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ABSTRACT: 
In forest ecology, a snag refers to a standing, partly or completely dead tree, often missing a top or most of the smaller branches. The 
accurate estimation of live and dead biomass in forested ecosystems is important for studies of carbon dynamics, biodiversity, and 
forest management. Therefore, an understanding of its availability and spatial distribution is required. So far, LiDAR remote sensing 
has been successfully used to assess live trees and their biomass, but studies focusing on dead trees are rare. The paper develops a 
methodology for retrieving individual dead trees in a mixed mountain forest using features that are derived from small-footprint 
airborne full waveform LIDAR data. First, 3D coordinates of the laser beam reflections, the pulse intensity and width are extracted 
by waveform decomposition. Secondly, 3D single trees are detected by an integrated approach, which delineates both dominate tree 
crowns and understory small trees in the canopy height model (CHM) using the watershed algorithm followed by applying 
normalized cuts segmentation to merged watershed areas. Thus, single trees can be obtained as 3D point segments associated with 
waveform-specific features per point. Furthermore, the tree segments are delivered to feature definition process to derive geometric 
and reflectional features at single tree level, e.g. volume and maximal diameter of crown, mean intensity, gap fraction, etc. Finally, 
the spanned feature space for the tree segments is forwarded to a binary classifier using support vector machine (SVM) in order to 
discriminate dead trees from the living ones. The methodology is applied to datasets that have been captured with the Riegl LMS-
Q560 laser scanner at a point density of 25 points/m2 in the Bavarian Forest National Park, Germany, respectively under leaf-on and 
leaf-off conditions for Norway spruces, European beeches and Sycamore maples. The classification experiments lead in the best 
case to an overall accuracy of 73% in a leaf-on situation and 71% in a leaf-off situation, if we assess the classification results using 
5-fold cross-validation method with the help of reference data acquired by the field surveying. 
 
 

                                                                 
*  Corresponding author.  

1. INTRODUCTION 

Laser scanning or LiDAR has been widely used in mapping the 
Earth’s surface and especially in forest application. Techniques 
for tree extraction from LIDAR data have been investigated for 
mapping forests at both plot and tree levels to identify 
important structural parameters (Korpela et al., 2010; Yu et al., 
2011). Recent advances in LIDAR technology have generated 
new full waveform scanners that provide a higher spatial point 
density and additional information about the reflectional 
characteristics and vertical structure of trees (Stilla et al., 2007; 
Reitberger et al., 2008; Yao et al., 2010). 
 

 
Figure 1 Snags in a forest area (cropped out from Wiki) 

Tree crowns are typically derived with the watershed algorithm 
(Pyysalo et al., 2002), or by a region growing (Solberg et al., 
2006) on the crown height model (CHM). Novel methods for 

single tree detection tackle conceptually the segmentation 
problem with a 3D approach instead of using only the CHM 
(Wang et al., 2008). In combination with full waveform data 
Reitberger et al. (2009) successfully demonstrated that the 
detection rate of single trees could be significantly improved in 
overall terms, especially in heterogeneous forest types where 
groups of trees grow closely to each other. Interestingly, the 
improvement was most in the lower forest layers with 20%. The 
fusion of 3D techniques with full waveform data seems to push 
the single tree approach to a new level of accuracy. 
Consequently, the estimation of tree shape parameters is 
enhanced using the 3D volume of segmented trees. Moreover, 
the analysis of the internal tree reflectional characteristics gains 
more insight into tree structure which are significant for 
instance for tree species classification. 
 
So far, little attention has been paid to identify the heath of 
individual trees and detect dead trees using LiDAR information, 
mainly because of the low spatial point density and the lack of 
information about the characteristics of the single tree structure. 
In the past several years there are certain authors dealing with 
the similar topics as forest heath monitoring. In Solberg et al. 
(2006) an airborne laser scanner was used to derive the gap 
fraction for characterizing the defoliation process of a Scots 
pine forest during a severe insect attack. The tree growing 
condition is assumed to be strongly related to the gap fraction. 
More recently, Kim et al. (2009) used LiDAR data to 
distinguish between and map standing live and dead tree 
biomass associated with wildfire in the mixed coniferous forest 
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based on the area-based regression analysis. Bater et al. (2009) 
have estimated the distribution of standing dead tree classes 
within forests by extracting LiDAR-derived predictor variables 
at plot level. The cumulative proportions of dead tree stems can 
be predicted by ordinal regression with an accuracy of r= 0.61, 
RMSE=16.8%. Additionally, Pasher and King (2009) have used 
high resolution airborne imagery to map temperate forest dead 
wood based on different classification methods whereby a high 
area-based accuracy of up to 94% was achieved. 
 
New full waveform LiDAR systems have the potential to 
overcome drawbacks of conventional laser scanners since they 
detect significantly more reflections in the tree crown and stem, 
and provide the intensity and the pulse width as reflectional 
parameters. The objective of this paper is (i) to highlight a 
method that detects single trees with a novel 3D segmentation 
method in combination with the watershed algorithm, (ii) to 
introduce a new approach to detect dead trees that utilizes the 
geometric, reflectional and transmittance features which are 
derived at single tree level, (iii) to show how the detection and 
location of single dead and living trees across datasets of 
different foliage conditions are achieved by using a binary 
SVM classifier.  
 
The paper is divided into five sections. Section 2 focuses on the 
detection of the single trees and classification of their growing 
conditions. Section 3 shows the results which have been 
obtained from full waveform data acquired in the Bavarian 
Forest National Park. Finally, the results are discussed with 
conclusions in sections 4 and 5. 
 

2. METHODOLOGY 

2.1 Decomposition of full waveform data 

Let us assume that full waveform LIDAR data have been 
captured in a region of interest (ROI). A single waveform is 
decomposed by fitting a series of Gaussian pulses to the 
waveform which contains NR reflections (Figure 2).  

 
Figure 2. 3D points and attributes derived from a waveform 

The vector ( , , , , )( 1,..., )T

i i i i i i Rx y z W I i N X  is provided for each 

reflection i with ),,( iii zyx  as the 3D coordinates of the 

reflection. Additionally, the points iX  are given the width 

2
i i

W σ   and the intensity 2i i iI σ A     of the return pulse 

with iσ  as the standard deviation and Ai as the amplitude of the 

reflection i (Reitberger et al., 2006; Jutzi and Stilla, 2005). Note 
that basically each reflection can be detected by the waveform 
decomposition. This is remarkable since some conventional 
LIDAR systems have a dead zone of about 3 m which makes 
these systems effectively blind after a reflection. 
 

The sensor data are calibrated by referencing Wi and Ii to the 
pulse width eW  and the intensity eI  of the emitted Gaussian 
pulse and correcting the intensity with respect to the run length 
si of the laser beam and a nominal distance s0.  

 e
i

c
i WWW       (1) 

 0( ) ( )c k e k
i i iI I s I s        (2) 

Note that the correction assumes a target size larger or equal to 
the footprint (Wagner et al., 2006). The points from a waveform 
are subdivided into 4 point classes depending on the number of 
reflections within a waveform (Table 1). 
 

Class Single First Middle Last 
Definition NR=1 

i=1 
NR ≥ 2 
i=1 

NR ≥ 3 
i=2,…, NR-1 

NR ≥ 2 
i=NR 

Table 1. Subdivision of points into classes in dependence on the 
number of reflections NR and the position i of the reflection in 
the waveform 
 
2.2 Singe tree detection 

2.2.1 Watershed transformation  

The first coarse detection of single trees is achieved from CHM 
by watershed transformation. The CHM is derived by 
subdividing the ROI into a grid having a cell spacing of cp and 
NC cells. Within each grid cell, the highest 3D point is extracted 

and adapted with respect to the ground level ground
jz , i.e.  

),...,1( C
ground
jj

CHM
j Njzzz  . The ground level ground

jz  is 

estimated from a given DTM by bilinear interpolation. In the 
next step, all the highest 3D points 

),...,1)(,,( C
CHM
jjj

T
j Njzyx X  of all NC cells are robustly 

interpolated in a grid that has NX and NY grid lines and a grid 
width gw. For this purpose a method called ‘gridfit’ (D’Errico, 
2006) is adopted which smoothens the surface by keeping the 
surface gradients as small as possible. The trade-off between 
interpolation and regularization is determined by the adjustable 
smoothing factor. Both steps are carried out simultaneously in a 
least squares adjustment. The result is a smoothed CHM having 
equally spaced cells. The watershed segments derived on this 
CHM act as candidate regions where single trees could be 
contained. The results can also be improved by an additional 
stem detection method to further detect small trees which are 
not represented by local maximums. 
 
2.2.2 Normalized cuts segmentation 

Within every watershed segments the new 3D segmentation 
technique using normalized cuts (Shi and Malik, 2000) is used 
to detect point clouds associated to single trees (Figure 3). This 
makes it possible to detect also smaller trees in th understory 
which cannot be indicated by local maxima in the CHM. This 
segmentation uses the positions (xi, yi, zi) of the laser reflections 
and optionally the pulse width Wi and the intensity Iiof the 
waveform decomposition. Additionally, stem positions or local 
maximums derived by the watershed segmentation of CHM can 
be used as prior knowledge. The normalized cut segmentation 
applied in the voxel structure of a (merged) watershed segment 
is based on a graph G. The two disjoint segments A and B of the 
graph are found by minimizing the cost function: 

 
( , ) ( , )

( , )
( , ) ( , )

Cut A B Cut A B
NCut A B

Assoc A V Assoc B V
     (3) 

with 
,

( , ) ij
i A j B

Cut A B w
 

   as the total sum of weights between 

the segments A and B and 
,

( , ) ij
i A j V

Assoc A V w
 

   as the sum of 
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the weights of all edges ending in the segment A. The weights 
wij specify the similarity between the voxels and are a function 
of the LiDAR point distribution and features.  A minimum 
solution for Eq.(3) is found by means of a corresponding 
generalized eigenvalue problem (Reitberger et al., 2009). It 
turned out that the spatial distribution of the LiDAR points 
mainly influences the weighting function. The features derived 
from the LiDAR points attributes from Wi and Ii only support in 
second instance the segmentation result. Note that the 3D 
segmentation approach is not dependent on full waveform 
LiDAR data. It can also successfully be applied to conventional 
LiDAR data just providing 3D point coordinates. 

     
Figure 3. Single tree segmentation using normalized cut with 
the reference trees as black lines. 
 
2.3 Feature extraction 

Deriving significant features describing each tree individually is 
a key step in the classification of tree growing condition. The 
single tree detection provides for each segmented tree 
corresponding laser points. Crown points can be separated from 
possible existing stem reflections by finding the crown base 
height. All the laser hits above the crown base height form the 
crown points.  
Based on our previous work (Reitberger et al., 2008), the six-
group salient features Stree={Sg, SI, SW, Sn, Sf  SC} of a tree can 
be defined to reflect the tree geometric and physical properties. 
The features will be defined as follows, respectively, while the 
detailed definition of the first four features can be referred to 
the Reitberger et al. (2008): 

 Sg ={ 1
gS , 2

gS }, which describe the outer tree geometry. The 

first feature 1
gS comprises two curvature parameters of a 

parabolic surface fitted to the crown points. The second 
parameter 2

gS  records the mean distances of points in all 

equidistance height-layers to the tree stem position. 
 SI ={ 1

IS , 2
IS }, which describe the tree reflectional properties 

against laser beam, which benefits from intensity information 
provided by the waveform decomposition. The first feature 1

IS  

computes the mean values of laser points in each height layer. 
The second parameter 2

IS  is introduced as overall mean 

intensity value for the entire tree segment. 
 SW ={ c

meanS }, which uses the pulse width information provides 

for each point from waveform decomposition. However, the 
definition of this feature is limited to the single und first pulses, 
which could lead to a distinct broadening effect of pulses. 
 Sn ={ 1

nS , 2
nS }, where 1

nS  is the average number of reflections 

between the first and last reflection in the waveform for laser 
shots with multiple reflections, 2

nS is the proportion of the 

number of laser shots with single reflections to the number of 
laser shots with multiple reflections for the tree segment. 

 Sf ={ 1
fS , 2

fS }, which is designed to characterize the gap 

fraction of single trees. The gap fraction is usually not directly 
measurable from laser scanning, and therefore, is here 
approximated by two features. The first feature 1

fS is derived as 

the ratio of below canopy echoes to the total number of echoes. 
The threshold for confining the canopy echoes is set to 1m 
above ground. The second feature 2

fS is parameterized as an 

echo ratio defined as  

                  2
fS =(nfirst+ nintermediate)/( nlast+ nsingle)    (4) 

where n is the respective number of echoes per tree segment 
plus below ground echoes. If no last and single echoes are 
found within a cell, the echo ratio is set to 1, indicating a dense 
vertical extension and low transparency of the tree object. 
 SC ={ d

CS , V
CS }, where d

CS  is the maximal diameter of the tree 

crown, V
CS is the volume of the tree crown derived based on 3D 

alpha shape. The tree crowns are extracted from single 3D tree 
segments. 
 
2.4 Discrimination between dead and living trees 

Tree growing conditions are distinguished between dead and 
living trees by a supervised classification using support vector 
machine (SVM) technique. SVM is utilized owing to its 
computational simplicity and superior accuracy. It is not 
constrained to prior assumptions on the distribution of input 
data and is, hence, well suited for complex feature space, e.g. 
nonlinear recognition problems. The SVM was originally 
designed for binary classification; therefore, in this study, the 
binary SVM is directly implemented for our task in a genuine 
way (dead and living trees) without handling the multiclass 
problem. Moreover, the RBF kernel is used here. In addition, 
the kernel based implementation of SVM needs to select 
multiple controlling parameters, including the kernel 
parameters, etc. In our case, these parameters were selected 
automatically based on the LOO (leave-one-out) algorithm 
(Chapelle et al., 2002). It is based on the idea that the expected 
generalization error is to be minimized where the optimization 
of the parameters is carried out by a gradient descent search 
over the parameter space. The most important parameters to try 
search are box constraint for soft margin and sigma value for 
RBF kernel. After obtaining a reasonable initial parameter, they 
can be refined to get better accuracy. An example of 2D feature 
map with SVM is depicted in Figure 4. 
 

 
Figure 4. 2D feature space as an example to undergo SVM 
classification of discriminating between dead and living trees, 
the black lines indicate the SVM nonlinear decision boundaries 
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3. EXPERIMENTS 

3.1 Material  

Experiments were conducted in the Bavarian Forest National 
Park which is located in south-eastern Germany along the 
border to the Czech Republic (49o 3’ 19” N, 13o 12’ 9” E). 2 
sample plots with an area size between 1000 m2 and 3600 m2 
were selected in the mixed mountain forests. The plots 
comprise forest in the regeneration phase, the late pole phase. 
The test sites have suffered from tree disease due to bark beetle 
attack. Reference data for all trees with diameter at breast 
height (DBH) larger than 7 cm have been collected in May 
2006 and 2007 for 247 Norway spruces (Picea abies), 63 
European beeches (Fagus sylvatica), 3 Sycamore maples (Acer 
pseudoplatanus) and 1 Tilia. Several tree parameters like the 
DBH, total tree height, stem position and tree species were 
measured and determined with the help of GPS, tacheometry 
and the ’Vertex’ III system. A DTM with a grid size of 1 m and 
an absolute accuracy of 25 cm was available.  

Plot 
Size 
[ha] 

Altitude 
[m] 

Trees/ha 
Deciduous 

[%] 
Mortality 

[%]
21 0.2 860 500 66 20~30 

59 0.1 810 2150 1 35~40 

Table 2. Characteristics of sample plots 

Full waveform data have been collected by Milan Flug GmbH 
with the Riegl LMS-Q560 scanner in May 2006 after snowmelt 
but prior to foliation and in May 2007 after foliation with an 
average point density of 25 points/m2(Table 3). The vertical 
sampling distance was 15 cm, the pulse width at half maximum 
reached 4 ns and the laser wavelength was 1550 nm. The flying 
altitude of 400 m resulted in a footprint size of 20 cm.  
 

Time of flight May ‘2006 May ‘2007 
Foliage Leaf-off Leaf-on 
Scanner Riegl LMS-Q560 Riegl LMS-Q560
Pts/m2 25 25 
AGL [m] 400 400 
Footprint [cm] 20 20 

Table 3. Configurations for two airborne LiDAR campaigns 
 
3.2 Calibration 

The calibration of the Riegl full waveform system was 
determined from special calibration flights performed over an 
airfield. Several tracks were flown at different flying heights 
(200 m and 400 m) along and across the airfield. The mean 
intensity Ii, corrected with respect to the emitted intensity Ie, 
and the mean run length si were calculated in four homogeneous 
areas (122 m2–133 m2) for each track. 
 

Flight 2006  Flight 2007 

Calibrated parameter k 1.902 1.736 

Table 4 Estimation of calibration parameter k 
 

According to Eq. (2), the best coefficient k was estimated from 
all possible observation equations  
       k k

i i j jI s I s       (5) 

which can be formulated for two tracks i and j flown at different 
heights. Table 4 shows the results obtained for the two flights of 
data sets. 
 

3.3 Single tree detection 

The procedures for 3D single tree detection were applied to the 
plots in a batch procedure without any manual interaction. 
Table 5 contains the percentage of detected trees for two plots. 
The trees are subdivided into 3 layers with respect to the mean 
height htop of the 100 highest trees per ha. The lower layer 
contains all trees below 50 % of htop, the intermediate layer 
refers to all trees between 50 % and 80 % of htop, and, finally, 
the upper layer contains the rest of the trees. Figure 5 shows a 
sample area containing several coniferous trees. The tree tops 
derived from the local maximums of the CHM correspond in 
some cases with the reference trees reasonably. The tree 
detection results were evaluated by comparison with reference 
data using two criterions: i). the distance of detected trees 
should be smaller than 60% of the mean tree spacing of the plot; 
ii) the height difference between detected and reference trees 
should be smaller than 15% of htop. If a reference tree is 
assigned to more than one tree position, the tree position with 
the minimum distance to the reference is selected. Detected 
trees that are liked to one tree position are so-called “detected 
trees” and detected trees without any link to a tree position are 
treated as “false positives”. 

 
Figure 5. Single tree detection of sample area with 3D 
segments, the outlines and positions of single trees are projected 
onto the x-y plane  
 

Data 
set 

Correctly detected trees per height layer [%] False 
pos 
[%] lower intermediate upper total 

2006 61 69 75 70 23 

2007 59 70 73 67 25 

Table 5. 3D Detection of single trees in the reference plots 
 
The overall detection rate of up to 70 % can be achieved for our 
experiments, while up to a quarter of the detection corresponds 
to false alarm. It can be indicated that most of the trees are 
detected in the upper layer. In comparison, in the intermediate 
and lower layer the detection rate is relatively smaller. 
However, the innovative tree detection method based on 3D 
segmentation has fully exploited advantages of full waveform 
data to detect small trees. Most of dominate trees in the middle 
and lower layer have been detected, yielding much better 
results than previous studies, even better than ours presented in 
Reitberger et al. (2009). One of the important reasons is that we 
have a generous horizontal threshold for matching reference 
trees. The number of false detected trees indicates a moderate 
reliability. Additionally, if we compare data set I (leaf-off) to 
dataset II (leaf-on) it can be addressed that the foliage condition 
could affect the detection rate, but not significantly. As 
expected, the overall detection rate is worse by ca.3% in leaf-on 
situation, while the false positive has increased by 2%. It could 
be caused by the reason that dense tree crowns in leaf-on 
condition hinder the detection or dead woods have emerged in 
the meantime. 
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3.4 Classification of dead and living trees 

A binary SVM classification is applied to correctly detected 
trees to distinguish between dead and living ones based on 
various features defined for single trees. A 5-fold cross 
validation is performed in order to fairly assess the results and 
minimize the impact of the selection of training data. 
 
The numbers in the Table 6 refer to the classification results 
using various combinations of features. The results show that 
the classification works best with a combination of all features. 
It seems that there are no unique single features working best 
for both datasets. However, as unexpected, the features I WS S  

describing the physical reflection properties have constantly a 
less positive effect on both datasets, independent of the foliage 
conditions. Moreover, the features nS and fS dedicated to the 

penetration behavior of laser pulses influence the classification 
accuracy significantly in the leaf-on case (dataset II). 
Meanwhile, the features related to the outer geometry of crowns 

gS and cS  also perform better in the leaf-on case. Such facts 

lead to the better overall accuracy in the leaf-on case than the 
leaf-off case. Finally, we combined all of the single features, 
which provided the lowest total classification error of 34% and 
30% for the leaf-off/on cases, respectively. Tables 7 shows 
additionally the confusion matrices of the best classification 
results. A good overall accuracy of 73% is achieved for the 
leaf-on case, whereas only a moderate  value can be obtained.  

Feature 
Misclassification rate (%)  

Leaf-off Leaf-on 

gS  42 35 

IS  45 47 

WS  45 45 

nS  50 41 

fS  40 41 

SC 41 42 

I WS S  40 40 

CgS S  43 41 

fnS S  47 37 
2
g I W n f CS S S S S S       34 30 

Table 6 5-fold cross-validation results of SVM classification of 
dead and living trees using different combinations of tree 
segment features, the misclassification rate measures the 
proportion of misclassified observations of both classes.  

 

 Leaf-off Leaf-on 

Living Dead Living Dead 

Living 127 16 89 32 

Dead 46 25 25 62 

Overall accuracy 71% 73% 

Kappa 0.27 0.45 

Table 7 Confusion matrix of the best classification result for 
both datasets using 5-fold cross-validation 

Furthermore, we show the distribution of the detected and 
reference living and dead trees for different DBHs in Figures 6 
and 7. Note that the number of trees presented in these two 

figures refers to the results of single tree detection rather than 
that of SVM classification. Therefore, only the capability of 3D 
tree segmentation with respect to dead woods detection is 
shown here. 
 

 
Figure 6. Distribution histogram of detected and reference trees 
according to the DBH – leaf-off dataset 
 

  
Figure 7. Distribution histogram of detected and reference trees 
according to the DBH – leaf-on dataset 
 

 Mean positioning error 

Leaf-off Leaf-on 

Dead trees 0.98m 0.86m 

Living trees 0.98m 1.05m 

Total 0.98m 1.01m 

Table 8. Accuracy of the tree position determination 

Finally, Table 8 shows the absolute positional accuracy of the 
detected trees after classifying them into living and dead ones. 
Interestingly, the mean positioning error of dead trees in the 
leaf-on case gets better by 10 %, which corresponds to ca. 19 
cm. In the leaf-off case, it seems to indicate no difference 
between dead and living trees. However, the overall accuracy of 
tree position determination is still better in the leaf-off 
condition. 
 

4. DISCUSSION 

Conceptually, the presented approach to detect dead wood from 
airborne LIDAR data of forest areas goes one step further than 
tree species classification. To the best of our knowledge, this 
paper presents the first complete scheme for detecting dead 
woods at single tree level using high density full waveform 
LiDAR data in forestry areas. In this study, based on the 3D 
single tree segments derived automatically in advance the 
classification of tree health states using waveform-laser 
measurements is performed. The 3D segmentation for single 
tree detection by normalized cuts could improve the detection 
rate in the lower forest layer by averagely 20% compared to 2D 
segmentation performed on the CHM. Moreover, the leaf-off 
case seems to be a more appropriate acquisition time for single 
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tree detection in mixed mountain forests, since the segmentation 
of deciduous trees is more difficult due to considerable 
overlapping of adjacent trees. 
 
When viewing at the results of the dead wood classification we 
obtained an overall accuracy up to 73% for both flight 
campaigns. The good results are provided mainly by waveform-
specific features fS describing the penetration ability of laser 

pulses against tree crown in leaf-off and by gS describing the 

outer tree geometry in leaf-on case. In general, there is no 
unique feature which decisively contributes to the success of 
the classification of tree heath condition. The combined set of 
all features shows the best classification performance 
independent of the foliage condition. Furthermore, contrary to 
most of reported tree species classifications the leaf-on situation 
in our study is more favourable towards identifying dead trees 
from living ones than leaf-off case. It could be caused by 
different reasons. Firstly, under leaf-on condition the crown of 
deciduous trees exhibits a more abundant type, which leads to a 
stronger evidence for differing from coniferous dead trees 
making the distinction of tree types based on crown geometry 
and transmittance easier. Secondly, the leaf-on dataset used in 
this study was acquired one year later than the leaf-off data. 
Many dead trees have emerged within this time interval owing 
to the attack of bark beetle. This can also be retrieved from 
Figures 6 and 7, where reference dead trees have increased and 
reference living trees have decreased, especially for trees with 
small stem diameter. The analysis of the waveform data by 
Reitberger et al. (2008) shows that the intensity and pulse width 
indicate the best discrimination between the stem and crown 
points. Dead trees should have mainly consisted of laser 
reflections from the stem and branch, which contribute to a high 
mean intensity value. However, intensity related 
features ,I WS S show unexpectedly only moderate results for 

detecting dead woods in both datasets. It could be due to the 
reason that the mixed mountain forest composed of different 
tree species could oversmooth such intensity difference between 
tree crown and stem. Additionally, tree crown points which 
actually belong to adjacent trees could weaken the feature 
functions, even leading to worse overall classification results. 
Such false points could happen to the tree segments owing to 
tolerant threshold for selecting correctly detected trees. 
 

5. CONCLUSIONS 

The study presents a scheme for discriminating dead standing 
trees from living ones in forest areas based on a 3D single tree 
detection method from full-waveform LiDAR data. The results 
attained in heterogeneous forest types in different foliage 
conditions show that the overall accuracy and position of single 
trees independent of heath state could be obtained in a 
promising way. Based on the combinational analysis of 
waveform-specific, transmittance and geometric features 
defined at single tree level a clear dependency of the intensity 
and the pulse width towards the discrimination of tree health 
has not been found as it was expected. In contrary, features 
related to outer geometry seem to more contribute to the 
success of the classification. Future research could be focussed 
on assessing the influence of tree species on the classification of 
dead and living trees, since the mean intensity for single points 
is clearly different for coniferous and deciduous tree stems 
according to our previous study. Furthermore, the intensity 
difference between stems of living and dead trees needs to be 
examined, whether proving direct clues to discriminating the 
tree heath conditions.  
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