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ABSTRACT

One of the most important concerns of remote sgngrsearch has been the quantification of foreatstre variables. This issue
has been investigated using different remotely egtrtiata including optical, radar and lidar datarédweer, the utility of multi-
sensor data has been examined for this task. Radayes are being considered as one of the available for forest studies;
however, some constrains of this data such as Eprolkse and the high sensitivity of this datadpagraphy prevent it from being
widely utilized for forest structure mapping. A gdse solution is to integrate radar data with cgltdata to improve the accuracy of
the biophysical parameter estimations; howeverrésalts of theecommon fusion method does not show significant improvetien
the efficacy of one of the datasets is much lowantthe other one. In this study multi-date ALOS/BAR data with HH and HV
polarizations were used along with SPOT-5 textimdlces derived from the grey level co-occurrencarin (GLCM), and the
subtract and sum histogram (SADH), calculated ffedint orientations and window sizes for retrieefia Pinus radiata plantation
at plot-level in NSW, Australia. In order to ovenee the deficiency of theommon fusion method, a new fusion method caltatio
fusion is examined for fusion of radar and optidata. The results showed that the estimation githyisical parameters including
mean height, mean DBH, stand volume, basal areatacHing using SPOT-5 textural indices was moreite than that derived
using the backscatter data derived from multi-ddt®S/PALSAR images. Also, the accuracy of estimatid these forest structure

parameters increases when the ratio of the SP@Xtéral indices to the radar backscatter is usethfe task.

1. INTRODUCTION
Parameterization of forest structure is a recepoitant area of
study by remote sensing researchers over thedastlécades.
This information is required as input for globakolge models
and sustainable forest management. Different tgpesmotely
sensed data including: optical (Kayitakire et 2D06; Wolter
et.al, 2009); radar (Townsend, 2002; Neumann g2@lL0); and
lidar data (Drake et al., 2002; Sherrill et al.,080) were
investigated for mapping forest structure paransetarso, the
synergy these datasets has been examined and ptoved
increase the feasibility of each dataset for forssticture
mapping (Slatton et al., 2001; Nelson et al., 2@dody and
Moskal, 2010; Tonolli et al., 2011). Although opticsensors
are not able to acquire information of understoespecially for
dense canopies (Wulder, 1998), they provide a withge of
spectral and spatial resolutions which are usefubfophysical
parameter estimation. Hence, it is possible tazetitifferent
spectral attributes such as individual bands, baatids, and
vegetation indices as well as different textur#ilaites derived
from optical data for this purpose; however, theerggth of
textural attributes for retrieval of biophysical rameters
compared to the space-borne spectral informatiosn leen
demonstrated by several studies (Ryherd and Woadd®96;
Wulder at al., 1998; Hyyppa et al., 2000).

Radar images which are acquired in longer wavelengiich as
L band, contain some information about the loweataf the
canopy such as the trunk; however, speckle noffecte of
slope and environmental conditions such as soihess (Wang
et al., 2000) lead to the reduction in the capghdf the radar
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data for retrieval of the biophysical parameterthveicceptable
accuracy. The lower efficiency of radar data coragdao other
remotely sensed data for mapping forest structhagacteristics
has been demonstrated by Hyyppa et al. (2000).04gh,
interferometric SAR (INSAR) and coherence images can
provide vertical structural information over forgsthey do not
perform efficiently for estimating forest variabl€Ereuhaft et
al., 2004).According to these considerations, tlsoh of radar
and optical data may overcome the deficienciesndividual
datasets and in combination increase their alfityestimating
biophysical parameters, including mean height, m#iameter
at breast height (DBH), basal area, stand volumestouking.

There are three levels of data fusion includingnariy data (or
pixel) level, attribute (or feature) level and dgen level (Pohl
and Van Genderen, 1998). The lowest level of tiséofuof the
two datasets is the extraction of the attributesfthe average
or ratio of the two images. This method can beiadphkhen the
characteristics of two datasets are the same, asitio optical
images with the same spatial resolution, and ifrappgate,
following resampling (Nichol and Sarker, 2011), taro SAR
images (Ranson and Sun, 1994; Dobson et al., 199%.
common method for fusion of the remotely sensed data for
estimating biophysical parameters is feature lduslon that
extracts attributes from different datasets and kines them
using multiple-linear regression methods (Hyde let 2006;
Erdody and Moskal, 2010; Banskota et al., 2011; Toebal.,
2011). According to these studies, although thighom can
lead to improved results over those derived fromiividual
datasets, the multicollinearity effect prevents tlse of more
predictors to increase the accuracy. Moreover, w8sep
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multiple-linear regression would normally select e th
significantly correlated attributes derived frone tataset with
higher efficacy. Consequently, when the performarafe
attributes derived from one remotely sensed datasetuch
better than that derived from another, the fusioesdhot lead to
significant improvements since the final model isuaily
formed using the attributes of the one dataset high efficacy
and attributes of the other datasets are ineffectiv order to
overcome these deficiencies, the ratios of theibates
extracted from two different remotely sensed dasasere used
in this study using multiple-linear regression. fact, this
process leads to the generation of pseudo-attsbuthose
values are determined not only by one set of rematensed
data, but the other as well. It is believed thatplerformance of
the pseudo-attributes is more efficient than rémibaites when
the multiple-linear regression is applied. Examoratof this
hypothesis is the aim of this paper. The main ri@slof this
study are as follows:

acquired on 5 April 2008 were used for this studye
orthorectified data was provided with spatial retioh of 10 m
(SWIR was resampled to 10 m). Moreover, two duaapoéd
ALOS/ PALSAR images (HH and HV) acquired on 9 August
2008 and 24 September 2008 were provided by Japan
Aerospace Exploration Agency (JAXA). The syntheterture
radar (SAR) images were 2-look magnitude data wihiehne
orthorectified using the 90 m SRTM digital elevatimodel.

3. METHODOLOGY
According to figure 1, the methodology used in tslisdy can
be divided into four parts including data pre-pssieg,
attribute extraction, modelling, and fusion.

3.1 DataPre-processing

+ The comparison of SPOT-5 and multi-date dualThe orthorectified Spot-5 multispectral image wasrected

polarized ALOS/PALSAR data as two optical and geometrically to an orthorectified WorldView-2 ineg2-m
radar datasets with similar spatial resolutions forspatial resolution) using 50 ground control poird#ected over

estimating biophysical parameters at plot-level.

« Examination of the feasibility of ALOS/PALSAR
backscatter derivatives and SPOT-5 textural attegou
in synergistic mode using a new fusion strategiedal
ratio fusion, for forest structure mapping at plot-level

In the next sections, the study area and remothgedd data
used for this study are explained. Then, the metlvgy and
results are given and finally the results are dised and the
paper is concluded by the last section.

2. STUDY AREA AND DATA

A 5000 ha commercial Pinus radiata plantation waseyed in
2008 near Batlow, NSW, Australia. After accuratebgitioning

trees and plot centres using a laser theodolited'E1100 total
station) and a differential global positioning syst (dGPS),
two parameters including DBH and height were meaktwe

978 trees within 63 variable radius-size plots nagdrom 7 m

to 20 m. The stem volume of each tree also wasiledéd using
an in-house equation (Dr Huigquan Bi, personal comoation,

2011). The plot collection aimed to cover thrededént strata
including: slope (less than 10 degrees, more thamrid less
than 20 degrees and more than 30 degrees); thimmoindition

(unthinned, first thinning and second thinning)datmee age
(less than 20 years and more than 20 years). [ebrmat which

contains at least 15 stems, five forest structuaeameters
including mean height, mean DBH, stocking, basah aaad
stand volume were calculated using the field ctdledata and
calculated stem volume. The statistical informatidré1 plots
used for this study is shown in table 1.

Biophysical Min Max Mean Standard
parameter deviation
Height (m) 12.2 33.6 24.0 5.7
Mean DBH (cm) 154 46.4 30.1 9.7
Stand volume
(m3/ha) 106.5 760.3 296.0 128.7
Basal area
(m2/ha) 18.0 65.4 33.7 10.8
Stocking 121 1429 595 3711

Table 1. The summary of the statistical informafionthe 61 plots used
in this study

Multispectral SPOT-5 data including green, red,rna&ared
(NIR) and short wavelength infrared (SWIR) bands Wwhiere
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the image with the registration accuracy of lessmthalf metre.

ALOSIPALSAR
Mutti-ook,
Mutt-date

(Orthorectiied)

Backscatter
Conversion

S

Both cates-

SPOT:5
WS data
(Orthorecfified)

Atmospheric || Reflectance
correction Conversion

/f

Texiura\
indices of
band at 08

Image parameter refrieval using
30mfixed plot sizes

D
Modelling

Geometric
Correction

Speckle
Reduction

Slope
Correction

Textura\
indices of
PCs

Textura\
indices of
bands

Aug.image- Sep.image-
Backscatter Backscatter Backscatter

derivations derivations derivations

T\

Image parameter retrieval using
30m fixed plot sizes

ynergetic

modelling Modelling

‘.

Forest structure
variables

Figure 1. The methodology used in this study

Also, the atmospheric correction of this data waslartaken
using dark object subtract method (DOS3) and digitenbers
were converted to reflectance values. There waseex for
topographic correction as the examination of tHati@ship
between the cosine of the incident angle, coswfiich is the
incident angle between the sun and a horizontdhseirwas
calculated according to Riano et al. (2003), andr#akéance of
each band does not show significant correlatiogr aéimoval of
path radiance.

SAR data are significantly affected by slope. Ineortb reduce
this effect the orthorectification and slope coti@t was done
by data provider (JAXA Company) using the methodettgyed
by Shimada (2010). As mentioned one of the maitlpros of
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the SAR data is speckle noise. The UNSW adaptiter fUAF)
developed by Shamsoddini and Trinder (2012) wagl use
suppress the speckle noise over the SAR data appliedmain
advantage of this filter is the suppression of $peckle noise
and preservation of the edges and texture on thR BAage
(Shamsoddini and Trinder, 2010). Then the proceds¢a was
registered to the SPOT-5 image using 40 GCPs with
accuracy of less than half pixel. The conversion thé
magnitude values to backscatter coefficient wasedasing the
standard equation provided by JAXA as follows:

% =10log,o(DN?) + CF (1)

whereg? = radar backscatter coefficient
DN= Magnitude value
CF=-83

3.2 Attribute Extraction

The most relevant Grey Level Co-occurrence Mat@xCM)
textural attributes according to the literature @@dir and
Parmiggiani, 1995; Carr and de Miranda, 1998; Sglb£899;
Pesaresi, 2000; Rao et al., 2002; Lu, 2005; Tuomiaed
Pekkarinen, 2005; Kayitakire et al., 2006), inchgli Mean
(ME), Variance (VAR), Standard Deviation (ST), Costra

(CON), Angular Second Moment (ASM), Entropy (ENT),
Correlation (CO),

Homogeneity (HOM), Energy (EN),
Dissimilarity (DISS), and Maximum Probability (MP)have
been calculated by MATLAB 7.9.0, for different spat
derivatives of SPOT-5 multispectral data includingividual
bands, band ratios and principle components (P©s)folur
window sizes including 3x3 to 9x9, along with fadifferent
window orientations comprising of ,045, 90 and 135 In

addition to GLCM, sum and difference histogram (SADH

attributes proposed by Unser (1986) were calculdtedthe
same window sizes. The SADH attributes include M@dR),
Mean deviation (MD),
Variance (VAR), Coefficient of variation (CV), Skewss(SK),
Kurtosis (KU), Energy (EN), Entropy (ENT). TablesBows the
different backscatter derivatives from two-date lehaarized
SAR data used in this study. The same textural bates
mentioned above were calculated for the backscdttevatives
in table 2. All of the calculated attributes weperacted within
30-m radius plots.

Code Backscatter derivative
1 HH-Aug
2 HV-Aug
3 HH-Sep
4 HV-Sep
5 Ratio of HH and HV-Aug
6 Ratio of HH and HV-Sep
7 Difference of HH and HV-Aug
8 Difference of HH and HV-Sep
9 Normalized difference of HH and HV-Aug
10 Normalized difference of HH and HV-Sep
11 Difference of Sep and Aug-HH
12 Difference of Sep and Aug-HV
13 Ratio of Sep and Aug-HH
14 Ratio of Sep and Aug-HV

Table 2. Backscatter derivatives derived from SA®Radused in this
study

3.3Modelling

Among the different modelling methods suggested the
literature, a stepwise multiple-linear regressiamich is the
common method for estimating forest variables usergotely
sensed data (Kasischke et al., 1995; Neesset, 2Q@zk-t al.,
2002; Sarker and Nichol, 2011), was applied to emanthe

Mean Euclidean distance (MED),

prediction strength of each dataset individualld an fused
mode. According to Harris (1985), in order to avoigbr-fitting
and multicollinearity problems the number of prédiis in each
model was limited to at most 10, calculated basadtle
number of available plots which is 61. Moreovergading to
Belsley (1991), the models with the variance indlatifactor

afVIF=1/1-R2) values higher than 10, tolerance (TeR2)
values lower than 0.1, eigenvalue (EV) close t@zeondition
index (Cl) values higher than 30 and finally p-lewellues
higher than 0.05, for each model or predictor, wexeluded.
Coefficient of determination @ and standard error of
estimation (SEE) were calculated to compare thalméfy of
each dataset when used individually and togetbegdtimating
biophysical parameters.

3.4 Fusion

The ratio of the attributes extracted from two eliéint remotely
sensed datasets were used in this study to overdbee
limitations of the averaging method and atsmnmon fusion

method using multiple-linear regression. The condaghind

ratio fusion method is that the ratio of the attributesived

from two different datasets can reduce the saturagffect

which occurs for individual data. The main conditifor this

approach to fusion is the efficacy of the two detsislt means
that if the performance of a dataset is very pagrietter than
random data for predicting a variable, it will lsprovide some
information to the fusion process.

4. RESULTSAND DISCUSSION

4.1 Multi-date SAR I mages

After calculating the GLCM and SADH textural attrtba for
backscatter derivatives of SAR images, no relatignsvas
found between these attributes and biophysicalnpeters. It
seems there are different issues affecting thdtsestitextural
analysis. These issues are (i) incomplete remo¥apeckle
noise, even after applying speckle noise suppness(d)

incomplete slope correction; (iii) the effect ofinfall which

occurred a day before the acquisition of both SARges as it
can affect the soil moisture content and consefuehere
could be similar backscatter responses from diffeparts of
the plantation (Wang et al., 2000). As figure 2 \gbothe
estimation results which were acquired from thekbeatter
derivatives of both SAR images are better than thieséved
from textural indices.
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Figure 2. The Rresults of SAR images individually and together
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According to figure 2, backscatter derivationswdidates SAR
data can provide better estimations of mean heagldt mean
DBH. Mean height was estimated better than othearpaters
with R? of 0.36 and SEE of 4.7 m, while the basal areaweis
modelled with SAR data if the multicollinearity efte is

considered. Also, mean DBH is estimated withdR0.23 and
SEE of 8.66 cm that is relatively better than staollime and

mean DBH, theatio fusion method significantly improved the
results of the forest structure mapping as shownoid text in
table 3. While the best results for basal areasaocking were
derived usingratio fusion of backscatter derivatives of radar
data and textural attributes of SPOT-5 individuahds, the
integration of radar backscatter derivatives anctutal
attributes of SPOT-5 band ratios gives the besmasibns of

stocking estimations with 3of 0.09 and 0.12, and SEEs of 124 stand volume and mean DBH. Moreover, the combinatibn

m/ha and 351 tree/ha, respectively.
4.2 SPOT-5 Textural Attributes
As mentioned earlier GLCM and SADH textural attrésitvere

calculated using three types of spectral derivatirecluding
individual bands, band ratios and PCs. Figure 3 shtve

results of B derived for the prediction models based on the

textural attributes from each type of spectral dsions. As
figure 3 shows that the performance of the SPO®4utal
attributes are significantly better than those \dstifrom SAR
images for estimating biophysical parameters, a&s dhtical
data is not affected by the soil moisture as ig#uar data. Also,
the effect of the terrain slope on the SPOT-5 datanot
significant. Moreover, although the spatial resolutof these
two remotely sensed datasets is similar, the higpactral
resolution of SPOT-5 data compared to that of
ALOS/PALSAR is another issue leading to its morecefht
performance than the radar data. While the beshatsons of
mean height and stocking were derived using tekaitdbutes

of all PCs with B of 0.82 and 0.77 and SEEs of 2.7 m and 18

tree/ha respectively, the best results obtainean ftextural

attributes of all band ratios were for mean DBH baadal area
with R? of 0.78 and 0.70 and SEEs of 4.9 cm and 6%Hhan

respectively. Finally, the best prediction fromtte=l attributes
of all bands was for stand volume witf & 0.61 and SEE of
86.1 ni/ha.
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radar backscatter derivatives and textural atteibuif SPOT-5
PCs provides the best estimation of mean height.

Biophysical Paramete Fusion strategy 2 R SEE
Mean height (m) Cg;g:) on 0(.)5.322111 25_'450
wenomomy | S 78 e

Stand Volume (ifiha) Ctl)??tin;on 0(.)5'3885 63 3607
Basal area (ftha) C???t?:) on 007220 5.6;'277
Stocking (tree/ha) C%“;H:) on 008273;3 1;5 7

Table 3. The best results derived from fusion

4.4 Validation and Strata Effect

the

Validation of the selected models derived froamtio fusion was
evaluated using the leave-one-out cross validatioethod
Efron and Tibshirani, 1993), as it is requiredctdculate the
generalization error of each model. This method bhaesn
widely used in the remotely sensing literature forest

applications (Anderson et al., 2005; Kayitakire akt 2006;
Meng et al., 2007). Table 4 shows the predictiororsr of

biophysical parameters using the models derivedn fratio

fusion of SPOT-5 textural attributes and SAR bacdkeca
derivatives. Table 4 shows that the ratio fusiorsBOT-5 and
ALOS/PALSAR data is able to decrease the error tifn@sion

for mean height, mean DBH to lower than 15% to 208ictvis

the acceptable sampling inventory error in forestentory
(Holmgren and Thuresson, 1998).

. . 2 Prediction Error Er_ror qf
Biophysical Parameter R Estimation
(SEE) (%)
Mean height (m) 0.825 2.6 10.8
Mean DBH (cm) 0.804 4.7 15.6
Stand Volume (rftha) 0.639 84.8 28.6
Basal area (ftha) 0.659 6.9 20.5
Stocking (tree/ha) 0.823 173 29.1

Table 4. The validation results of the ratio fusmathod

After prediction of biophysical parameters using tselected
models, the effect of different strata includingintiing
condition, age of tree and slope condition on #muits of the
predictions were examined. For this purpose, arpeddent
sample t-test was applied on the residuals derivedh the
predicted and measured values of each biophysaanmeter,
to indicate the effect of the different classeseath stratum.
The residuals were considered in two modes inctudinsolute

Figure 3. The Rresults of textural attributes derived from SPOT-5 and actual values (that is, considering the sigthefresiduals).

spectral derivations

4.3 Fusion of SAR and Optical Data

The common fusion andratio fusion methods described in
section 1 of this study where applied for estinmtiophysical
parameters. While the common method of fusion dad n
improve the estimation results of biophysical parters
derived using only SPOT-5 data, except for meaghieand
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The independent sample t-test on absolute valuessiduals
indicated the effect of different classes of eathtsm on the
accuracy of the prediction, while applying thisttes actual
values of residuals reveals the effect of the elassn
underestimation or overestimation of the parametdnso

hypothesis including kifor the equality and Hfor inequality of
the mean values of two classes were testedlaetel of 0.05. If
the significance level of the t-test was less tta@5, the
hypothesis of K was accepted; otherwise, Hvas accepted
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which means there is no difference between theueats of two
classes.

The results of the t-test on the absolute valuethefresiduals
derived from the predicted and measured values stiomo
significant difference between the different claseéthe strata
and absolute values of the residuals at p-leve0.66. This
means that age, thinning and slope classes doigrficantly

affect the results of the prediction.

According to the t-test on actual values of resislutwo tree
age classes, less than 20 years and more thana® steowed
no significant differences for mean height, mean DBHRH
stocking, while the difference between the actesiduals of
these two age classes are significant for basa anel stand
volume. While the basal area and stand volume salvere
overestimated for the plots less than 20 year, pregicted
values were underestimated for plots more thane&dsy The
results of the t-test on actual residuals derived the three
classes of thinning condition shows that theredssignificant
difference among thinning classes for stand volame basal
area predictions. The difference between unthinaed first
thinning is not significant for mean height, meaBHD and
stocking predictions, while the difference betwebese two
thinning classes and the second thinning classignéficant for
actual residuals of these biophysical parametersgpt when
the prediction of mean height is considered, far difference
between residuals of unthinned and second thinciagses.
Examining the actual residuals of the thinning steswhose
actual residual differences were significant intida

« While the stocking predictions of unthinned angtfthinning
classes were underestimated, the average of aetiduals of
the predictions at second thinning class showsestenation.

< Thinning classes have inverse effect on mean DBHna@an
height predictions as the average value of acesitlnals of
plots for the second thinning class shows undenasibn
compared to the unthinned and first thinning classe

Finally, the t-test analysis on the actual resisluaf the

predictions among different slope classes showadtttere is a
significance difference for basal area predictibasveen slope
classes of less than 10 degree where the predicti@me on
average overestimated and higher than 20 degreeevihe

predictions were on average underestimated. Thsesaof this
stratum did not show significance effect on thet re$

biophysical parameters.

5. CONCLUSION
The performance of SPOT-5 multispectral image antfiwdate

dual-polarized ALOS/PALSAR with similar spatial résons
were compared in this paper for estimating bioptgisi

parameters of Rinusradiata plantation. The results showed the

performance of the textural attributes of SPOT-Zadaas
significantly better than
Moreover, a new method of fusion calledtio fusion was

examined for integrating the optical textural atites and radar
backscatter attributes. Theresults showed significant
improvement in the accuracy of the biophysical pwter

estimations compared to that derived for
ALOS/PALSAR data. It was proved that tlsemmon fusion
method failed to increase the accuracy of the hisichl
parameter estimations due to low efficacy of SARkbeatter

attributes, whereasatio fusion method is able to increase this

accuracy due to the injection of the information SAR
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those of ALOS/PALSAR data.

SPOT-5 an

backscatter attributes into the SPOT-5 texturaibaites. Leave-
one-out cross validation results indicated that méeight,
mean DBH and basal area can be predicted withran lewer
than 20% which is better than acceptable samplimgr eof
forest field inventory. Examining the effect of thgata on the
prediction values using an independent samplettgleewed
that the accuracy of the predictions are not adfidiy these
strata, however, they can cause underestimation
overestimation of the biophysical parameter préatist Finally,
capability of theratio fusion method for integrating different
remotely sensed data for forest structure mapphauld be
investigated further in the future studies.
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