce a method that 

uses prior information on the expected joint intensity 

distribution of the images when they are correctly aligned using 

a prior registered training image. 

 

Chan et al. (2003) present a new method based on a priori 

knowledge of the class-label mappings between two segmented 

input images. Cremers et al. (2006) develop a Bayesian 

framework that allows the imposition of statistically learned 
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prior knowledge about the joint intensity distribution into image 

registration methods. The prior is given by a kernel density 

estimate on the space of joint intensity distributions computed 

from a representative set of pre-registered image pairs. Zöllei et 

al. (2007) propose a MAP (maximum a posteriori) framework 

that employs a multinomial model of joint intensities with 

parameters for only prior known distributions. Chung et al. 

(2007) present a method based on a priori knowledge of the 

joint intensity distribution between image pairs at different 

image resolutions and the Kullback-Leibler (KLD) distance 

similarity measure to achieve superior robustness in multi-

modal image registration. So et al. (2011) propose a similarity 

measure constructed by using two Kullback-Leibler distances 

with the graph-cut algorithm, which is based on a priori 

knowledge of the joint intensity distribution of a pre-aligned 

image pair. 

 

Contrary to method proposed in this paper, those referred to 

above do not define a general weighting function for the joint 

intensity distribution in registration of data from multiple 

sensors. Also, they do not provide an approach which is 

independent of prior knowledge in the estimation of the joint 

intensity distribution to remove the effect of local maxima in the 

registration result. Moreover, the above referenced methods 

have generally been tested on special medical images that 

provide a similar joint intensity distribution, where as every 

separate scene of remote sensing data tends to have a unique 

joint intensity distribution. In order to efficiently accommodate 

the registration of multi-sensor data, including airborne and 

space-borne imagery and ranging data, a novel method called 

General Weighted Mutual Information (GWMI) has been 

developed. 

 

2. METHODOLOGHY  

2.1 General Weighted Mutual Information 

The mutual information I(A,B) of A and B measures the degree 

of dependence of A and B as the distance between the joint 

intensity distribution         and the distribution associated 

with the case of complete independence            by 

means of the Kullback-Leibler measure (Maes, 2003): 

 

                       
        

           
      (1) 

 

where          is the joint distribution of the pair       and 

      and      are the marginal distributions of   and  , 

respectively.MI is related to the notion of entropy in 

information theory by the following equation: 

 

                                           (2) 

 

Here,     and     are the entropy of A and B, respectively, 

and        is their joint entropy.     ,     and        are 

defined as  

 

                                                   (3) 

 

                                                   (4) 

 

                                         (5) 

 

Estimates for joint and marginal distributions can be obtained 

by simple normalization of the joint and marginal histograms of 

the overlapping parts of both data sets, which will subsequently 

be referred to as images, implying that a 3D point cloud would 

be represented in image form. The relationship between A and 

B, their mutual information, depends on   of the registration of 

the images. The MI-based registration criterion postulates that 

the images are geometrically aligned if I     of the 

transformation    is maximal. Maximization of I      equals 

minimization of       and it directly depends on the joint 

distribution. Based on information theory, the joint distribution 

with more dispersion has higher entropy and vice versa. 

Therefore, the registered images have a joint distribution with 

minimum dispersion. The pattern of the joint distribution 

depends on the physical property of the data and it varies from 

one sensor to another. In the case of image registration for the 

same sensor, the joint distribution of corresponding intensities is 

diagonal, as shown in Figure 1, and it keeps this pattern even 

when there is misregistration, with more dispersion. The joint 

distribution for multimodal data sets is not unique and it can be 

identical for each modality. For instance, an example of the 

joint distribution of optical imagery and range image is shown 

in Figure2. 

 

 

 

 

 

 

 

 

 

Figure 1. Joint distribution of same-sensor images, registered 

(left) and misregistered by 5 pixels (middle) and 10 pixels 

(right)  

 

 

 

 

 

 

 

 

 

Figure 2. Joint distribution of multi-sensor images, registered 

(left) and misregistered by 10 pixels (middle) and 20 pixels 

(right)  

 

In accordance with the diagonal pattern of the joint distribution 

in same-sensor image pairs, a Gaussian weight function along 

the diagonal of joint distribution has been proposed by Hassen 

(2009) to increase the effect of joint distribution members with 

greater correspondence. However, while this diagonal weighting 

function handles same-sensor image registration properly, it is 

unable to model the complex pattern of the joint distribution for 

multi-sensor image pairs.  

 

The proposed GWMI method is more comprehensive than the 

common diagonal weight function approach, since it describes 

the weight function for the joint distribution in a multi-sensor 

image registration, rather than for same-sensor imagery, via 

definition of a general weight function that is able to handle 

complex patterns of joint distribution. However, it can work 

with simple diagonal patterns. In addition, the proposed 

weighting function is not dependent upon prior knowledge of 

the joint distribution and it uses only information from the 

current joint distribution.  MI-based registration methods attach 

the same importance for all members of the joint distribution, 

whereas with the GWMI approach denser regions of the joint 

distribution are assigned higher importance, and less value is 

given to noise or points in the joint distribution where 
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correspondences between the images are not found. Since the 

points where there are possible matches between the two images 

are emphasised, more accurate image registration results can be 

achieved. 

 

As the proposed GWMI method is the general form of weighted 

MI, a maximum value is sought in estimating the parameters of 

registration from the expression 

 

                                
        

          
        (6) 

 

where        is the weight given to each entry in the joint 

distribution. Obviously, the conventional MI-based approach is 

a special case where all         . In this study, the 

parametric method of Gaussian Mixture Model (GMM) and the 

non-parametric approach of Kernel Density Estimation (KDE) 

are used to define the weights for the joint distribution. 

 

2.2 Gaussian Mixture Model 

A GMM is a parametric probability density function represented 

as a weighted sum of Gaussian component densities. It is a 

mixture of K Gaussian components, each specified by a mean  

and full covariance matrix .  The GMM is given by 

 

                    
 
                 

 
         (7) 

 

where the kth Gaussian component is specified by    and   , 

and    are the component weights, with        and 

     The term   is a vector of all unknown parameters and 

the   function denotes the normal (Gaussian) distribution 
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GMM parameters are estimated iteratively via a maximum 

likelihood approach using the Expectation-Maximization 

algorithm (McLachlan et al.,1988). A negative log-likelihood 

function for a data set is given by 

 

                               
 
   

 
   

 
    (9) 

 

This expression, Eq. 9, can be regarded as an error function. 

The Expectation-Maximization algorithm estimates new values 

for unknowns, using initial values of Gaussian Model 

parameters, and it sets them as initial values for the next 

iteration. The following update equations apply for the 

parameters of the mixture model: 
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The main advantage of the Expectation-Maximization algorithm 

compared to other methods for finding maximum likelihood 

estimates is that it is independent of computation of the first or 

second derivatives. 

 

2.3 Kernel Density Estimator 

The kernel density estimator is a non-parametric density 

estimator. In comparison to parametric estimators, where the 

estimator has a fixed functional form (structure) and the 

parameters are the only information that need to be stored, non-

parametric estimators have no fixed structure and depend upon 

all the data points being used to reach an estimate. Generally, 

kernel estimators smooth out the contribution of each observed 

data point over a local neighbourhood using a Kernel 

function.The estimated density at any point x is  

 

      
 

 
   

      

 
  

                 (11) 

 

where K is the Gaussian kernel function, h is its bandwidth and  

         (Silverman, 1998). Since the estimated density is 

independent of parameters that have been evaluated previously, 

less computational cost is anticipated. Furthermore, the kernel 

density estimator defines the weight function for the joint 

distribution with a higher level of precision. 

 

3. IMPLEMENTATION  

In this implementation, optical imagery is considered as the 

reference image and both a DSM and intensity information from 

LiDAR form two separate floating images. Both of these are in 

the form of greyscale images. The orthoimagery and LiDAR 

data is nominally georeferenced with misregistration being 

assumed to extend only to components of horizontal translation. 

The registration flow can be seen in Figure 3. 

 
 

 

Figure 3. Flowchart of the GWMI registration process. 

 

In the process of image registration, a “coarse to fine” strategy 

based on the Gaussian pyramid has been adopted to decrease 

computational load. Following formation of the image 

pyramids, the search for a maximum value of the weighted MI 

starts from the top pyramid level (the lowest resolution). Results 

are then used to set approximate values for the next highest 

search level, with the process continuing through to the lowest 

(highest resolution) level. Use of this approach successively 

reduces the search range at each successive pyramid level and 

thus greatly improves search efficiency and computation time.  

 

Since the joint intensity distribution changes with the relative 

lateral shift of the images, formation of the joint probability 

distribution must accompany the transformation at each 

pyramid level. The joint probability can be approximated by 

either Parzen windowing or histogramming. Histogramming has 
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been used in this work because of its simplicity and efficiency. 

In histogramming, the joint histogram of intensities is employed 

to compute joint probability. Each entry of the joint histogram 

h(x, y) denotes the number of times intensity x in one image 

coincides with intensity y in the other image. Dividing the 

entries by the total number of entries yields a joint probability 

distribution and the probability distributions for each of the 

reference and floating images are separately found by summing 

over their rows and columns, respectively. The weight function 

for each joint probability is estimated via either the GMM or 

KDE methods. Finally, the transformation parameters are 

obtained once the maximum value of GWMI is found through 

the position of the peak in the convergence surface. 

 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

This section presents selected experimental results obtained 

with the proposed GWMI-based registration algorithm. The 

experimental data, shown in Figure 4, covered the Moonee 

Ponds area of suburban Melbourne and comprised 10cm GSD 

Aerial Orthoimagery acquired in April 2009, and a 1m raster 

LiDAR DSM surveyed in 2008 as well as LiDAR intensity data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Orthoimage (top), LiDAR DSM (middle)and LiDAR 

intensity image(bottom) 

 

The registration of the orthoimagery and LiDAR data sets is 

impacted by the following factors: Firstly, they were acquired a 

year apart and changes had occurred within the scene, mainly in 

isolated buildings, but also to an extent in vegetation and roads. 

Secondly, the data sets were acquired at different resolutions, so 

the LiDAR data was resampled to 10 cm resolution. Thirdly, 

orthoimage is affected by occlusion, shadow and ghost image. 

Finally, there were small errors in the georeferencing and in the 

othoimage generation process, as indicated in Figure 5.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Errors in orthoimage generation (red edge) and 

georeferencing (blue edge) 

 

Due to the size of the data sets involved, the registration 

computation via MI and GWMI was conducted in 20 tiles of 

200m by 200m,with the unknown parameters in each tile being 

translations in X and Y. In order to define the search window 

for the floating image, a 10 meter horizontal perturbation (the 

maximum anticipated georeferencing error) was then applied 

within each tile. Two experimental registrations, namely 

registering the orthoimage with the LiDAR DSM, and the 

orthoimage with the LiDAR intensity image, were carried out.  

 

4.1 Registration of the orthoimage and LiDAR DSM  

Figure 6 shows the procedure of registering the othoimage and 

LiDAR DSM image for a tile. Note that the resolution of the 

orthoimage is sufficiently high to clearly demarcate buildings, 

trees and streets, whereas these features are not as distinct in the 

lower resolution LiDAR DSM.   
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                (c)                           (d)                         (e) 

 

 

 

 

 

 

 

 

                         (f)                                          (g) 

 

 

 

 

 

 

 

 

 

                           (h)                                            (i) 

 

Figure 6. Orthoimage (a), LiDAR DSM image (b), joint 

distribution (c), GMM weight (d), KDE weight (e), 2D and 3D 

view of convergence surface of MI(f,h), 2D and 3D view of 

convergence surface of GWMI peak(g,i). 

 

In the computation for the top layer of the pyramid, the LiDAR 

image is moved over the orthoimage and for each image 

movement a weight for the joint distribution is calculated. The 

values of MI and GWMI metrics are then plotted and the 

optimal translation parameters for registration are obtained at 

the peak of the convergence surface. The estimated shift 
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parameters are then considered as initial values for the next 

lower layer of the pyramid, thus affording a smaller search 

window. As shown in Figure 6, the weight function estimated 

by GMM is found to be too smooth while KDE keeps details of 

the joint distribution. In order to estimate a detailed weight 

function by GMM, more Gaussian functions are required and 

this increases computation time. In comparison to GMM, KDE 

is more efficient in terms of cost of computation and level of 

detail. KDE has therefore been adopted as the primary method 

for defining the weight function. 

 

The convergence surfaces for MI and GWMI at the highest 

level of the image pyramid are shown in Figure 6. It is 

noteworthy that the surface for MI has multiple peaks and it is 

not clear which peak is higher. Moreover, for 40% of the tiles 

the highest peak leads to incorrect registration parameters, 

whereas the peak of the GWMI convergence surface is 

invariably correct for 90% of the tiles. Figure 7 shows the 

registered data sets in a checkerboard form, which visually 

indicates the quality of registration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Registered orthoimage and LiDAR DSM image for a 

single tile(top) and enlarged view of highlighted area before 

registration (left), after registration (right). 

 

Identification of conjugate feature points from LiDAR data is 

very difficult in practise, as the LiDAR point cloud is sparse. 

Moreover, intensity-based image registration cannot always 

provide deterministic results and computation of registration 

errors is not always possible. Instead, alignment quality can be 

evaluated visually through the continuity of linear features from 

both images that smoothly cross the checkerboard borders, as 

highlighted by red circles in Figure7. 

 

Registration by MI of the orthoimage and LiDAR DSM data 

failed for 50% of the tiles due to the appearance of multiple 

peaks in the convergence surfaces, while the proposed GWMI 

method achieved true registration in 90% of the tiles. Although, 

GWMI obtained the best correspondence in the search area for 

most of the tiles and MI led to misalignment due to existence of 

local maxima, both methods failed to yield a correct registration 

for the tile shown in Figure 8. The main reason for obtaining 

incorrect result in this case is that a large area of the tile is flat 

and a low variation of height impacts adversely on the 

registration result. 

 

 

 

 

 

 

 

 

 

 

 

(a)                                      (b) 

 

 

 

 

 

 

 

                            (c)                                           (d) 

 

Figure 8. Orthoimage (a), LiDAR height image (b) and 2D 

views of MI and GWMI peak respectively (c,d)  

 

4.2 Registration of orthoimage and LiDAR intensity image 

An example of the favourable peaks for the registration of the 

orthoimage and LiDAR intensity image are shown for a selected 

tile in Figure 9. In contrast to the LiDAR DSM image, streets 

appeared clearly in the LiDAR intensity image, which in turn 

resembles an infrared image. 

 

 

 

 

 

 

 

 

 

 

 

                   (a)                                            (b) 

 

 

 

 

 

 

 

 

                          (c)                                            (d) 

 

Figure 9. Orthoimage (a), LiDAR intensity image (b), 3D view 

of MI peak (c) and 3D view of GWMI peak (d) 

 

Although the same results for registration of the orthoimage and 

LiDAR intensity image were achieved by both MI and GWMI, 
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sharper peaks were obtained by GWMI, representing more 

robustness to local maximas shown in Figure10. 

 

Overall, the success rate of the GWMI registration in the test 

area was 92% as compared to 75% for MI, which demonstrated 

that the GWMI registration of imagery and range data 

performed well and produced accurate registration results, even 

in the presence of errors in the data, as indicated in Figure 11. 

 

 

 

 

 

 

 

 

 

 

Figure 10. Profile of MI and GWMI peak in X (left) and Y 

directions (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Registered Orthoimage and LiDAR DSM data 

highlighting matched features (blue lines) and blunders (red 

lines) 

 

5. CONCLUSION  

The ability of the developed weighted mutual information-based 

registration approach to efficiently register multi-sensor data 

has been highlighted in this paper. Its performance in the 

registration of optical imagery with both a 3D point cloud and 

LiDAR intensity data has been shown to be particularly 

impressive, and it should be recalled that such a 3D point cloud-

to-2D image registration cannot be readily handled by 

conventional feature-based or area-based methods. Based on 

testing involving a modest number of data sets, the authors 

conclude that conventional MI is unable to deliver acceptable 

results due to the appearance of multiple local maxima and thus 

multiple peaks in the convergence surface. The GWMI method, 

which employs a general weight function that has not been 

previously adopted, has been found to achieve superior 

registration performance. Also, the GWMI has shown that it has 

enough potential to produce a robust registration even in the 

presence of geometric perturbations in the orthoimage. The 

proposed approach provides more robust results than 

conventional MI and can be further enhanced to make it an 

efficient tool for automated integration of multi-sensor, multi-

temporal and multi-resolution remote sensing data for a wide 

range of applications.  
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