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ABSTRACT: 

Building extraction from imagery has been an active research area for decades. However, the precise building detection from 

hyperspectral (HSI) images solely is a less often addressed research question due to the low spatial resolution of data. The building 

boundaries are usually represented by spectrally mixed pixels, and classical edge detector algorithms fail to detect borders with 

sufficient completeness. The idea of the proposed method is to use fraction of materials in mixed pixels to derive weights for 

adjusting building boundaries. The building regions are detected using seeded region growing and merging in a HSI image; for the 

initial seed point selection the digital surface model (DSM) is used. Prior to region growing, the seeds are statistically tested for 

outliers on the basis of their spectral characteristics. Then, the border pixels of building regions are compared in spectrum to the seed 

points by calculating spectral dissimilarity. From this spectral dissimilarity the weights for weighted and constrained least squares 

(LS) adjustment are derived. We used the Spectral Angle Mapper (SAM) for spectral similarity measure, but the proposed boundary 

estimation method could benefit from soft classification or spectral unmixing results. The method was tested on a HSI image with 

spatial resolution of 4 m, and buildings of rectangular shape. The importance of constraints to the relations between building parts, 

e.g. perpendicularity is shown on example with a building with inner yards. The adjusted building boundaries are compared to the 

laser DSM, and have a relative accuracy of boundaries ¼ of a pixel.  

 

 

1. INTRODUCTION 

Automatic man made object detection from aerial and space 

images has been an active area of research for a few decades 

(Mayer, 1999; Gruen et al. 1995). Building extraction provides 

essential information for e.g. urban planning, generating 3D 

building models, and also change detection in cases of natural 

disasters. Images can be taken with different types of sensors 

according to the spectral, spatial and radiometric resolution. 

The advantage of hyperspectral (HSI) sensors is that they detect 

surface reflection in many narrow and contiguous spectral 

bands, e.g. 10 nm, and enable to identify surface materials by 

comparing spectral signatures to the spectra of known materials 

(Shaw and Manolakis, 2002). The similarity between spectra are 

measured with similarity measures, such as Euclidean distance 

or distances designed especially for HSI data, the Spectral 

Angle Mapper (SAM, Kruse et al., 1993), spectral information 

divergence (Chang, 2000). The spectral signatures of materials 

can be measured in laboratories with spectrometers, and stored 

in spectral libraries, e.g. the ASTER spectral library (Baldridge, 

et al., 2009). In contrast to the laboratory spectral libraries HSI 

images are influenced by the atmosphere. Thus, modeling of 

atmospheric influences is needed before comparing image 

spectra to laboratory spectra. Building a spectral library from 

image spectra evades the problem of atmospheric corrections; 

so such a library is image and sensor dependant, usually 

requiring an expert to select appropriate spectra. The spectral 

libraries are used for supervised classification of HSI images. 

Classification techniques such as support vector machines 

(Camps-Valls and Bruzzone 2005) or artificial neural networks 

(Chen and Tran, 1994) has been successfully developed and 

applied to HSI data. The spatial resolution of HSI images is 

generally lower compared to panchromatic (PAN) or 

multispectral (MS) images. Consequently pixels with building 

edges are usually spectrally mixed, so the pixel wise 

classification is not sufficient for precise building boundary 

extraction. A mixed pixel is a spatial pixel in a MS or a HSI 

image and is the result of a reflection from surface covered with 

more than one material. Soft classification techniques allow to 

assign more classes to one pixel, expressing membership of 

each defined class, but not a fraction of present materials (Villa 

et al., 2011). The fractions or abundances of mixed pixels are 

estimated by spectral unmixing algorithms using a collection of 

endmembers, e.g. spectral signatures of distinct material 

substance (Keshava, 2003). The basis for our idea for sub-pixel 

boundary detection is that fraction of materials in mixed pixels 

can support boundary estimation on the assumption that all the 

roofing materials are known.  

 

Sohn and Dowman (2007) describe the automatic building 

extraction as a hierarchical process, starting with feature 

extraction, then searching only the features relevant to the 

buildings and finally reconstructing the building. The 

geometrical features describing buildings, such as points and 

lines are difficult to detect in a HSI image due to the low spatial 

resolution. Many edge detection algorithms, e.g. Canny edge 

detector (Canny, 1986) are developed only for grayscale images 

or 3-band colour images. However, the Robust Colour 

Morphological Gradient (RCGM) edge detector (Evans and Liu 

2006) is defined for any number of bands. Tarabalka et al. 

(2008) classify HSI images using two methods; first, they apply 

watershed segmentation to the gradient of HSI image, computed 

with the RCGM and second, using a SVM classifier. Then, they 

calculate majority voting between both results, and so improve 

classification by combining the spatial information from 

watershed segmentation with the spectral information from 

SVM classification. In their following work (Tarabalka et al., 

2010) they use several classifiers to classify a HSI image and by 
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combination of the classification results select markers, i.e. 

seeds, to build minimum spanning forests for final classification 

map. One of their proposed techniques is segmentation, based 

on iterative hierarchical stepwise optimization region growing, 

using SAM to join spectrally similar adjacent and non-adjacent 

regions. 

 

Our main goal is the building boundary detection and not image 

classification. Therefore, we propose a similar technique of 

seeded region growing and merging for the first definition of a 

building region. In order to avoid using existing spectral 

libraries or large manual training of classifiers, the seeds are 

automatically selected from the digital surface model (DSM). 

Our contribution to the seed detection is in statistical testing of 

spectral similarity for group of seeds.  

 

Braun et al. (2011) classify roofing materials using SVM based 

technique with kernel composition; they fuse HSI image and 

laser data, by computing kernels for each of them and add the 

kernels before SVM classification. Huertas et al. (1999) model 

larger buildings from HSI and PAN images. The line segments, 

detected in the PAN image, are overlaid over the HSI image, 

and the roof hypotheses are tested only in the areas where 

buildings were detected in the HSI image. Thus, the HSI image 

approximately defines the position of the buildings and the final 

buildings outline is modeled on the basis of the higher 

resolution PAN image. 

 

A main focus of our research is the estimation of building 

boundaries based solely on spectral information. A line in a 

grayscale image can be estimated with weighted least squares 

(LS) adjustment defining weights from the pixel’s gray values 

(Sohn and Dowman, 2007). The rich spectral information of 

HSI images allows us to derivate weights by calculating the 

dissimilarity between roof pixels and pixels on the roof’s 

border. Furthermore, we implement the knowledge about 

building shapes, e.g. rectangularity and perpendicularity 

between building edges by adding constraints to the LS 

adjustment. The results of the method are building boundaries 

estimated with sub-pixel accuracy. 

 

 

2. METHOD 

The proposed method consists of three main steps, (2.1) seed 

point selection, (2.2) region growing and merging, and (2.3) the 

building boundary estimation with sub-pixel accuracy. The 

main focus of the developed method is on the third part, 

estimating the building boundaries using the spectral 

information.  

 

2.1 Seed point selection 

The spectra of roofing materials can be defined by selecting 

pixels on the roofs in the HSI image. To select these seed pixels 

automatically we exploit the height data from DSM. The seed 

pixels should lie in the middle of the building roofs representing 

only one roofing material. Local high points in urban areas are 

mainly building roofs and peaks of high vegetation. So, the 

candidate pixels for seeds are selected as the local highest 

points in DSM by grayscale reconstruction (Vincent, 1993). 

These seed point candidates are mapped to the HSI image, and 

then the candidate seed points representing high vegetation are 

suppressed by calculating the Normalized Difference 

Vegetation Index (NDVI). The remaining seed point candidates 

include predominantly pixels belonging to the roofs. The 

candidate pixels are connected according to the spatial 

neighborhood into sets. The spectral similarity between all pairs 

of pixels xjk in each set is calculated. For the spectral similarity 

measure we use the SAM (Kruse et al., 1993), defined as 
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where  r is reference spectra, 

 t is image spectra and 

 n is number of channels in an image. 

 

The spectra r and t are treated as vectors with n dimensions. If 

vectors r and t are equal, the SAM between them equals 0. The 

SAM is insensitive to the illumination because it calculates the 

angle between two vectors, regardless of their length. This 

characteristic of similarity measure is beneficial when dealing 

with building roofs where illumination differences are likely to 

appear. 
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where  m is number of points in a set and 

X = [xjk]m×n is a symmetric matrix xjk = xkj, elements 

xjk are dissimilarity values between points in set with 

diagonal values, xjj = xkk = 0.  

 

Then, outliers are searched in each set of connected seed point 

candidates with corresponding similarities X by statistical 

testing using modified Thompson Tau statistics (eq. 4). Several 

statistical outlier detectors were tried, but modified Thompson 

Tau outperformed the others. The possible outliers in each set 

of points are inspected iteratively. In each iteration step, the 

pixel with the absolute maximal difference or maximal spectral 

dissimilarity denoted byj is tested 
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where ejk is a vector of sums of SAM values between point j 

in the set and all other points and 

 ej is mean value of vector ejk. 

 

The outlier is defined and removed from the set of points when 
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where S is the standard deviation of the sample of the vector 

ej and 
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  is the critical value of modified Thompons’s Tau 

statistics 

 t/2 is the critical value for Student’s t distribution 

with m-2 degrees of freedom, and confidence level . 

 

The sets of connected seed point candidates with less than three 

points are not considered and removed prior to the outlier 

detection. This statistical testing is needed when projected seed 

point candidates are lying on the edges of the building or the set 

includes a larger object of different material. Pixels nearer to the 

edges of the buildings are more probably spectrally mixed, 

because they could be a result of reflection from a roof and e.g. 

a sidewalk. The mixed pixels are spectrally less similar to the 

pixels on the roof top and are therefore removed from the 

candidate seed pixels. 

 

2.2 Region growing and merging in hyperspectral image 

To estimate the building boundaries, first the building region 

must be identified. The sets of seed points are defining the 

material of each roof and are the start points for seeded region 

growing.  

 

For each set of seed points, the mean spectrum q̄ of seed points 

is computed. Furthermore, the stopping criterion for region 

growing is separately defined as the maximum spectral distance 

between seeds in the set (eq. 3) multiplied by a constant β. The 

constant β is an optional parameter of any positive real value 

typically 1.0-3.0. The more spectral homogenous sets of seeds 

get a smaller number as stopping criterion and vice versa. By 

setting β=1, the stopping criterion is set to the maximum 

spectral distance among the pixels in the set.  

 

The 4- or 8-pixel neighborhood of seed points is searched and 

the SAM angles between region mean spectrum q̄ and all the 

neighboring pixels are computed. Further on, the regions are 

grown and simultaneously merged if two neighboring regions 

are spectrally close. The results of this step are regions 

representing the building roofs of one material. 

 

2.3 Sub-pixel building boundary estimation 

The building regions are showing the shapes of the building 

polygons. Polygon sides are approximated using a weighted LS 

method. In chapter 3 we show an example for rectangular 

shaped building and set the required condition equations with 

constraint.  

 

The building regions are the result of seeded region growing in 

the HSI image and subsequently pixels belonging to one region 

are spectrally similar. Furthermore, the bordering pixels to the 

building region, do not belong to it, but might include a part of 

roofing material; and as well the region border pixels might 

include some other material apart from a roof. This mixed pixels 

and their spectral dissimilarity compared to the spectrum of 

region seed points provide information about presence of 

roofing material. From the presence of the roofing material in 

mixed pixels the boundary of a known shape e.g. a line segment 

can be estimated. We propose a weighted and constrained LS 

technique to estimate sub-pixel building boundary (Mikhail and 

Ackermann, 1976).  

 

Let’s set that buildings have a rectangular shape and so each of 

the building regions can be approximated by a rectangle. The 

distance from mixed pixels to the line segments of the rectangle 

should be minimized, using the presence of roofing material for 

weights. The weight is defined as 

 

 ),(1 tqSAMwij       (5) 

 
Figure 1: Four lines (gray dashed lines) defined with vector 

pairs (n, d) forming a rectangle (blue). The diagonals of the 

rectangle (gray lines) define assignment of points to the lines.  

 

The functional model consists of four lines subsequently 

orthogonal to each other which form a rectangle (Figure 1). 

Each of this lines is described by a vector pair (n, d), where n is 

the normal vector to the line and d is the vector from the origin 

of the coordinate system to the line. The orientation of the 

rectangle is given by the normal vector n, and therefore the 

angles of the vectors d are not unknowns in the functional 

model. The length of the vector d is denoted by d. The 

condition that a normal vector must be of length one is a 

constraint to the equations (eq. 10). To describe a rectangle, five 

unknowns are defined, these are: distances d1, d2, d3, d4 and the 

normal vector n with components nx and ny (eq. 9).An 

alternative way to count the unknowns of the functional model 

is, to count each of distances d as one unknown, and the 

components of the normal vector n separately, which are 

altogether six unknowns. The coordinates of each mixed pixel 

are observations with weights as defined in eq. 5. We set two 

sets of condition equations and the constraint to fit the rectangle 

(eq. 6). To find the best fitting rectangle by the means of LS, the 

quadratic form  (eq. 7) must be minimized. 
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where A, B, C are the matrices of numerical coefficients, 

 v is the vector of residuals of observations, 

  is the vector of unknown parameters, 

 W is the weight matrix of observations derived from 

spectral information, 

 k, kc are the vectors of Lagrange multipliers and, 

 f, g are the constant-term vectors. 
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Every mixed pixel, i.e. every observation pair must be assigned 

to at least one of the lines of the rectangle and maximal to two 

lines, when dealing with corner points. The condition equations 

are dependant on the point assignment to the lines of the 

rectangle and therefore must be made prior to adjustment. We 

propose two simple techniques to assign points to the lines of 

the rectangle. First, diagonals of minimum bounding box of 

each region divide the plane in four quarters and accordingly 

the points are assigned (Figure 1). The second option is to 

assign each point to the nearest line. What is more, the 

minimum bounding box of each region is also used to calculate 

the first approximation of values of unknowns (d1, d2, d3, d4, n). 

For each point x (observation pair) assigned to one of the 

rectangle lines, one equation is set 
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where i, j, m, p = 1, 2, …, number of points assigned to the 

edge of the rectangle and 

 x is a vector of 2D coordinates of each observation. 

 

The above system of equations (eq. 8-10) corresponds to the 

rectangular building. However, other geometrical shapes can 

also be approximated, e.g. any rectilinear building (U-, L- C- 

shaped), under the assumption that the shape of the border is 

known. For instance, the borders of rectangular building with a 

rectangular inner yard can be approximated by above described 

method twice independently, or when the inner yard borders are 

parallel to the building borders only once, adding additional 

four unknowns. Additionally, the adjustment of conic curves 

does not require any constraints and assigning points to lines, 

but buildings in shapes of e.g. ellipse are rare. 

 

 

3. RESULTS 

3.1 Data Set 

The used HSI image was acquired with the airborne 

hyperspectral sensor HyMap with 125 channels in the spectral 

range 0.4-2.5 m and with the spatial resolution of 4 m. The 

HyMap image was prior to use geometrically and 

atmospherically corrected. Due to the high noise the last five 

channels of the HyMap image were removed before testing the 

proposed method. 

 

Two different DSMs were used for the candidate seed point 

detection, i.e. CartoSat DSM and DSM calculated from multi 

view WorldView-2 (WV2) images with the spatial resolution of 

5 m and about 1 m, respectively. The estimated building 

boundaries are compared to the sizes of buildings manually 

measured from aerial laser DSM (laser DSM). All used data sets 

are georeferenced, additional registration was not applied.  

 

3.2 Experiment 

The developed method described in chapter 2 is tested on two 

examples. For the first example, the seed points are detected 

from both, WV2 and CartoSat DSMs and for the second 

example only WV2 DSM is used. The step-wise method is 

shown on Figures 2-3 and the results are discussed in the 

subchapter 3.3. All colour images are true colour composites of 

the HSI image channels with the wavelengths 0.455, 0.528 and 

0.675 m. 

 

First the candidate seed points are detected in the DSMs 

(Figure 2), and superimposed on HSI image. Due to the 

different spatial resolution of DSMs and the HSI image, the 

candidate seed points are resampled to the spatial resolution of 

the HSI image (4 m) using nearest neighbour interpolation.  

 

 
Figure 2: DSMs showing the same area with detected local 

highest points (blue). Left: CartoSat DSM with 5 m spatial 

resolution; Right: WV2 DSM with about 1 m spatial resolution. 

 

Then, the seed point candidates are connected according to the 

4-pixel neighbourhood. Subsequently, the regions with less than 

three pixels and the seed point candidates on high vegetation 

are removed using a threshold NDVI>0.4. The removed seed 

point candidates can be observed comparing Figures 2 and 3. 

For example southeast of the building in the centre is an area 

with high vegetation where seed point candidates are removed. 

Furthermore, the seed pixel regions are statistically refined 

(confidence level  = 0.05) by iteratively searching for outliers. 

The blue points are seeds and are used as an input for region 

growing and merging (Figure 2, left). Figure 3 (right) is a result 

of region growing in 120 channels of the HyMap image, by 

searching spectrally similar pixels in the 4-pixel neighbourhood. 

 

 
Figure 3: Left: The seed points selected from CartoSat DSM 

with removed vegetation and small regions (all points) and 

remaining seed points after statistical refinement regarding 
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spectral characteristics (blue points). Right: Result of region 

growing and merging of the central building (blue points). 

 

The minimum bounding box of the building region is defined, 

and pixels on the border, i.e. probably mixed pixels are assigned 

to the sides of the rectangle. Assigning pixels according to the 

diagonal of the minimum bounding box or according to the 

minimal distance, did not show any significant difference in the 

results. The building boundaries are computed using weighted 

LS adjustment. In Figure 4 (left) the outbound of the building 

and both inner yards are independently calculated. The rotation 

of the northern inner yard compared to the building’s main 

orientation is clearly seen. In Figure 4 (right), we set that the 

outside boundaries must be parallel to the inner yards, and 

therefore no rotation is present.  

 

 
Figure 4: Result of building boundary approximation with sub-

pixel accuracy (yellow lines). Outer and inner building 

boundaries are: independently adjusted (left), and adjusted with 

the condition that they have the same orientation (right).  

 

On the second example, an outbound of the U-shape building is 

approximated. The seed points are selected from WV2 DSM, 

because they could not be chosen from CartoSat DSM due to 

the high noise. The adjusted boundaries of the building 

outbound are marked yellow in Figure 5.  

 

 
Figure 5: Building boundary approximation (left, yellow lines), 

and comparison of size with laser DSM (right). 

 

3.3 Discussion 

The building regions are needed to localize and describe the 

shapes of the buildings. The regions are defined by the seeded 

region growing and are dependant on the quality of the initial 

seed selection. Thus, the outliers among seeds are removed 

using statistical testing. The Thompson Tau statistics penalize 

more points as outliers as minimum needed and is therefore an 

appropriate test statistics. Furthermore, the seeds are selected as 

local highest points in the DSMs. Both used DSMs were 

automatically computed and include inaccuracies and noise 

(Figure 6) which are influencing the selection of local high 

points. The buildings in CartoSat DSM (blue) have rounded 

borders, often reaching beyond the real boundaries. This can be 

observed in Figure 6 by comparing the widths of the building 

on the left or in the middle to the other DSMs (grey, green). In 

addition, some errors appear, e.g. a part of the building in the 

middle of Figure 2 (left) is missing. The seed selection from 

CartoSat DSM is possible only for the larger and wider 

buildings, due to the 5 m resolution. The WV2 DSM has a 

spatial resolution of about 1 m, so seeds on smaller buildings 

are found. However, the consequence of high frequency noise 

present in the WV2 DSM (Figure 6, grey) is that some local 

high points are not on the building roofs, but on the streets 

(Figure 2, right). The applied region growing is highly 

dependant on the used DSM. To define building regions more 

robust, other classification techniques should be considered. 

However, the main focus of this research is the boundary 

estimation in HSI images using spectral information, and not 

the classification of HSI images.  

 

 
Figure 6: Comparison of approximated building boundaries and 

DSMs in vertical profile (the position of the profile is marked 

on the upper right image with a cyan line). CartoSat DSM 

(blue), WV2 DSM (gray), laser DSM (green) and approximated 

building boundaries (red) of the building in the centre. 

 

The comparison between vertical profiles of all used DSMs and 

the adjusted building boundaries is shown in Figure 6. The seed 

points are selected from CartoSat DSM (blue), and the height of 

the adjusted building (red) is set to the highest point of this 

building in the CartoSat DSM. The shift between the profiles is 

due to the accuracy of georeferencing. The width of the 

estimated building boundaries in the profile is similar compared 

to the reference laser DSM (green). The numerical comparison 

of sizes, i.e. width and length of estimated buildings with the 

sizes in reference is given in Table 1. For both examples, the 

outbound of the buildings are estimated better than a pixel. The 

difference in the roof area between reference and approximated 

building boundaries is 4% (Figure 4) and 1% (Figure 5, left). 

 

 Laser 

DSM 

Approximated 

 no condition with condition 
  

 Building (Figure 4) length [m] x width [m] 

Outbound 85.6 x 69.2  85 x 69 85 x 69 

Yard north  36.3 x 17.2 35 x 14 35 x 14 

Yard south 43.2 x 29.4 42 x 28 43 x 28 
    

 Building (Figure 5) length [m] x width [m] 

Outbound 87.2 x 55.5 89 x 55 - 
 

Table 1: The sizes of the approximated buildings from HSI 

image with spatial resolution of 4 m, compared to the sizes of 

buildings in laser DSM.  

 

The used LS adjustment is accurate, if redundancy of the 

measurements is high and observations are free of outliers. The 

sensitivity of LS adjustment to the low number of redundant 

measurements is seen on Figure 4 (left) where the north inner 

yard is rotated and shrinked (Table 1). Only three pixels were 

assigned to the west border of the north inner yard. In addition, 

when closely observing the spectral signatures of the mixed 

pixels on the border of this inner yard, their shape is 
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significantly more similar to the roof pixels and not to the 

pavement material. We assume this is a consequence of the 

sensor or not removed atmospheric influences. The similar 

effect is present on the borders of the first building southeast of 

the approximated building (Figure 5). The used spectral 

similarity SAM for weights has a benefit of being nearly 

illumination independent, but does not provide the real material 

abundances.  

 

 

4. CONCLUSIONS AND FUTURE WORK 

We developed an automatic method for sub-pixel building edge 

detection in HSI images using spectral and spatial information. 

The roofing materials in HSI images are defined solely with 

support of height data and without training samples or existing 

spectral libraries. The building edges are approximated with 

sub-pixel accuracy using weighted LS method. The weights are 

derived for each building separately, using spectral information 

of the mixed pixels on the building borders. 

 

The first results of the proposed building boundary estimation 

method are promising. The relative accuracy of estimated 

building outbound for the shown examples is ¼ of a pixel, 

which corresponds to 1 m for the used HSI data. A further 

investigation and comparison of building boundary 

approximation should be made, defining weights with spectral 

unmixing, other similarity measures or soft classification 

techniques. Furthermore, the method should be tested on larger 

urban areas and extended to approximate more complex 

buildings, e.g. rectilinear or polygonal.  

 

We expect to receive this year the HSI data from Hyspex sensor 

with 0.5 m spatial resolution. Thus, the potential of the 

proposed method is to estimate the building boundaries with 

accuracy comparable to laser DSM. Furthermore, the building 

roofs can be modelled automatically using combination of the 

HSI and DSM data.  

 

 

ACKNOWLEDGEMENTS 

The author would like to thank and acknowledge the support of 

her mentor Prof. Dr. R. Bamler and supervisor Mr. R. Müller. 

She is a member of the TUM Graduate School and the DLR 

Graduate Program. 

 

 

REFERENCES 

Baldridge, A.M. et al., 2009. The ASTER spectral library 

version 2.0. Remote Sensing of Environment, 113(4), pp. 711-

715.  

Braun, A.C., Weidner, U., Jutzi, B., Hinz, S., 2011. Integrating 

model knowledge into SVM classification - Fusing 

hyperspectral and laserscanning data by kernel composition. In: 

ISPRS Hannover Workshop 2011.  

Camps-Valls, G., Bruzzone, L., 2005. Kernel-based methods for 

hyperspectral image classification. IEEE Transactions on 

Geoscience and Remote Sensing, 43(6), pp. 1351- 1362. 

Canny, J., 1986. A Computational Approach to Edge Detection. 

IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 8(6), pp. 679-698. 

Chang, Chein-I., 2000. An information-theoretic approach to 

spectral variability, similarity, and discrimination for 

hyperspectral image analysis. IEEE Transactions on 

Information Theory, 46(5), pp. 1927-1932. 

Chen, P.F., Tran, T.C., 1994. Hyperspectral imagery 

classification using a backpropagation neural network. In: IEEE 

International Conference on Neural Networks, Vol. 5, pp. 

2942-2947. 

Evans, A.N., Liu, X.U., 2006. A morphological gradient 

approach to color edge detection. IEEE Transactions on Image 

Processing, 15(6), pp. 1454-1463. 

Gruen, A., Kuebler, O., Agouris, P., 1995. Automatic 

Extraction of Man-Made Objects from Aerial Space Images. 

Birkhäuser Verlag, Basel, Boston, Berlin.  

Huertas, A., Nevatia, R., Landgrebe, D., 1999. Use of 

hyperspectral data with intensity images for automatic building 

modeling. In: Proc. of the Second International Conference on 

Information Fusion, pp. 680–687. 

Keshava, N., 2003. A survey of spectral unmixing algorithms. 

Lincoln Laboratory Journal, 14(1), pp. 55–78. 

Kruse, F.A. Lefkoff A.B., Boardman J.W., et al., 1993. The 

spectral image processing system (SIPS) - interactive 

visualization and analysis of imaging spectrometer data. Remote 

Sensing of Environment, 44(2-3), pp. 145-163. 

Mayer, M., 1999. Automatic Object Extraction from Aerial 

Imagery - A Survey Focusing on Buildings. Computer Vision 

and Image Understanding, 74(2), pp. 138-149.  

Mikhail E., Ackerman E.F., 1976. Observations and least 

squares. IEP, New York, pp. 213-255. 

Shaw, G., Manolakis, D., 2002. Signal processing for 

hyperspectral image exploitation. IEEE Signal Processing 

Magazine, 19(1), pp.12-16. 

Sohn, G., Dowman, I., 2007. Data fusion of high-resolution 

satellite imagery and LiDAR data for automatic building 

extraction. ISPRS Journal of Photogrammetry and Remote 

Sensing, 62(1), pp. 43-63. 

Tarabalka, Y., Benediktsson, J.A., Chanussot, J., Tilton, J.C., 

2010. Multiple Spectral–Spatial Classification Approach for 

Hyperspectral Data. IEEE Transactions on Geoscience and 

Remote Sensing, 48(11), pp. 4122-4132. 

Tarabalka, Y., Chanussot, J., Benediktsson, J.A., Angulo, J., 

Fauvel, M., 2008. Segmentation and Classification of 

Hyperspectral Data using Watershed. In: IEEE International 

Geoscience and Remote Sensing Symposium, Vol. 3., pp. 652-

655. 

Villa, A., Chanussot, J., Benediktsson, J.A., Jutten, C., 2011. 

Spectral Unmixing for the Classification of Hyperspectral 

Images at a Finer Spatial Resolution. IEEE Journal of Selected 

Topics in Signal Processing, 5(3), pp. 521-533. 

Vincent, L., 1993. Morphological grayscale reconstruction in 

image analysis: applications and efficient algorithms. IEEE 

Transactions on Image Processing, 2(2), pp. 176-201.  

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-7, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

66


