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ABSTRACT:

The objective of this contribution is to monitor rice (Oryza sativa L., irrigated lowland rice) growth with multitemporal
hyperspectral data during different phenological stages in Northeast China (Sanjiang Plain). Multitemporal hyperspectral data were
measured with field spectroradiometers (ASD Inc.: QualitySpec and FieldSpec3) for two field experiments and nine farmers' fields.
The field measurements were carried out together with corresponding measurements of agronomic data (aboveground biomass
[AGB], Leaf Area Index [LAI], number of tillers). Eight selected standard hyperspectral vegetation indices (Vs), proved in several
studies to be highly correlated with AGB or LAI, were calculated on the measured experimental field data. Additionally, the best
two-band combinations for the Normalized Ratio Index (NRI) were determined. The results indicate that the NRI performed better
than the selected standard Vs at the stages of stem elongation, booting and heading and also across all stages. Especially during the
stem elongation stage (R2 = 0.76) and across all stages (R2=0.70), the NRI performed best. When applying the NRI on the farmers'
field data, the performance was lower (R2< 0.60). Overall, the sensitive individual wavelengths (+ 10 nm) for the best two-band
combinations were detected at 711 and 799 nm (for tillering stage), 1575 and 1678 nm (for stem elongation stage), 515 and 695 nm
(for booting stage), and 533 and 713 nm (for all stages). The results suggest that hyperspectral-based methods can estimate paddy
rice AGB with a satisfying accuracy. In the context of precision agriculture, the findings are useful for future development of new
hyperspectral devices such as scanners or cameras which could be fixed on tractors or unmanned aerial vehicles (UAVS).

1. INTRODUCTION biomass), crop management information systems (Laudien et
al., 2006) or empirically based crop models can be developed
Rice is a staple grain and accounts for over 40 % of the grain (Todd et al., 1998), which are usually based on vegetation
protein production in China. It is the main food not only in indices (VIs). For process-based and spatially distributed agro-
China but also in other hlghly pOpUlatEd countries in Asia. For ecosystem mode”ing (eg Lenz-Wiedemann et al., 2010), crop
securing food production and quality, the estimation of  parameters derived from remote sensing data can be applied to
agronomic parameters is an important task for decision support  validate model results on the regional scale.
in rice cultivation. Agronomic parameters such as crop
aboveground biomass (AGB) or Leaf Area Index (LAI) are  Numerous VIs considering various equations and spectral bands
considered as the major factors for the determination of the final or specific Wave|er|gths are pub||5hed The most classical VI is
yield because of their influence on the grain production at each the Normalized Difference Vegetation Index (NDVI). New Vs
growth stage (Shibayama & Munakata, 1986). Estimation of  may be detected by selecting the best two-band combinations.
growth parameters at different phenological stages is a common  This method was introduced by Thenkabail et al. (2000) to
method in remote sensing. determine the best suited spectral bands for predicting the
biophysical quantities of crops. Their method was applied with
Especially high resolution hyperspectral sensors offer valuable promising results in studies by e.g. Hansen & Schjoerring
information in the UV, Visible and NIR/SWIR region of the (2003), Zhu et al. (2008), Stroppiana et al. (2009), Koppe et al.

electromagnetic spectrum. Their continuous acquisition of all (2010), Li et al. (2010), Psomas et al. (2011), Song et al.
reflectance values in a spectral range has a major advantage (2011), and Tian et al. (2011).

over multispectral sensors collecting broad band (Milton et al.,
2009). Portable handheld spectroradiometers are fast and non-  The aim of this study is to compare selected standard VIs with
destructive hyperspectral devices. They are applied more and  the best two-band combinations of Normalized Ratio Indices
more to estimate plant AGB (Shibayama & Munataka, 1986;  (NRIs) for estimating paddy rice AGB in Northeast China at
Serrano et al., 2000; Osborne et al., 2002; Hansen & different phenological stages and across all stages. First, based
Schjoerring, 2003; Chen et al., 2009; Psomas et al., 2011). on experimental field measurements of spectra and biomass, the
best two-band combinations for the NRI are derived. The results
Deriving information from crop reflectances, the in-season and are then compared with the performance of the standard VIs.

within-field temporal and spatial crop development and growth  Finally, the NRIs are applied on farmers' fields for validation.
can be described. Combined with agronomic parameters (e.g.
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2. MATERIALS AND METHODS
2.1 Study area and test sites

The research was carried out at the Qixing farm (47.2 °N,
132.8 °E), Heilongjiang Province, China. The farm has an area
of approx. 150 000 ha and is located at the lower stretch of the
Songhua River, approx. 80 km south of the Amur River
(Fig. 1). The farm is part of the Sanjiang Plain, which belongs
to the temperate zone and is characterized by a sub-humid
continental monsoon climate. The main crop of the farm is rice
(80 % of the agricultural area). Besides rice, maize, soybean and
summer wheat are cultivated. The rice fields belong to the
northernmost cropping rice system in China and worldwide.
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Figure 1. Location of the Qixing farm in the Sanjiang Plain

The rice is sown in greenhouses in mid of April, is transplanted
after the frost period to the field from mid to end of May and is
harvested around end of September. The fields are flooded and
manured with N fertilizer before transplanting the seedlings. 4
to 5 seedlings (120-150 seedlings/m?) are planted at one
position forming a so-called hill. Additional N fertilizer is
applied during the stages tillering, stem elongation and heading.

Two experimental fields were selected in 2007, 2008 and 2009.
Each year, the experiments were carried out at the two same
sites (Keyansuo and Qixing research station). Each experiment
had a split-plot design with three or four repetitions where each
repetition had 5 or 7 N fertilizer treatments (total N input): 0,
60, 75, 90, 105, 120, and 150 kg N ha™ in 2007 and 0, 35, 70,
105, and 140 kg N ha™ in 2008 and 2009. The plot size was
approx. 20 m2. All field experiments used the rice cultivar
Kongyu131 with averaged 28 hills/m2. In addition to these field
experiments, 9 farmers' fields were selected as test sites. They

were managed by the farmers according to their usual practices.
The size of these fields varied from 12 ha to 27 ha. In most
cases, the cultivar Kongyul31 was planted (28 hills/m?). Each
year, the selected farmers' fields were located at varied sites.

2.2 Data collection

At the beginning of each field campaign, the average tiller
number of a hill was determined per plot in order to measure the
reflectance of representative plants. Canopy spectral reflectance
was measured with the spectroradiometer ASD QualitySpec®
Pro in the wavelength domain of 350-1800 nm in 2007 and
2009, and an ASD FieldSpec3® Pro (both by Analytical
Spectral Devices, Inc., Boulder, CO, USA) in the domain of
350-2500 nm in 2008 and 2009. The reflectance measurements
were taken from 9am. to 1p.m. LMT, preferably under
cloudless conditions. Every 10-15 minutes, calibration
measurements were done with a white reference panel (BaSO,)
and were repeated depending on illumination changes. With a
default field of view of 25° 5-8 hills were captured by the
device. A measuring height of 1 m above the canopy was
applied during all field campaigns. Six spectral measurements
were taken in each plot and averaged in order to reduce the
atmospheric influence and field conditions .

AGB (6 hills per plot at an early stage and 3 hills per plot at
booting and heading stage) was collected directly after
hyperspectral data acquisition at the stages tillering, stem
elongation, booting, and heading. All plant samples were oven
dried at 105 °C for 30 minutes and then dried at 70 °C until
constant weight. LAl was estimated from destructive sampled
leaves by cutting 3 cm length from 20 randomly selected leaves
for each plot at stem elongation, booting and heading stage in
2009 to examine the relationship between LAl and AGB.

2.3 Selection of vegetation indices and data analysis

Three groups of standard VIs were analyzed (Tab. 1): NDVI,
Difference Vegetation Indices (DVI) and Ratio Vegetation
Indices (RVI). Only bands, reported to be correlated with AGB
or LAI, were chosen in this study. These selected narrow bands
are centred at 550, 565, 708, 800, 950, 1100 and 1200 nm
(Shibayama & Munataka, 1986; Shibayama & Munataka, 1989;
Hansen & Schjoerring, 2003; Nguyen et al., 2006; Wang et al.,
2008). Additionally two other VIs were selected: Modified
Triangular Vegetation Index (MTVI) and Optimized Soil-
Adjusted Vegetation Index (OSAVI). The modified TVI by
Haboudane et al. (2004) is suitable for LAI estimation. In
addition to standard VIs, the best two-band combinations
method suggested by Thenkabail et al. (2000), was used to
determinate the best two-band combinations for the NRI.

VI Formulation Reference

NDVI (R70s~Rss)/(R70s+Rsss) Hansen & Schjoerring (2003)
DVI Ri100-R1200 Shibayama & Munataka (1989)
DVI Rgs0—Res0 Shibayama & Munataka (1986)
DVI Rsoo—Rsso Buschmann & Nagel (1993)
RVI Ri100/Res0 Zhu et al. (2008)

RVI Roso/Reso Shibayama & Munataka (1986)
MTVI 1.2*[1.2*(Rgpo-Rs50)-2-5(Re70-Rs50)] Haboudane et al. (2004)

OSAVI (1+0.16)*(Rsoo—R670)/(Reoo*+Re70+0.16)

Rondeaux et al. (1996)

Table 1. Standard Vs evaluated in this study
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The Vs calculated by this method are also known in the
literature as Normalized Ratio Index (NRI), optimized NDVI,
or Normalized Difference Indices (NDI). All possible
combinations were computed from the wavelengths in the
domain of 350-1800 nm (see Eq. 1). The bands from 1330 to
1480 nm, and 1750 to 1800 nm were excluded from the further
analysis, due to the noises caused by the water absorption in the
NIR/SWIR domain. The NRI is defined as:

NRI 1,22) = (Riu-Ri2)/ (Ru+Ry2) )]

where (reflectance in wavelength) R, > R;,

The combinations were calculated with a Java programme,
analyzed and plotted as a contour diagram by MATLAB 7.0
software (The MathWorks, Inc., Natick, MA, USA).

3. RESULTS
3.1 Descriptive statistics of measured AGB

The AGB for the experimental fields ranges from 0.1 to
14.1 t ha™ across all growth stages (Tab. 2). The canopy has a
high variation in AGB (CV of 22-57 %), especially during the
stages T and B, and a lower AGB variation (CV of 16-36 %)
during the stages B and H. Significant is the temporal variation
between the three years with a low AGB production in 2009
with a mean AGB value of 0.8-7.0tha™, and a high in 2007
with a mean AGB value of 1.3-7.6 t ha™. The highest AGB is
observed for the heading stage with 14.1 tha™ in 2008. The
varied treatments are not studied separately. The high number of
measurements covering a wide range of AGB values provides
an ideal basis for the spectral analysis.

n Min Max Mean  SD Ccv

Stage (tha) (%)

T 58 0.7 1.9 1.3 0.3 22.1
5 S 53 0.7 5.1 2.4 1.4 57.2
Q& B 51 3.0 7.9 5.7 11 19.7
H 114 3.3 12.4 7.6 2.0 26.1

T 40 0.1 1.8 0.9 0.5 50.5
® S 40 0.9 2.9 1.6 0.5 31.3
& B 88 2.9 8.8 5.3 14 25.6
H 88 4.4 14.1 9.0 1.8 20.4

T 91 0.2 1.6 0.8 0.3 41.3
8 S 95 0.3 2.2 1.2 0.5 42.0
& B 95 1.4 6.6 35 1.3 36.1
H 94 4.6 9.7 7.0 1.1 16.4

T 189 0.1 1.9 1.0 0.4 40.8
= S 188 0.3 5.1 1.6 1.0 59.3
< B 234 1.4 8.8 4.7 1.6 34.3
H 296 3.3 14.1 7.8 1.9 24.0

T=Tillering, S=Stem elongation, B=Booting, H=Heading

Table 2. Descriptive statistics of AGB (dry matter) on the
experimental fields for different growth stages and years; with
SD = standard deviation and CV = coefficient of variation

3.2 Relationship between AGB and LAl

Because VIs related to LAl were calculated and tested for AGB
estimation, the relationship between measured LAl and AGB
was investigated. Two selected figures are shown in Fig. 2a) for
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the stem elongation stage (R2=0.96) and in Fig. 2b) across all
available stages (R2=0.80) in 2009. Except for two, the values
are all in the 99 % confidence interval. The appendant values
for the booting and heading stage are R2=0.90 and R2=0.67.
As it is to be expected, the linear relationship between these two
agronomic parameters shows very high and then decreasing R2
values from the early to the late stages. Due to that relation, Vs
which are suitible for LAI estimation can be applied for AGB
estimation. In the following, the relationship between AGB and
the reflectance at single wavelengths were discussed.
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Figure 2. Relationship between AGB and LAl for the stem
elongation stage 2009 (a) and all available stages 2009 (b) with
p = 0.99 for the confidence bands

3.3 Relationship between AGB and reflectances at single
wavelengths

The coefficients of determination (R?) between AGB and the
1450 individual narrow bands were plotted for the single
several years and across all years in Fig. 3. The noise of water
absorption bands was excluded. In general, the relationship
seems to be similar in all three years and indicates the same
sensitive wavelengths. The largest R? values (>0.4) were
detected centred at 670, 920, 1100 and 1275 nm (= 10 nm), and
the lowest R? values (almost 0) are centred at 570, 700, 1125,
and 1500 nm (+ 10 nm). The 2007 graph for the relationship
between AGB and the individual wavelength shows some
noises in the UV, NIR and SWIR domains which are also in the
graph across all years, but not so pronounced in the 2008 and
2009 data. For all the following spectral analyses, the three
years are considered together.
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Figure 3. Coefficient of determination (R?) for the relationship
between AGB and the reflectance at a single wavelength
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3.4 Performance of published hyperspectral Vls

The performance of the eight selected standard VIs is given for
each stage and across all stages in Tab. 3 for all three years'
data. Generally, the R? values show moderate but significant
results (0.30-0.51) at the first three stages, except for the
NDVl7gg565. The best estimators for AGB are OSAVI at
tillering stage (R2=0.45), MTVI at stem elongation stage
(R2=0.51) and DVlgypsse and OSAVI at booting stage
(R2=0.48). Almost no relationship exists at heading stage
(R%<0.1) for the seven of the eight VIs. Across all years and all
stages the NDV g 565) shows the best performance (R2? = 0.68).
But also the other VIs come with high R? values (0.54-0.62).
Vs with the best performance at early stages such as OSAVI
and MTVI have a lower performance across all stages.

Stage
T S B H All
VI n=189 n=188 n=234 n=297 n=908
NDVI osse 004 001 015 019 068
DV (1100,1200) 0.35 0.39 0.42 0.04 0.62
DVl @sossy 030 041 044 006 061
DVI (800,550) 0.43 0.47 0.48 0.05 0.60
RVl qwogey 036 032 047 000 062
RVI (950,650) 0.35 0.30 0.44 0.01 0.63
MTVI 0.40 0.51 0.43 0.04 0.54
OSAVI 0.45 0.50 0.48 0.04 0.57

T=Tillering, S=Stem elongation, B=Booting, H=Heading

Table 3. Coefficient of determination (R?) for the relationship
between AGB and selected Vs for all three years (2007—2009)

3.5 Selection of band combinations for the NRI

Using the method of selecting the best two-band combinations,
for estimating rice AGB, new NRIs were established in the
domain of 350-1800 nm. Tab. 4 shows the results with the best
two-band combination at different growth stages and across all
stages. At tillering stage, the AGB is weakly correlated with
different band combinations with the highest R? of 0.34 for
Al =711nm (£ 10 nm) and A2 =799 nm (% 10 nm). At stem
elongation stage, the sensitive bands are mainly located in the
SWIR region with three hotspots (Fig. 4), where the best one is
at A1 = 1575 nm (£ 10 nm) and A2 = 1678 (+ 10 nm) nm with
R2 =0.76. Another hotspot located close to the water absorption
band starting at 1750 nm may be excluded from the results.
Further sensitive bands are centred in the Blue and Red region
(R2>0.55). From this stage to the heading stage, a lower
performance of the NRI is observed. At the booting stage, the
best band combinations are with A1 =515 nm (£ 10 nm) in the
Green band and A2 =695 (x 10 nm) in the Red band. The R?
shows still a good performance (R? = 0.55). At the last observed
stage, heading, the lowest performance of the NRI was
observed, but it is obviously better than of the standard VIs.
Across all stages, the most promising wavelengths were
identified at the Green (A1 =533) nm and NIR (A2 =713) nm
band with Rz = 0.70 (Fig. 5, Tab. 4).
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Figure 4. Contour diagram showing the coefficient of
determination (R?) for the linear relationship between AGB and
NRI at stem elongation stage
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Figure 5. Contour diagram showing the coefficient of
determination (R?) for the linear relationship between AGB and
NRI across all stages

3.6 Validation of band combinations for the NRI

When the best two-band combinations for the NRI derived from
the experimental field data are applied on the data from farmers'
fields, the best combinations are centred in two regions: A small
hotspot and the highest R2 value in the Green and NIR region
and a broad window in the SWIR region (Fig. 6, Tab. 5). The
best performing NRI has the two-band combination with
A =554nm (+10nm) and A2 =711nm (+10nm) with a
R2=10.59. In the SWIR domain using A1 of 1150-1350 nm and

Stage A2 of 1500-1740 nm, many two-band combinations show high
T S B H All
Al (in nm) 711 1575 515 789 533 Region A1(in nm) A2 (in nm) R2
A2 (in nm) 799 1678 695 800 713 Green, NIR 554 711 0.59
R® 034 076 055 027 070 SWIR, SWIR 1301 1701 0.58
T=Tillering, S=Stem elongation, B=Booting, H=Heading SWIR, SWIR 1324 1619 057

Table 4. Coefficient of determination (R?) for the relationship
between AGB and NRI for all three years together (2007-2009)
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Table 5. Best band combinations using farmers' field data across
all stages
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R2 values (R? > 0.55), but are not clearly detectable as a hotspot.
Two high performing NRIs are identified, one using A1 = 1301
and A2 =1701nm with R2=0.58 and another one using
Al = 1324 and A2 = 1619 nm with R2=0.57.
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Figure 6. Contour diagram showing the coefficient of
determination (R?) for the linear relationship between AGB and
NRI across all stages applied on farmers' field data
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4. DISCUSSION

Many studies revealed that various VIs, especially standard VIs
such as NDVI or RVI, tend to asymptotically saturate in
response to high AGB or LAI (Thenkabail et al., 2000; Chen et
al. 2009). The best two-band combination was applied in this
study to overcome this saturation. The results show a better
performance of the NRI than of the selected standard Vs at the
growth stages stem elongation, booting and heading, but a
similar result for NRI (R2=0.70) and NDVI (R? = 0.68) across
all stages (Tab. 3 and Tab. 4). In the early stage tillering, the
NRI cannot exceed the standard VIs to estimate AGB. The
validation of the NRI (554, 711) using farmers' field data shows
a lower performance (R?=0.59). However, this NRI has very
similar bands as the NDVI (565, 708) proposed by Hansen &
Schoerring (2003). Across all stages, the NRI is the best
estimator for paddy rice AGB.

The sensitive bands in this study are similar to optimal
wavelengths (554, 675, 723, 1633 nm) for paddy rice LAI
estimation which were reported by Wang et al. (2008). Two of
these wavelengths (675 and 723 nm) can be defined as red-edge
bands. Herrmann et al. (2011) showed that red-edge bands are
important for LAl assessment as well as that the REIP is not
saturated. LAl and AGB are strongly correlated, especially in
the early growth season, as long the head and grain of the plant
are not developed. For this reason, VIs developed for LAl
estimation such as TVI, can be used to estimate AGB.

In agreement with the previous study by Shibayama &
Munakata (1989) for rice AGB estimation, the performance of
the NRI is similar, but using different bands for NRI, DVI or
RVI compared to this study (480, 560, 660, 840, 1100 nm). It
seems that the sensitive bands are shifted depending on the
cultivar of one crop. This is also reported in many studies (e.g.
Nguyen et al., 2006; Gnyp et al., 2009). Koppe et al. (2010)
also used one band in the SWIR (1225 nm) and one in NIR
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(874 nm) for AGB estimation of winter wheat and reached a
high performance of the NRI. Also for grassland AGB
estimation, the best two-band combinations were identified
mostly in the SWIR (1084, 1172, 1205, 1326, 1715 nm) by
Psomas et al., 2011.

However, there are still many questions to be answered before
this approach can be applied in agricultural practice. One of
them is, why the SWIR bands centred at 1575 nm and 1678 nm
show such a good performance for estimating AGB at the stem
elongation stage, although one of the bands is located near to
the water absorption band? This band may produce wrong
reflectance values using the spectroradiometer under solar light
conditions. On the other hand there is a lot of water in the field
and the canopy cover is not very dense at tillering and stem
elongation stages. At these stages, the water reflectance could
account for a proportion of the reflectance. At later stages, the
AGB production is much higher and the canopy cover much
more dense so that the effect can be excluded. Besides, the
SWIR domain is related to plant water content (Hunt, 1991).
Shibayama & Munakata (1989) reported the potential of two
SWIR bands (1200 nm and 1650 nm) for plant status analyses.
They compared the reflectance of a rice canopy and a paddy
field without water and showed that the SWIR domain in rice is
influenced by plant water content or by soil sediment.

In summary, the results of this study highlight the challenge of
hyperspectral analysis of rice biomass. Additional two-band
combination analysis of the best DVI and RVI would be of high
value to compare these methods and to detect the best method
for rice AGB estimations or other agronomic parameters at
different stages or across all stages for this study area. Due to
the promising MLR analyses by Yang et al. (2004), and PLS
analysis by Nguyen et al. (2006) for estimating paddy rice AGB
or LAI at different phenological stages, these methods will be
applied on the presented data set.

5. CONCLUSION

The study evaluated eight selected standard VIs AGB and all
possible two-band combinations for the NRI in the wavelength
domain of 350-1800 nm for estimating paddy rice at different
growth stages and across all stages, using hyperspectral data of
three years. The results indicate varied sensitive wavelengths for
different stages, using Green, Red and NIR bands for tillering,
booting and heading stages, and Green, NIR and SWIR bands
for stem elongation stage. Across all stages and all years, the
NRI is the best performing VI compared to the selected
standard VIs, except for the tillering stage. Moreover,
measurements of paddy rice in a laboratory are needed,
especially in the SWIR domain around the water absorption
band to investigate the sensitive bands located closely to that
region.
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