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ABSTRACT: 

 

The objective of this contribution is to monitor rice (Oryza sativa L., irrigated lowland rice) growth with multitemporal 

hyperspectral data during different phenological stages in Northeast China (Sanjiang Plain). Multitemporal hyperspectral data were 

measured with field spectroradiometers (ASD Inc.: QualitySpec and FieldSpec3) for two field experiments and nine farmers' fields. 

The field measurements were carried out together with corresponding measurements of agronomic data (aboveground biomass 

[AGB], Leaf Area Index [LAI], number of tillers). Eight selected standard hyperspectral vegetation indices (VIs), proved in several 

studies to be highly correlated with AGB or LAI, were calculated on the measured experimental field data. Additionally, the best 

two-band combinations for the Normalized Ratio Index (NRI) were determined. The results indicate that the NRI performed better 

than the selected standard VIs at the stages of stem elongation, booting and heading and also across all stages. Especially during the 

stem elongation stage (R² = 0.76) and across all stages (R² = 0.70), the NRI performed best. When applying the NRI on the farmers' 

field data, the performance was lower (R² < 0.60). Overall, the sensitive individual wavelengths (± 10 nm) for the best two-band 

combinations were detected at 711 and 799 nm (for tillering stage), 1575 and 1678 nm (for stem elongation stage), 515 and 695 nm 

(for booting stage), and 533 and 713 nm (for all stages). The results suggest that hyperspectral-based methods can estimate paddy 

rice AGB with a satisfying accuracy. In the context of precision agriculture, the findings are useful for future development of new 

hyperspectral devices such as scanners or cameras which could be fixed on tractors or unmanned aerial vehicles (UAVs). 

 

                                                                 

*  Corresponding author.   

1. INTRODUCTION 1 

Rice is a staple grain and accounts for over 40 % of the grain 2 

protein production in China. It is the main food not only in 3 

China but also in other highly populated countries in Asia. For 4 

securing food production and quality, the estimation of 5 

agronomic parameters is an important task for decision support 6 

in rice cultivation. Agronomic parameters such as crop 7 

aboveground biomass (AGB) or Leaf Area Index (LAI) are 8 

considered as the major factors for the determination of the final 9 

yield because of their influence on the grain production at each 10 

growth stage (Shibayama & Munakata, 1986). Estimation of 11 

growth parameters at different phenological stages is a common 12 

method in remote sensing.  13 

 14 

Especially high resolution hyperspectral sensors offer valuable 15 

information in the UV, Visible and NIR/SWIR region of the 16 

electromagnetic spectrum. Their continuous acquisition of all 17 

reflectance values in a spectral range has a major advantage 18 

over multispectral sensors collecting broad band (Milton et al., 19 

2009). Portable handheld spectroradiometers are fast and non- 20 

destructive hyperspectral devices. They are applied more and 21 

more to estimate plant AGB (Shibayama & Munataka, 1986; 22 

Serrano et al., 2000; Osborne et al., 2002; Hansen & 23 

Schjoerring, 2003; Chen et al., 2009; Psomas et al., 2011).  24 

 25 

Deriving information from crop reflectances, the in-season and 26 

within-field temporal and spatial crop development and growth 27 

can be described. Combined with agronomic parameters (e.g. 28 

biomass), crop management information systems (Laudien et 29 

al., 2006) or empirically based crop models can be developed 30 

(Todd et al., 1998), which are usually based on vegetation 31 

indices (VIs). For process-based and spatially distributed agro- 32 

ecosystem modelling (e.g. Lenz-Wiedemann et al., 2010), crop 33 

parameters derived from remote sensing data can be applied to 34 

validate model results on the regional scale. 35 

 36 

Numerous VIs considering various equations and spectral bands 37 

or specific wavelengths are published. The most classical VI is 38 

the Normalized Difference Vegetation Index (NDVI). New VIs 39 

may be detected by selecting the best two-band combinations. 40 

This method was introduced by Thenkabail et al. (2000) to 41 

determine the best suited spectral bands for predicting the 42 

biophysical quantities of crops. Their method was applied with 43 

promising results in studies by e.g. Hansen & Schjoerring 44 

(2003), Zhu et al. (2008), Stroppiana et al. (2009), Koppe et al. 45 

(2010), Li et al. (2010), Psomas et al. (2011), Song et al. 46 

(2011), and Tian et al. (2011).  47 

 48 

The aim of this study is to compare selected standard VIs with 49 

the best two-band combinations of Normalized Ratio Indices 50 

(NRIs) for estimating paddy rice AGB in Northeast China at 51 

different phenological stages and across all stages. First, based 52 

on experimental field measurements of spectra and biomass, the 53 

best two-band combinations for the NRI are derived. The results 54 

are then compared with the performance of the standard VIs. 55 

Finally, the NRIs are applied on farmers' fields for validation. 56 
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2. MATERIALS AND METHODS 57 

2.1 Study area and test sites 58 

The research was carried out at the Qixing farm (47.2 °N, 59 

132.8 °E), Heilongjiang Province, China. The farm has an area 60 

of approx. 150 000 ha and is located at the lower stretch of the 61 

Songhua River, approx. 80 km south of the Amur River 62 

(Fig. 1). The farm is part of the Sanjiang Plain, which belongs 63 

to the temperate zone and is characterized by a sub-humid 64 

continental monsoon climate. The main crop of the farm is rice 65 

(80 % of the agricultural area). Besides rice, maize, soybean and 66 

summer wheat are cultivated. The rice fields belong to the 67 

northernmost cropping rice system in China and worldwide. 68 

 69 

 70 
 71 

Figure 1.  Location of the Qixing farm in the Sanjiang Plain 72 

 73 

The rice is sown in greenhouses in mid of April, is transplanted 74 

after the frost period to the field from mid to end of May and is 75 

harvested around end of September. The fields are flooded and 76 

manured with N fertilizer before transplanting the seedlings. 4 77 

to 5 seedlings (120–150 seedlings/m²) are planted at one 78 

position forming a so-called hill. Additional N fertilizer is 79 

applied during the stages tillering, stem elongation and heading. 80 

 81 

Two experimental fields were selected in 2007, 2008 and 2009. 82 

Each year, the experiments were carried out at the two same 83 

sites (Keyansuo and Qixing research station). Each experiment 84 

had a split-plot design with three or four repetitions where each 85 

repetition had 5 or 7 N fertilizer treatments (total N input): 0, 86 

60, 75, 90, 105, 120, and 150 kg N ha-1 in 2007 and 0, 35, 70, 87 

105, and 140 kg N ha-1 in 2008 and 2009. The plot size was 88 

approx. 20 m². All field experiments used the rice cultivar 89 

Kongyu131 with averaged 28 hills/m². In addition to these field 90 

experiments, 9 farmers' fields were selected as test sites. They 91 

were managed by the farmers according to their usual practices. 92 

The size of these fields varied from 12 ha to 27 ha. In most 93 

cases, the cultivar Kongyu131 was planted (28 hills/m²). Each 94 

year, the selected farmers' fields were located at varied sites.  95 

 96 

2.2 Data collection 97 

At the beginning of each field campaign, the average tiller 98 

number of a hill was determined per plot in order to measure the 99 

reflectance of representative plants. Canopy spectral reflectance 100 

was measured with the spectroradiometer ASD QualitySpec® 101 

Pro in the wavelength domain of 350–1800 nm in 2007 and 102 

2009, and an ASD FieldSpec3® Pro (both by Analytical 103 

Spectral Devices, Inc., Boulder, CO, USA) in the domain of 104 

350–2500 nm in 2008 and 2009. The reflectance measurements 105 

were taken from 9 a.m. to 1 p.m. LMT, preferably under 106 

cloudless conditions. Every 10–15 minutes, calibration 107 

measurements were done with a white reference panel (BaSO4) 108 

and were repeated depending on illumination changes. With a 109 

default field of view of 25 ° 5–8 hills were captured by the 110 

device. A measuring height of 1 m above the canopy was 111 

applied during all field campaigns. Six spectral measurements 112 

were taken in each plot and averaged in order to reduce the 113 

atmospheric influence and field conditions . 114 

 115 

AGB (6 hills per plot at an early stage and 3 hills per plot at 116 

booting and heading stage) was collected directly after 117 

hyperspectral data acquisition at the stages tillering, stem 118 

elongation, booting, and heading. All plant samples were oven 119 

dried at 105 °C for 30 minutes and then dried at 70 °C until 120 

constant weight. LAI was estimated from destructive sampled 121 

leaves by cutting 3 cm length from 20 randomly selected leaves 122 

for each plot at stem elongation, booting and heading stage in 123 

2009 to examine the relationship between LAI and AGB. 124 

 125 

2.3 Selection of vegetation indices and data analysis 126 

Three groups of standard VIs were analyzed (Tab. 1): NDVI, 127 

Difference Vegetation Indices (DVI) and Ratio Vegetation 128 

Indices (RVI). Only bands, reported to be correlated with AGB 129 

or LAI, were chosen in this study. These selected narrow bands 130 

are centred at 550, 565, 708, 800, 950, 1100 and 1200 nm 131 

(Shibayama & Munataka, 1986; Shibayama & Munataka, 1989; 132 

Hansen & Schjoerring, 2003; Nguyen et al., 2006; Wang et al., 133 

2008). Additionally two other VIs were selected: Modified 134 

Triangular Vegetation Index (MTVI) and Optimized Soil- 135 

Adjusted Vegetation Index (OSAVI). The modified TVI by 136 

Haboudane et al. (2004) is suitable for LAI estimation. In 137 

addition to standard VIs, the best two-band combinations 138 

method suggested by Thenkabail et al. (2000), was used to 139 

determinate the best two-band combinations for the NRI. 140 

1 

VI Formulation Reference 

NDVI (R708–R565)/(R708+R565) Hansen & Schjoerring (2003) 

DVI R1100–R1200 Shibayama & Munataka (1989) 

DVI R950–R650 Shibayama & Munataka (1986) 

DVI R800–R550 Buschmann & Nagel (1993) 

RVI R1100/R660  Zhu et al. (2008) 

RVI R950/R650 Shibayama & Munataka (1986) 

MTVI 1.2*[1.2*(R800-R550)-2.5(R670-R550)] Haboudane et al. (2004) 

OSAVI (1+0.16)*(R800–R670)/(R800+R670+0.16)  Rondeaux et al. (1996) 

 
   

Table 1.  Standard VIs evaluated in this study 2 
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 3 

The VIs calculated by this method are also known in the 1 

literature as Normalized Ratio Index (NRI), optimized NDVI, 2 

or Normalized Difference Indices (NDI). All possible 3 

combinations were computed from the wavelengths in the 4 

domain of 350–1800 nm (see Eq. 1). The bands from 1330 to 5 

1480 nm, and 1750 to 1800 nm were excluded from the further 6 

analysis, due to the noises caused by the water absorption in the 7 

NIR/SWIR domain. The NRI is defined as:  8 

 9 

 10 

                NRI (λ1, λ2) = (Rλ1-Rλ2)/(Rλ1+Rλ2)                            (1) 11 

 12 

               where (reflectance in wavelength) Rλ1 > Rλ2  13 

 14 

 15 

The combinations were calculated with a Java programme, 16 

analyzed and plotted as a contour diagram by MATLAB 7.0 17 

software (The MathWorks, Inc., Natick, MA, USA). 18 

 19 

 20 

3. RESULTS 21 

3.1 Descriptive statistics of measured AGB 22 

The AGB for the experimental fields ranges from 0.1 to 23 

14.1 t ha-1 across all growth stages (Tab. 2). The canopy has a 24 

high variation in AGB (CV of 22–57 %), especially during the 25 

stages T and B, and a lower AGB variation (CV of 16–36 %) 26 

during the stages B and H. Significant is the temporal variation 27 

between the three years with a low AGB production in 2009 28 

with a mean AGB value of 0.8–7.0 t ha-1, and a high in 2007 29 

with a mean AGB value of 1.3–7.6 t ha-1. The highest AGB is 30 

observed for the heading stage with 14.1 t ha-1 in 2008. The 31 

varied treatments are not studied separately. The high number of 32 

measurements covering a wide range of AGB values provides 33 

an ideal basis for the spectral analysis. 34 
                

  

n Min Max Mean SD CV 

  Stage   (t ha-1) (%) 

2
0

0
7

 

T 58 0.7 1.9 1.3 0.3 22.1 

S 53 0.7 5.1 2.4 1.4 57.2 

B 51 3.0 7.9 5.7 1.1 19.7 

H 114 3.3 12.4 7.6 2.0 26.1 

2
0

0
8

 

T 40 0.1 1.8 0.9 0.5 50.5 

S 40 0.9 2.9 1.6 0.5 31.3 

B 88 2.9 8.8 5.3 1.4 25.6 

H 88 4.4 14.1 9.0 1.8 20.4 

2
0

0
9

 

T 91 0.2 1.6 0.8 0.3 41.3 

S 95 0.3 2.2 1.2 0.5 42.0 

B 95 1.4 6.6 3.5 1.3 36.1 

H 94 4.6 9.7 7.0 1.1 16.4 

A
ll

 

T 189 0.1 1.9 1.0 0.4 40.8 

S 188 0.3 5.1 1.6 1.0 59.3 

B 234 1.4 8.8 4.7 1.6 34.3 

H 296 3.3 14.1 7.8 1.9 24.0 

T=Tillering, S=Stem elongation, B=Booting, H=Heading 

 35 

Table 2.  Descriptive statistics of AGB (dry matter) on the 36 

experimental fields for different growth stages and years; with 37 

SD = standard deviation and CV = coefficient of variation 38 

 39 

3.2 Relationship between AGB and LAI 40 

Because VIs related to LAI were calculated and tested for AGB 41 

estimation, the relationship between measured LAI and AGB 42 

was investigated. Two selected figures are shown in Fig. 2a) for 43 

the stem elongation stage (R² = 0.96) and in Fig. 2b) across all 44 

available stages (R² = 0.80) in 2009. Except for two, the values 45 

are all in the 99 % confidence interval. The appendant values 46 

for the booting and heading stage are R² = 0.90 and R² = 0.67. 47 

As it is to be expected, the linear relationship between these two 48 

agronomic parameters shows very high and then decreasing R² 49 

values from the early to the late stages. Due to that relation, VIs 50 

which are suitible for LAI estimation can be applied for AGB 51 

estimation. In the following, the relationship between AGB and 52 

the reflectance at single wavelengths were discussed. 53 

 54 

  
 

Figure 2.  Relationship between AGB and LAI for the stem 55 

elongation stage 2009 (a) and all available stages 2009 (b) with 56 

p = 0.99 for the confidence bands 57 

 58 

3.3 Relationship between AGB and reflectances at single 59 

wavelengths  60 

The coefficients of determination (R²) between AGB and the 61 

1450 individual narrow bands were plotted for the single 62 

several years and across all years in Fig. 3. The noise of water 63 

absorption bands was excluded. In general, the relationship 64 

seems to be similar in all three years and indicates the same 65 

sensitive wavelengths. The largest R² values (> 0.4) were 66 

detected centred at 670, 920, 1100 and 1275 nm (± 10 nm), and 67 

the lowest R² values (almost 0) are centred at 570, 700, 1125, 68 

and 1500 nm (± 10 nm). The 2007 graph for the relationship 69 

between AGB and the individual wavelength shows some 70 

noises in the UV, NIR and SWIR domains which are also in the 71 

graph across all years, but not so pronounced in the 2008 and 72 

2009 data. For all the following spectral analyses, the three 73 

years are considered together. 74 

 75 

 76 
 77 

Figure 3.  Coefficient of determination (R²) for the relationship 78 

between AGB and the reflectance at a single wavelength 79 

 80 
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3.4 Performance of published hyperspectral VIs 81 

The performance of the eight selected standard VIs is given for 82 

each stage and across all stages in Tab. 3 for all three years' 83 

data. Generally, the R² values show moderate but significant 84 

results (0.30–0.51) at the first three stages, except for the 85 

NDVI(708,565). The best estimators for AGB are OSAVI at 86 

tillering stage (R² = 0.45), MTVI at stem elongation stage 87 

(R² = 0.51) and DVI(800,550) and OSAVI at booting stage 88 

(R² = 0.48). Almost no relationship exists at heading stage 89 

(R² < 0.1) for the seven of the eight VIs. Across all years and all 90 

stages the NDVI(708,565) shows the best performance (R² = 0.68). 91 

But also the other VIs come with high R² values (0.54–0.62). 92 

VIs with the best performance at early stages such as OSAVI 93 

and MTVI have a lower performance across all stages. 94 
            

 

Stage 

 

T S B H All 

VI n= 189 n= 188 n= 234 n= 297 n= 908 

NDVI (708,565) 0.04 0.01 0.15 0.19 0.68 

DVI (1100,1200) 0.35 0.39 0.42 0.04 0.62 

DVI (950,650) 0.30 0.41 0.44 0.06 0.61 

DVI (800,550) 0.43 0.47 0.48 0.05 0.60 

RVI (1100,660) 0.36 0.32 0.47 0.00 0.62 

RVI (950,650) 0.35 0.30 0.44 0.01 0.63 

MTVI 0.40 0.51 0.43 0.04 0.54 

OSAVI 0.45 0.50 0.48 0.04 0.57 

T=Tillering, S=Stem elongation, B=Booting, H=Heading 

 95 

Table 3.  Coefficient of determination (R²) for the relationship 96 

between AGB and selected VIs for all three years (2007–2009) 97 

 98 

3.5 Selection of band combinations for the NRI 99 

Using the method of selecting the best two-band combinations, 100 

for estimating rice AGB, new NRIs were established in the 101 

domain of 350–1800 nm. Tab. 4 shows the results with the best 102 

two-band combination at different growth stages and across all 103 

stages. At tillering stage, the AGB is weakly correlated with 104 

different band combinations with the highest R² of 0.34 for 105 

λ1 = 711 nm (± 10 nm) and λ2 = 799 nm (± 10 nm). At stem 106 

elongation stage, the sensitive bands are mainly located in the 107 

SWIR region with three hotspots (Fig. 4), where the best one is 108 

at λ1 = 1575 nm (± 10 nm) and λ2 = 1678 (± 10 nm) nm with 109 

R² = 0.76. Another hotspot located close to the water absorption 110 

band starting at 1750 nm may be excluded from the results. 111 

Further sensitive bands are centred in the Blue and Red region 112 

(R² > 0.55). From this stage to the heading stage, a lower 113 

performance of the NRI is observed. At the booting stage, the 114 

best band combinations are with λ1 = 515 nm (± 10 nm) in the 115 

Green band and λ2 = 695 (± 10 nm) in the Red band. The R² 116 

shows still a good performance (R² = 0.55). At the last observed 117 

stage, heading, the lowest performance of the NRI was 118 

observed, but it is obviously better than of the standard VIs. 119 

Across all stages, the most promising wavelengths were 120 

identified at the Green (λ1 = 533) nm and NIR (λ2 = 713) nm 121 

band with R² = 0.70 (Fig. 5, Tab. 4). 122 

            

 

Stage 

  T S B H All 

λ1 (in nm) 711 1575 515 789 533 

λ2 (in nm) 799 1678 695 800 713 

R² 0.34 0.76 0.55 0.27 0.70 

T=Tillering, S=Stem elongation, B=Booting, H=Heading  

 123 

Table 4.  Coefficient of determination (R²) for the relationship 124 

between AGB and NRI for all three years together (2007–2009) 125 

 126 
Figure 4. Contour diagram showing the coefficient of 127 

determination (R²) for the linear relationship between AGB and 128 

NRI at stem elongation stage 129 

 130 
Figure 5. Contour diagram showing the coefficient of 131 

determination (R²) for the linear relationship between AGB and 132 

NRI across all stages 133 

 134 

3.6 Validation of band combinations for the NRI 135 

When the best two-band combinations for the NRI derived from 136 

the experimental field data are applied on the data from farmers' 137 

fields, the best combinations are centred in two regions: A small 138 

hotspot and the highest R² value in the Green and NIR region 139 

and a broad window in the SWIR region (Fig. 6, Tab. 5). The 140 

best performing NRI has the two-band combination with 141 

λ1 = 554 nm (± 10 nm) and λ2 = 711 nm (± 10 nm) with a 142 

R² = 0.59. In the SWIR domain using λ1 of 1150–1350 nm and 143 

λ2 of 1500–1740 nm, many two-band combinations show high 144 
        

Region λ1(in nm) λ2 (in nm) R² 

Green, NIR 554 711 0.59 

SWIR, SWIR 1301 1701 0.58 

SWIR, SWIR 1324 1619 0.57 

 145 

Table 5. Best band combinations using farmers' field data across 146 

all stages 147 
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R² values (R² > 0.55), but are not clearly detectable as a hotspot. 148 

Two high performing NRIs are identified, one using λ1 = 1301 149 

and λ2 = 1701 nm with R² = 0.58 and another one using 150 

λ1 = 1324 and λ2 = 1619 nm with R² = 0.57. 151 

 152 
Figure 6.  Contour diagram showing the coefficient of 153 

determination (R²) for the linear relationship between AGB and 154 

NRI across all stages applied on farmers' field data 155 

 156 

 157 

4. DISCUSSION 158 

Many studies revealed that various VIs, especially standard VIs 159 

such as NDVI or RVI, tend to asymptotically saturate in 160 

response to high AGB or LAI (Thenkabail et al., 2000; Chen et 161 

al. 2009). The best two-band combination was applied in this 162 

study to overcome this saturation. The results show a better 163 

performance of the NRI than of the selected standard VIs at the 164 

growth stages stem elongation, booting and heading, but a 165 

similar result for NRI (R² = 0.70) and NDVI (R² = 0.68) across 166 

all stages (Tab. 3 and Tab. 4). In the early stage tillering, the 167 

NRI cannot exceed the standard VIs to estimate AGB. The 168 

validation of the NRI (554, 711) using farmers' field data shows 169 

a lower performance (R² = 0.59). However, this NRI has very 170 

similar bands as the NDVI (565, 708) proposed by Hansen & 171 

Schoerring (2003). Across all stages, the NRI is the best 172 

estimator for paddy rice AGB. 173 

 174 

The sensitive bands in this study are similar to optimal 175 

wavelengths (554, 675, 723, 1633 nm) for paddy rice LAI 176 

estimation which were reported by Wang et al. (2008). Two of 177 

these wavelengths (675 and 723 nm) can be defined as red-edge 178 

bands. Herrmann et al. (2011) showed that red-edge bands are 179 

important for LAI assessment as well as that the REIP is not 180 

saturated. LAI and AGB are strongly correlated, especially in 181 

the early growth season, as long the head and grain of the plant 182 

are not developed. For this reason, VIs developed for LAI 183 

estimation such as TVI, can be used to estimate AGB. 184 

 185 

In agreement with the previous study by Shibayama & 186 

Munakata (1989) for rice AGB estimation, the performance of 187 

the NRI is similar, but using different bands for NRI, DVI or 188 

RVI compared to this study (480, 560, 660, 840, 1100 nm). It 189 

seems that the sensitive bands are shifted depending on the 190 

cultivar of one crop. This is also reported in many studies (e.g. 191 

Nguyen et al., 2006; Gnyp et al., 2009). Koppe et al. (2010) 192 

also used one band in the SWIR (1225 nm) and one in NIR 193 

(874 nm) for AGB estimation of winter wheat and reached a 194 

high performance of the NRI. Also for grassland AGB 195 

estimation, the best two-band combinations were identified 196 

mostly in the SWIR (1084, 1172, 1205, 1326, 1715 nm) by 197 

Psomas et al., 2011. 198 

 199 

However, there are still many questions to be answered before 200 

this approach can be applied in agricultural practice. One of 201 

them is, why the SWIR bands centred at 1575 nm and 1678 nm 202 

show such a good performance for estimating AGB at the stem 203 

elongation stage, although one of the bands is located near to 204 

the water absorption band? This band may produce wrong 205 

reflectance values using the spectroradiometer under solar light 206 

conditions. On the other hand there is a lot of water in the field 207 

and the canopy cover is not very dense at tillering and stem 208 

elongation stages. At these stages, the water reflectance could 209 

account for a proportion of the reflectance. At later stages, the 210 

AGB production is much higher and the canopy cover much 211 

more dense so that the effect can be excluded. Besides, the 212 

SWIR domain is related to plant water content (Hunt, 1991). 213 

Shibayama & Munakata (1989) reported the potential of two 214 

SWIR bands (1200 nm and 1650 nm) for plant status analyses. 215 

They compared the reflectance of a rice canopy and a paddy 216 

field without water and showed that the SWIR domain in rice is 217 

influenced by plant water content or by soil sediment. 218 

 219 

In summary, the results of this study highlight the challenge of 220 

hyperspectral analysis of rice biomass. Additional two-band 221 

combination analysis of the best DVI and RVI would be of high 222 

value to compare these methods and to detect the best method 223 

for rice AGB estimations or other agronomic parameters at 224 

different stages or across all stages for this study area. Due to 225 

the promising MLR analyses by Yang et al. (2004), and PLS 226 

analysis by Nguyen et al. (2006) for estimating paddy rice AGB 227 

or LAI at different phenological stages, these methods will be 228 

applied on the presented data set. 229 

 230 

 231 

5. CONCLUSION 232 

The study evaluated eight selected standard VIs AGB and all 233 

possible two-band combinations for the NRI in the wavelength 234 

domain of 350–1800 nm for estimating paddy rice at different 235 

growth stages and across all stages, using hyperspectral data of 236 

three years. The results indicate varied sensitive wavelengths for 237 

different stages, using Green, Red and NIR bands for tillering, 238 

booting and heading stages, and Green, NIR and SWIR bands 239 

for stem elongation stage. Across all stages and all years, the 240 

NRI is the best performing VI compared to the selected 241 

standard VIs, except for the tillering stage. Moreover, 242 

measurements of paddy rice in a laboratory are needed, 243 

especially in the SWIR domain around the water absorption 244 

band to investigate the sensitive bands located closely to that 245 

region.  246 

 247 

 248 
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