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ABSTRACT: 

 

The objective of this investigation was to study the use of a new type of a low-weight unmanned aerial vehicle (UAV) imaging 

system in the precision agriculture. The system consists of a novel Fabry-Perot interferometer based hyperspectral camera and a 

high-resolution small-format consumer camera. The sensors provide stereoscopic imagery in a 2D frame-format and they both weigh 

less than 500 g. A processing chain was developed for the production of high density point clouds and hyperspectral reflectance 

image mosaics (reflectance signatures), which are used as inputs in the agricultural application. We demonstrate the use of this new 

technology in the biomass estimation process, which is based on support vector regression machine. It was concluded that the central 

factors influencing on the accuracy of the estimation process were the quality of the image data, the quality of the image processing 

and digital surface model generation, and the performance of the regressor. In the wider perspective, our investigation showed that 

very low-weight, low-cost, hyperspectral, stereoscopic and spectrodirectional 3D UAV-remote sensing is now possible. This cutting 

edge technology is powerful and cost efficient in time-critical, repetitive and locally operated remote sensing applications. 

 

                                                                 

*  Corresponding author. 

1. INTRODUCTION 

The unmanned aerial vehicle (UAV) based remote sensing with 

low-weight imaging systems offers low-cost and flexible tools 

for the agricultural applications. Based on the precise measure-

ments of energy emission and reflection from the vegetation, a 

wide range of variables that affect the crops can be monitored, 

such as soil moisture, surface temperature, photosynthetic 

activity, and weed or pest infestations. This information is of 

increasing importance to ensure the cost-efficiency of the 

agricultural production, for the harvest forecasts and from the 

wider perspectives of the climate change mitigation and 

adaptation, and the environmental sustainability. 

 

An information system for the crop production is shown in 

Figure 1 (Saari et al., 2011). The UAV imaging service provi-

ders collect and process the images of the crop fields of farmers. 

The images and the interpretation results are stored on servers 

of a farmer service provider company. The results are utilized 

by the farmers in order to enhance the production, such as pre-

cision farming tasks and production planning, and also by the 

food industry for instance for the forecasting and traceability 

purposes. Our investigation emphasizes the information flow 3 

in Figure 1 by providing information of the state of the crop, 

which are required in precision farming tasks. In Finland, the 

optimization of fertilizers and pesticides are expected to be the 

first operational applications of the technology; the time 

window for the UAV data collection is two weeks and the 

maximum allowable processing time is one week. 

 

A new method for the UAV based agricultural applications is 

under development. The method utilizes a novel Fabry-Perot in-

terferometer (FPI) based light weight hyperspectral sensor deve-

loped by the VTT Technical Research Center of Finland (Un-

manned Aerial System Innovations, UASI) (Saari et al., 2011). 

The sensor is operated using a UAV having the maximum 

payload of 1 kg. A high-resolution camera is operated from the 

same platform for the purposes of georeferencing and digital 

surface model (DSM) generation. The dense image matching 

methods and quantitative processing of image radiometry are 

recent important innovations in the airborne photogrammetry 

and have also potential with UAV imaging (Scholten and 

Wewel, 2000; Honkavaara et al., 2012a, 2012b; Leberl et al., 

2010; Hirschmüller, 2011; Rosnell et al., 2011, 2012). Accurate 

point clouds and DSMs together with hyperspectral reflectance 

signatures will be input for a support vector regression (SVR) 

based estimation method, which will provide biomass estimate 

maps for agricultural applications.  

 

The advantages of the frame images are the strong constraints 

provided by the rigid rectangular image geometry and multiple 

overlapping images (Leberl et al., 2010). This is important in 

particular in the UAV applications, which typically utilize 

images collected in dynamic, vibrating and turbulent 

conditions. Typically, hyperspectral sensors are line scanners 

requiring accurate GNSS/IMU observations for georeferencing; 

this technology cannot be operated currently reliably from low-

weight UAV platforms (Nagai et al., 2009). 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-7, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

353



 

  

Spectral libraries for interpretation

Support for interpretation and 

farming planning

-manual&automatic

FARMING TASKS

Weather and other 

ambient env. data

WEB data bases 

for farmers data

FARMER
INDUSTRY

DATA FOR A FARM

ADMINISTRATION

Research

FERTILIZING SPRAYING

Aerial images

Interpreted images

Planning maps

Actual maps

Aerial images

Enchanhed farming and  production planning

- saves in fertilizer, watering & other costs

- Product quality > price

- Environmental issues

Forecasting and traceability data (contracts)

Amount and quality of crop yield

1.

3.

2. 4.

5.

6.
6.

Knowledge on the 

validity of the EU

support conditions

6.

Support for product  

development

INFORMATION SERVICES/ FARMING PROGRAMS

 
Figure 1. The UASI concept for the application of hyperspectral and high resolution false color imaging in crop production. The 

information flows are marked with numbers 1-6 (Saari et al., 2011). 

 

The use of UAVs in precision farming tasks have been 

successfully demonstrated (Lelong et al., 2008; Berni et al., 

2009; Hunt et al., 2010), but the existing methods do not utilize 

rigorously the full potential of the photogrammetric data. For 

example, the utilization of the point clouds is still limited and 

the methods for the rigorous radiometric utilization of the 

multiple overlaps of rectangular UAV images are missing. 

Furthermore, the novel hyperspectral imaging technology 

provides new possibilities for the processes. 

 

The objective of this investigation is to study the use of the 

UASI hyperspectral imager in the precision agriculture. We will 

go through the complete data collection, processing and 

analysis process for the precision farming. Our focus is in the 

development and assessment of methods for producing point 

clouds and radiometrically corrected images. We describe the 

proposed process and an empirical study in Section 2. We give 

the results in Section 3 and discuss our findings Section 4.  

 

2. MATERIALS AND METHODS  

2.1 UAV imaging system 

The Microdrones MD4-1000 quadrocopter UAV was used as 

the platform, allowing for a maximum payload of 1000 g. Two 

different imaging sensors were used. The FPI based 

hyperspectral imaging sensor developed by the VTT Technical 

Research Centre of Finland represents next generation imaging 

technology (Saari et al., 2011) (focal length: 9.3 mm, pixel size: 

8.8 µm, image size: 480 × 640 pixels, field of view (FOV): 26º 

along track, 36º across track). The second sensor was a 

consumer micro four-thirds camera Panasonic Lumix GF1, 

which has been modified so that it works as a NIR camera 

(focal length: 20 mm, pixel size: 4.5 µm, image size: 3016 × 

4016 pixels, field of view (FOV): 37º along track, 48º across 

track). Both sensors are capable of collecting stereoscopic 

images and weigh less than 500 g each. 

 

In this study, the major analysis with the UASI was carried out 

using five channels (central band width, full width of half 

maximum FWHM): G: 568.6 nm, 23.3 nm; R: 658.5 nm, 22.3 

nm; Red edge (RE): 739.1 nm, 29.7 nm, NIR-1: 802.9 nm, 38.4 

nm, NIR-2: 857.1 nm, 35.6 nm. These channels were 

considered as the most interesting for the biomass estimation 

process. More details of the sensors and the set-up are given by 

Saari et al., (2011) and Honkavaara et al. (2012b). 

 

2.2 Flight campaigns 

An empirical campaign was carried out at the MTT Agrifood 

Research Finland agricultural test site (N 60° 25' 21'', E 24° 22' 

28'') on 6th July 2011. The area consisted of wheat and barley 

test plots where the seed and fertilizer amounts were varied to 

cause wide variability in vegetation; applied amounts can be 

seen in Figure 2. Ground truth for the campaign included a 

reference DSM collected by a tractor during the sowing, height 

measurements of the vegetation during the image campaign and 

physically measured dry biomass values of vegetation samples. 

The reference targets for the imaging system included four 

reflectance reference tarps (P05, P20, P30 and P50 with 

nominal reflectance of 0.05, 0.2, 0.3 and 0.5, respectively), 

reference spectrums of six vegetation samples, a Siemens star 

and 11 ground control points (GCPs) (Figure 3). In-situ 

reflectance reference measurements were carried out using the 

ASD Field Spec Pro FR spectroradiometer and the 

measurements were normalized to a calibrated white 30 cm by 

30 cm Spectralon reference standard from Labsphere. 

 

Images were collected from the flight altitude of 140 m above 

the ground level, providing a ground sampling distance (GSD) 

of 3 cm for the GF1 images and 13 cm for the UASI images. 

Sensors were not operated simultaneously because of the lack of 

a suitable camera mount. In this study, a single image strip from 

both sensors was used; the forward overlaps were 81% and 91% 

for UASI and GF1, respectively. The length of the area was 

about 500 m and the width of the image strip was about 80 m 

with UASI and 120 m with GF1. Solar zenith and azimuth 

angles were 45º and 132º with the UASI and 38º and 166º with 

the GF1, respectively. The weather conditions during the 

campaign were fine with almost a cloud free sky and moderate 

wind; more details of the campaign are given by Saari et al. 

(2011) and Honkavaara et al. (2012b).  
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Figure 2. Applied amounts of seeds and fertilizer. 

 

 

 
 

0

0.1

0.2

0.3

0.4

0.5

500 700 900

Wavelength (nm)

Reflectance

P05

P20

P30

P50

106

119

162

163

164

 
Figure 3.  Left: Test area, GCPs are marked with red and the 

vegetation reflectance samples in yellow. Right: 

Reference spectrums of tarps (P05, P20, P30, P50) 

and vegetation samples (106-164). 

 

2.3 Data processing 

Data were processed in the photogrammetric environment 

consisting of the Bae Systems SOCET SET photogrammetric 

workstation and in-house implemented components (see details 

in Rosnell et al., 2011, 2012; Honkavaara et al., 2012b).  

 

 
Figure 4. Examples of UASI images (mirror images). From 

top left: image with green, red and NIR-2 channels 

and the corresponding individual images. 

 

2.3.1 Orientation determination: The self-calibrating 

bundle block adjustment method was applied to determine the 

orientations (geometric sensor calibration was not available). 

Because the GNSS/IMU information provided by the UAV-

system was of the poor quality, some manual interaction was 

required in the determination of the approximate orientations of 

the images; the subsequent tie point measurement was fully 

automatic. Number of GCPs was 11 for the GF1 and 30 for the 

UASI (about 20 additional GCPs were measured from the GF1 

images). The existing process flow was functional with the GF1. 

The challenge with the UASI was that the individual channels 

of the spectral data cube are collected in a short period of time 

(in this set up approximately in 1 s) and due to the platform 

movements, the images of different channels are not accurately 

overlapping, as is demonstrated in Figure 4. In this study, each 

of the five selected channels were oriented separately.  

 

2.3.2 Point cloud generation: Point clouds were extracted 

from GF1 images by novel dense image matching techniques 

using the Next Generation Automated Terrain Extraction 

software (NGATE). The point cloud was created with 10 cm 

point interval using the default NGATE strategy (ngate.strategy 

with a correlation window size of 5 × 5 pixels). 

 

2.3.3 Radiometric processing: The radiometry of passive 

imaging is influenced to a great deal by the sensor quality and 

stability and the atmospheric and illumination conditions during 

the image collection campaign. A further complication is the 

anisotropy of the object reflectance (Bidirectional Reflectance 

Distribution Function; BRDF) (Schott, 2007). In the previous 

study, a radiometric block adjustment method was developed to 

enable extraction of bidirectional reflectance factors (BRFs) 

from the images (Honkavaara et al., 2012b). In this study, the 

method was extended to carry out the BRDF correction. We 

used the BRDF model of Walthall (Walthall et al., 1985): 

 

ρ(θv,φ) = aθv
2 + bθv cos φ + c , (1) 

 

where ρ is the reflectance, θv is the viewer zenith angle, φ is the 

relative azimuth angle of the sun and the viewer, and a, b and c 

are the unknown model parameters. A least squares method was 

used to estimate the unknown parametrs. A grid of radiometric 

tie points was created in the object area and the object 

coordinates were projected to the images by taking the heights 

from the DSM and using the orientation information (details are 

given in Honkavaara et al., 2012b). The transformation from the 

DNs to the reflectance was determined by using the empirical 

line method. The average reflectance value in an object window 

of size 5 m x 5 m was used as the observation in the BRDF 

model estimation process and the view/illumination geometry 

was calculated in each image for the window center. It was 

considered that the use of 5 m x 5 m window size provides 

appropriate correction for the BRDF effects, but in the future 

the influence of window size will be investigated further. 

Multiplicative BRDF correction was applied. 

 

Finally, a hyperspectral orthophoto mosaic was calculated with 

a 0.20 m GSD utilizing the image orientations, DSM and 

radiometric correction parameters.  

 

2.4 Biomass estimation using SVR 

A SVR based machine learning approach (Drucker et al., 1997) 

is under development for the biomass estimation process 

(Figure 5). After the data collection and pre-processing (steps 1 

and 2), features are extracted from the images and DSM (step 

3), the training data are collected (step 4) and the SVR based 

estimates are calculated. The first experiments were carried out 

using simple features extracted from the five-channel 

multispectral images. The features (1-7) were: 1-5: average DN 

in G, R, RE, NIR-1 and NIR-2 channels, respectively, 6: NDVI 

((NIR-2 – R)/(NIR-2 + R)), 7: simple ratio (NIR-2/R); in all 

cases the average DN in 1 m x 1 m window was used. The 

physical measurements of the dry biomass were used for the 

training of the SVR classifier. 
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Figure 5. The SVR based process for the biomass estimation. 

 

3. RESULTS 

3.1 Quality of images 

The central image quality indicators influencing the application 

are the signal-to-noise ratio (SNR) of the images and the 

radiometric accuracy and stability of the sensor. Corners of the 

UASI images were black due to the lens-falloff effects and there 

appeared some periodic noise (Figure 4). The noise level was 

the highest in NIR-2 channel. The signal level of UASI images 

was relatively low because of the relatively high F-number 

(around 7.0) and the low quantum efficiency of the CMOS 

image sensor above 850 nm. The selected exposure time used 

for all wavelength bands was too short for NIR-2 channel. 

When the signal level is low the detector related noise sources 

are dominating (Sandau, 2010).  

 

 
Figure 6.  Examples of the reference targets in different 

images. From left: GF1 (GSD 3 cm), UASI (GSD 13 

cm): G, R, RE, NIR-1, NIR-2 (UASI images are 

mirror images). 

 

3.2 Geometric processing and point clouds 

3.2.1 Orientation processing: The processing of the GF1 

images was relatively efficient as was expected based on the 

previous experiences (Rosnell et al., 2011, 2012). The 

processing of the UASI images was more time consuming and 

the further complication was that the adjustment appeared to be 

quite unstable with self-calibration parameters; only the first 

order radial distortion parameter was used to model image 

distortions; in the future campaigns the sensor calibration 

should be carried out in a separate process. The root-mean-

square values (RMS) of the residuals of the GCPs is typically a 

realistic estimate of the orientation accuracy; in the case of the 

UASI, the variation in RMS values of 30 GCPs was 0.21-0.45 

m in X, 0.22-0.33 m in Y and 0.10-0.22 m in Z in different 

channels. Planimetric and vertical accuracy of the 

georeferencing was estimated to be better than 0.2 m for the 

GF1 and 0.5 m for the UASI. 

 

3.2.2 Point cloud generation: The NGATE was capable of 

extracting point clouds from high quality GF1 images with one 

pixel point density and with a height RMSE of 10 cm as was 

expected based on the previous experiences (Rosnell et al., 

2011, 2012). Examples of point clouds are shown in Figure 7. 

 

 

 

 
Figure 7. Example point clouds: points colour based on the 

height (left, top right) and a spectral reflectance with 

RE, G and R channels (bottom right). 

 

3.3 Radiometric processing 

3.3.1 Relative and absolute radiometric block adjustment:   

There appeared radiometric differences in the subsequent 

UASI-images; the relative block adjustment eliminated these 

disturbances (Figure 8a) (Honkavaara et al., 2012b).  

 

a) 

  
 

b) 

   
Figure 8. Examples of radiometric correction. a) Relative 

radiometric adjustment of red channel. Left: original 

DNs. Right: relatively adjusted DNs. b) BRDF-

correction. Left: original DN mosaic (RE). Center: 

BRDF-corrected mosaic (RE). Right: BRDF-

corrected color-infrared mosaic. 

 

3.3.2 BRDF-correction: The BRDF-effects were clearly 

visible in the left side of the image strip in the original image 

data (Figure 8b) (higher brightness in the back scattering area). 

The BRDF-model parameters (Equation 1) could be estimated 

statistically significantly (values of parameters were signifi-

cantly greater than their estimated standard deviations) and the 

parameters of different channels indicated some correlation with 

each other, which is the expected and desired behaviour (Figure 

9a). The reflectance differences between the image center and 

the extreme backscattering angles were less than 0.05 on green 
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and red channels, while on infrared channels they were 0.13-

0.2; with 5° view zenith angle the differences were 0.01-0.05 

depending on the channel (Figure 9b). Plots of the reflectance 

observations and the corresponding modelled BRFs in the area 

of one image indicated similar behaviour (Figure 10). The 

correction eliminated efficiently the BRDF-effects (Figure 8b). 
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Figure 9. a) BRDF model parameters in different channels 

(Equation 1). b) Reflectance range (maximum-

minimum modelled reflectance) for the view zenith 

angels of 0-25º (maximum range), 0-10 º, 0-5 º. 

 
Figure 10.  Measured (left) and modelled (right) BRF in the area 

of one NIR-2 channel image; x-axis is the view 

zenith angle in degrees, y-axis is the relative azimuth 

and z-axis is the BRF. 

 

3.4 Quality of the reflectance products and hyperspectral 

observations 

The accuracy of reflectance images was assessed by using the 

field reflectance measurements as the reference. Differences 

were calculated for the tarpaulins, the vegetation and the bright 

tarpaulins (nominal reflectance 0.2-0.5). The following 

reflectance products were evaluated: 1) empirical line based 

method (el), 2) 1 + BRDF correction (el, brdf), 3) radiometric 

block adjustment with absolute and relative (imagewise) 

parameters (ba, abs, rel) (Honkavaara et al., 2012b), 4) 3 + 

BRDF correction (ba, abs, rel, brdf). Results are shown in 

Figure 11. In the case of tarpaulins, the best results were 

obtained without the BRDF correction, which was the expected 

behaviour, because the BRDF correction was based on the 

vegetated surfaces. With the vegetation, the BRDF correction 

improved the accuracy in many channels. The relative 

correction did not improve the accuracy with the reference 

targets. The reflectance accuracy was for the bright tarps on the 

level of 5% of the reflectance value; for the vegetation the 

values were clearly higher due to the larger variation of the 

object. This assessment shows that the methods are functional, 

but that the reliability and accuracy should be further improved. 

 

3.5 SVR-based biomass estimation 

The first SVR-based biomass estimation was carried out using 

the image mosaic without any radiometric corrections. The R2 

values of the estimation process were 0.56 which can be 

considered as a mediocre result (Figure 12). The important 

factors influencing the deviation include the quality of images, 

the object, the reference values, and the performance of the reg-

ressor. In this study, the two first causes are the most likely. 

First of all, the features used are sensitive to the relative radio-

metric differences of the images and the BRDF effects; these 

effects were not corrected in the test data. The possible issues 

with the object include the variability caused by the soil type, 

and furthermore, the features in the test data are quite small in 

size, so also the georeferencing errors can cause problems. The 

biomass estimate map (Figure 12) shows that in some cases 

high biomass estimates were obtained in the areas with strong 

backscattering even though the measured biomass reference 

values were low. In the further studies we expect that the results 

would improve, when using rigorous radiometric processing 

methods, by combining the spectral features with the 3D geo-

metric features and by improving the regressor. 
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Figure 11. Reflectance errors (RMSE % of the reflectance 

value) in tarps, vegetation and bright tarps for dif-

ferent radiometric correction methods (Section 3.4) 
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Figure 12. Left: The estimated biomass as the function of the 

measured biomass (scaled to the range [0-1]). Right: 

A biomass estimate map computed using the image 

mosaic without any radiometric corrections; the 

amount of biomass is low in red and high in green 

areas. The grey dots show the locations of dry-

biomass measurements; the brighter the dot the 

higher the amount of dry biomass. 

 

4. DISCUSSION AND CONCLUSIONS 

We investigated the use of a new type of a UAV imaging 

system in agricultural applications. The system consists of a 

novel Fabry-Perot interferometer based hyperspectral camera 

(Saari et al., 2011) and a high-resolution small format camera 

Panasonic Lumix GF1. Both sensors provide stereoscopic 

imagery in a 2D frame-format and weigh less than 500 g each. 

A processing line was developed for the production of high 

density point clouds and hyperspectral reflectance signature 

mosaics. We demonstrated the use of this new technology in the 

agricultural biomass estimation process by using support vector 

regression (SVR) estimation method. 

 

The 2D format images collected in an image block structure 

with large forward overlaps provide strong geometric and 

radiometric constraints, which is a key aspect for reliable 
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applications as discussed also by Leberl et al. (2010). The 

results showed that the block adjustment approach was 

functional with the UASI system. 

 

The data sets used in this investigation were collected under a 

sunny weather, providing a very high radiometric image quality 

with the GF1 while the UASI images had poorer SNR. Point 

cloud generation from the high quality image data collected by 

the GF1 was successful in the agricultural fields, which is 

consistent with the expectations (Hirschmüller, 2011; Rosnell et 

al., 2011, 2012; Honkavaara et al., 2012a). The radiometric 

block adjustment and BRDF correction provided promising 

results and will be further optimized and also improved to allow 

reliable data processing in different conditions. The SVR-based 

biomass estimation is sensitive to the radiometric and geometric 

quality of the image block. In geometric terms, the accuracy of 

estimated canopy height is critical; this is dependent on the 

quality of the point cloud, which is discussed in details by 

Rosnell et al., (2012) and Honkavaara et al., (2012a). In 

radiometric terms, the image mosaic has to be relatively 

corrected, which requires balancing of individual images and 

BRDF-correction; in some applications also absolute correction 

to reflectance signatures is required. More testing in practical 

conditions is necessary in order to provide detailed 

requirements for the data quality. The presented method is 

expected to provide improvements to the existing approaches in 

terms of cost, accuracy, efficiency and information content 

(Lelong et al., 2008; Berni et al., 2009; Hunt et al., 2010). 

 

The signal level was low especially in the NIR-2 channel. The 

hyperspectral imager prototype to be built for the year 2012 will 

have larger signal levels due to the lower F-number ( 2.8 instead 

of 7.0). It is expected that this improvement will help all the 

tasks in the UASI processing flow where image matching is 

applied. This is also very important in order to be able to 

operate the sensor in poor illumination conditions and to cope 

with shadows (Rosnell et al., 2011; Honkavaara et al., 2012a). 

 

In the first experiments, only five channels of the hyperspectral 

data cube were evaluated. It is expected that the developed 

approach can be extended to all the other channels, and this is 

now under development. In the future studies we will 

emphasize the processing and utilization of the entire 

hyperspectral data cube to obtain more detailed information of 

the object. As soon as the functional methods are available, it 

will be necessary to optimize the processing times in order to 

meet the requirements for the data availability (Section 1).  

 

This article presents a new approach for the measurement of the 

geometric and radiometric properties of environment. The met-

hod is expected to be functional in wide variety of remote sen-

sing applications, and we are investigating these possibilities. 
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