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ABSTRACT: 
 
Hyperspectral reflectance data were collected at 7 critical phenological stages in a summer barley field with 7 varieties in 2010, 
without artificial nutrient gradients. Throughout the range of 350 to 1800 nm, all possible two-bands combinations for the simple 
ratio (SR= Rj/Ri) and the normalized difference vegetation index (NDVI= (Rj-Ri)/(Rj+Ri)) were evaluated using linear regression 
analysis against the leaf chlorophyll concentration (LCC). This study introduces a more comprehensive way of using the 
“correlation matrix” method for selecting sensitive bands and shows that in this way the newly selected SRs may outperform the 
NDVIs for estimating LCC. With this method, the selection of two-bands combinations for the SRs and NDVIs improved the 
performance for estimating LCC. Both the new SR (734, 629) and the new NDVI (667, 740) explained more than 74 % of the 
variation in LCC across all the growth stages and all varieties. Compared with published indices, newly selected SRs and NDVIs 
improved the predictive ability for LCC. The most significant improvement was observed with increasing of R2 values by 13 % for 
SR and 6 % for NDVI. The overall performances of both newly selected indices and published indices were significantly influenced 
by the varieties. Moreover, Ultraviolet, Violet and Blue bands are more effective for estimating the LCC for a single variety, 
whereas Red-edge bands are more effective for that across all varieties. Therefore, a conclusion can be drawn that selecting two-
bands combinations significantly improves the capability of SRs and NDVIs for estimating the LCC of summer barley. 

                                                                 
*  Corresponding author 

 
 

1. INTRODUCTION 

The absolute and relative leaf chlorophyll concentrations (LCC) 
provide valuable information about the physiological status and 
the photosynthetic potential of plants (Chappelle et al., 1992; 
Gitelson et al., 2003). Studies have shown that reflectance 
measurements can be used to non-destructively and quickly 
assess the leaf chlorophyll concentration in many crops (Yoder 
and Pettigrew-Crosby, 1995; Blackburn, 1998; Daughtry et al., 
2000; Carter and Knapp, 2001; Haboudane et al., 2002; 
Gitelson et al., 2003; Zhao et al., 2003; Zhao et al., 2005a). 
However, almost all these studies were conducted in controlled 
environmental conditions with artificial N nutrient gradients, 
and some plants even faced N deficiency as well as stress 
caused by disease, insects and other nutrients deficiency. It is 
noted that not only N deficiency causes reflectance increase in 
the visible spectral region (Read et al., 2002), but also other 
stresses may result in an increased reflectance due to the 
reduced amount of chlorophyll (Carter and Knapp, 2001). 
Therefore, the determination of leaf chlorophyll concentration 
in one field environment without an artificial nutrient gradient 
is required for improving our knowledge of the relationship 
between the hyperspectral reflectance data and the investigated 
plant physiological variables.  

The most popular way for assessing LCC is to establish a 
quantitative relationship between the LCC and a vegetation 
index (VI). In the last decades numerous VIs have been 
developed for estimating biomass (Rouse et al., 1974), LAI 
(Jordan, 1969; Asrar et al., 1985; Haboudane et al., 2004), LCC 
(Chappelle et al., 1992; Haboudane et al., 2002) and N 
concentration (Peñuelas et al., 1994; Read et al., 2002). Two 
categories of the most widely used VIs are the simple ratios (SR, 
or called ratio vegetation indices, RVI) and the normalized 
difference vegetation indices (NDVI, or called NDI). Based on 
the idea, recently, the “correlation matrix” (similar to confusion 
matrix) method is often used for selecting the best performing 
VIs as reported for winter wheat (Hansen and Schjoerring, 2003; 
Li et al., 2010), rice (Stroppiana et al., 2009; Tian et al., 2011), 
corn, soybean, cotton and potato (Thenkabail et al., 2000) and 
grass (Darvishzadeh et al., 2008). This method identifies new 
VIs by combining randomly two or more wavebands 
throughout all the wavelength range of spectrometers (normally 
ranges from 350 up to 2500 nm) and evaluates the correlations 
with the  variables of interest (LCC, LAI, N concentration, etc.). 
Using this method, Li et al. (2010) developed a “NDVI-like” 
index NDVI (365, 410) that was linearly related to plant N 
concentration of winter wheat across sites, years and growth 
stages with a coefficient of determination (R2) of 0.58. However, 
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Darvishzadeh et al. (2008) found that the best performing 
“NDVI-like” index NDVI (547, 554) could explain only 25 % 
of the LCC variation in grass. The same method was used to 
select the best performing VIs in the aforementioned two 
studies, while results appear to be inconsistent in different 
species. Moreover, Stroppiana et al. (2009) derived a NDVI 
(503, 483) with the blue and green wavebands that was 
logarithmically correlated to plant N concentration of rice (R2 = 
0.65). And Tian et al. (2011) derived a NDVI (533, 565) and a 
SR (533, 565) with the same wavelengths and both with a linear 
relationship to leaf N concentration of rice (R2 = 0.76). These 
results of preliminary studies indicate that not only the 
performances of the best VIs for different species differ greatly 
using the “correlation matrix” method, but also the sensitive 
wavelengths derived for these VIs differ greatly, even for the 
same crops. All above mentioned studies have shown the great 
potential of VIs for assessing plant physiological properties. 
However, as a consequence of different measurement 
conditions, some degree of disagreement exists in the selection 
of wavebands (Hansen and Schjoerring, 2003). To our 
knowledge, still no literatures on field grown summer barley 
have been found using the “correlation matrix” method to 
derive VIs for estimating the leaf chlorophyll status.  
 
Therefore, the main objective of this study is to evaluate all the 
possible two-bands combinations in the range of 350-1800 nm 
as both the SR and NDVI for estimating the LCC in a summer 
barley field without any artificial nutrient gradients.The 
collection of spectral reflectance and crop data was conducted 
across all the growth stages to consider canopy variations due to 
growth stages and environmental factors. 
 
 

2. MATERIALS AND METHODS 

2.1 Study Area and Experimental Design 

The experiment area is located at the Institute of Crop Science 
and Resource Conservation (INRES-Horticultural Science, 
latitude 50.72999 º, longitude 7.0754 º; sandy loam soil; soil 
Nmin value of 20 kg N ha-1; 70 m a.s.l., annual average 
precipitation of 669 mm, average temperature of 10.3 °C), 
University of Bonn, Germany. A trial with 7 barley (Hordeum 
vulgare) varieties was conducted from March to July 2010. The 
experiment was organized as a completely randomized block 
with 6 replications and a plot size of 6 m² (1.5 x 4 m) for each 
variety and treatment. 7 commercial varieties of malting barley 
(Belana, Marthe, Scarlett, Iron, Sunshine, Barke and Bambina) 
were sown with a density of 320 seeds per square meter. All 
plots were fertilized directly after sowing with ammonium 
nitrate (NH4-N) at a rate of 100 kg N ha-1. For each variety, 3 
replications were sprayed with fungicides over the whole 
experimental period, whereas the other 3 replications were not 
sprayed with fungicides after the plants reached the 
phenological stage 39 according to the BBCH code (Lancashire 
et al., 1991). The fungicides have a protective and/or curative 
effect against the most harmful pathogens in cereals. 
 
2.2 Canopy Spectral Measurements 

Canopy spectral reflectance was weekly measured with the 
ASD QualitySpec® Pro and FieldSpec® 3 spectrometers 
(Analytical Spectral Devices Inc., Boulder, CO, USA). The 
measurements were carried out between 10 am and 14 pm local 
time under sunshine and cloudless conditions throughout the 
growing season, with a distance of 1 m above canopy. The ASD 

QualitySpec® Pro spectrometer is configured with Visible and 
NIR spectral ranges and a 1.4 nm sampling interval between 
350 and 1050 nm and a 2 nm sampling interval between 1000 
and 1800 nm with a 3 nm and 10 nm spectral resolution at 700 
nm and 1400 nm, respectively. Slightly different, the ASD 
FieldSpec® 3 spectrometer is configured with a spectral range 
from 350 nm to 2500 nm, a 1.4 nm sampling interval between 
350 and 1050 a 2 nm sampling interval between 1000 and 2500 
nm, and with a 3 nm spectral resolution at 700 nm, 10 nm 
spectral resolution at 1400 and 2100 nm. The field of view is 25 
degrees. Calibration measurements of dark current and 
reflectance of a white standard panel made out of BaSO4 were 
taken before the canopy reflectance measurements. Per plot, 6 
canopy spectra were measured and then averaged for each plot.  
 
2.3 Leaf Chlorophyll Measurements 

Samples for determining chlorophyll content were collected 
randomized at the end of May up to July at weekly intervals, 
with 10 whole flag leaves from all the plots. The leaf samples 
were lyophilized immediately after collecting, grounded and 
stored in the dark at room temperature. Chlorophyll content of 
each sample was extracted from the 50 mg lyophilized material 
with 5 ml methanol and filled up to 25 ml. After extraction, the 
absorbance of extracts was measured at 665 nm (A665) and 650 
nm (A650) with a UV-VIS spectrophotometer (Perkin-Elmer, 
Lambda 5, Massachusetts, USA). The chlorophyll concentration 
(Chl) was calculated with the following equations (Eq. 1): 
 
 

           
(25.5* A650 + 4.0* A665)* 25

Chl =  
DMW * 1000

                        (1) 

 
 
where   DMW is the dry matter weight (g) of each leaf sample. 
 
2.4 Data Analysis 

Six spectra of each plot were averaged and preprocessed in 
Microsoft Office Excel 2007. Subsequently, the correlation 
analysis (Pearson correlation) and “contour map” processing 
were carried out using the MATLAB 7.10.0 (R2010a) software 
(MathWorks, Inc.). Randomly, 15 published SRs and 15 
published NDVIs (listed in Table 1), composed of different and 
diverse bands combinations were selected for evaluating and 
comparing the new ones identified in our study. The equations 
for selecting new VIs of two-bands (Rj and Ri) combinations 
were the simple ratio index and the normalized difference 
vegetation index (Eq. 2 and 3). 
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                                                            (3) 

 
 

3. RESULTS 

3.1 Relationship between Published VIs and LCC 
 
Across all 7 varieties, the best performing published SR and 
NDVI explained 71 % and 74 % of the variation in LCC, 
respectively. For a single variety, the best performing published 
SR and NDVI explained 83 % and 85 % of the LCC variation, 
respectively, for Scarlett and Bambina (Table 2). It is shown 
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that the SRs 1-11 and 15 explained no more than 60 % of the 
LCC variation for each single variety or for that all varieties 
(data not shown). Published NDVIs in most cases outperformed 
the published SRs and are more consistent with earlier studies. 
However, for chlorophyll specially developed MTCI (NDVI 8) 
by Dash and Curran (2004) explained only 48 % of the LCC 
variation for all varieties (data not shown). This means VIs 
selected in one situation may not suitable for another situation 
even when using the same method and for the same crops. 
 
Table 1. Published VIs evaluated in this study. 

Index and Equation Reference 
SR 1-15  
R800/R675 Jordan (1969) 
R800/R680 Blackburn (1998) 
R800/R635 Blackburn (1998) 
R800/R470 Blackburn (1998) 
R801/R670 Daughtry et al. (2000) 
R801/R550 Daughtry et al. (2000) 
R810/R560 Xue et al. (2004) 
R750/R700 Gitelson and Merzlyak (1996) 
R750/R550 Gitelson and Merzlyak (1996) 
R750/R710 Zarco-Tejada et al. (2001) 
R750/R705 Sims and Gamon (2002) 
R675/R700 Chappelle et al. (1992) 
R415/R685 Read et al. (2002) 
R415/R695 Read et al. (2002) 
R415/R710 Read et al. (2002) 
NDVI 1-15  
(R1220-R710)/(R1220+R710) Zhu et al. (2007) 
(R800-R680)/(R800+R680) Blackburn (1998) 
(R800-R635)/(R800+R635) Blackburn (1998) 
(R800-R470)/(R800+R470) Blackburn (1998) 
(R680-R430)/(R680+R430) Peñuelas et al. (1994) 
(R801-R550)/(R801+R550) Daughtry et al. (2000) 
(R801-R670)/(R801+R670) Daughtry et al. (2000) 
(R750-R710)/(R710-R680) Dash and Curran (2004) 
(R750-R705)/(R750+R705) Sims and Gamon (2002) 
(R750-R445)/(R705-R445) Sims and Gamon (2002) 
(R531-R570)/(R531+R570) Sims and Gamon (2002) 
(R550-R531)/(R550+R531) Gamon et al. (1992) 
(R573-R440)/(R573+R440) Hansen and Schjoerring (2003)
(R565-R533)/(R565+R533) Tian et al. (2011) 
(R503-R483)/(R503+R483) Stroppiana et al. (2009) 

3.2 Selecting New VIs for Estimating LCC 
 
The “correlation matrix” was carried out with all the possible 
two-bands combinations throughout 350 to 1800 nm range 
using a comprehensive computing method and contour maps of 
R2 values were subsequently plotted versus the corresponding 
wavelengths, as shown in Figure 1 (a-h for SRs, i-p for NDVIs). 
The wide variance of R2 values ranging from 0 to 0.90 indicates 
that the large difference exists in the strength of the associations 
between new VIs and LCC in different varieties. 
 
In this study, we improved the “correlation matrix” method for 
the SRs calculated with Eq. (2) by considering both possibilities 
of combining the wavelengths, j > i and j < i, namely, above the 
diagonal (AD, upper left) and below the diagonal (BD, lower 
right) as shown in Figure 1. This was not addressed in earlier 
studies, which usually focused on one case only, either j > i or j 
< i, as presented in many studies (Thenkabail et al., 2000; 
Hansen and Schjoerring, 2003; Li et al., 2010; Tian et al., 2011). 
For the SRs, the two cases j > i and j < i (above and below the 
diagonal, respectively, AD and BD) differed greatly from each 
other in the variation of correlation strength. In the case of j > i 
(AD), “hot spots” with highest R2 values mainly appeared in the 
VIS range above the diagonal, whereas a shift to longer 
wavelengths in the NIR range occurred below the diagonal 
when j < i (BD). Results visually reveal that SRs of the 
wavelengths at 350-450 nm paired with the wavelengths at 400-
500 or 600-680 nm when j > i, and SRs of the wavelengths at 
750-1000 nm paired with the wavelengths at 600-700 nm when 
j < i, are the best indicators for estimating LCC. For each single 
variety and across all varieties, the best SRs with the highest R2 
values in Figure 1 were listed in Table 2. The best performing 
new SRs explained 74 % of the LCC variation across all 
varieties and 70 % to 88 % of the LCC variation for every 
single variety. Compared with the published SRs, our newly 
selected SRs improved the capability for estimating LCC not 
only for a single variety but also for that across all varieties. 
The most significant improvement was observed for the variety 
Marthe where R2 increased by 13 % (Table 2). 
 
In contrast to the SRs, the contour maps of the NDVIs shown 
almost no difference in the variation of correlation strength 
between the two cases of j > i and j < I, while yielded the 
symmetrical images (Fig. 1). Hot spots of the highest R2 values 

 
Table 2. Best newly selected SRs/ NDVIs and best published SRs/ NDVIs for estimating LCC in different varieties. 

Variety 
Newly Selected SRs/ NDVIs Best Published SRs/ NDVIs

Best SR/ NDVI (i, j) Band R2 Location* Index R2 
Belana SR (406,487) Violet, Blue 0.86 AD SR 12 0.81 
Marthe SR (394, 443) Violet, Blue 0.79 AD SR 12 0.66 
Scarlett SR (431, 455) Blue, Blue 0.87 AD SR 12 0.83 
Iron SR (1006, 667) NIR, Red 0.70 BD SR 12 0.65 
Sunshine SR (351, 680) Ultraviolet, Red 0.75 AD SR 12 0.74 
Barke SR (421, 428) Blue, Blue 0.78 AD SR 12 0.75 
Bambina SR (356, 680) Ultraviolet, Red 0.88 AD SR 12 0.78 
All SR (734, 629) Red-edge, Red 0.74 BD SR 12 0.71 
Belana NDVI (406,487), (487, 406) Violet, Blue 0.85 AD, BD NDVI 2, 3, 7 0.81 
Marthe NDVI (394, 434), (434, 394) Violet, Blue 0.78 AD, BD NDVI 14 0.73 
Scarlett NDVI (431, 455), (455, 431) Blue, Blue 0.87 AD, BD NDVI 5 0.81 
Iron NDVI (679, 748), (748, 679) Red, Red-edge/ NIR 0.70 AD, BD NDVI 2, 7 0.69 
Sunshine NDVI (390, 430), (430, 390) Violet, Blue 0.71 AD, BD NDVI 2, 7 0.71 
Barke NDVI (421, 428), (428, 421) Blue, Blue 0.78 AD, BD NDVI 2, 3, 7 0.76 
Bambina NDVI (679, 934), (934, 679) Red, NIR 0.86 AD, BD NDVI 2, 7 0.85 
All NDVI (667, 740), (740, 667) Red, Red-ege/ NIR 0.74 AD, BD NDVI 2, 3, 7 0.74 

*, AD, above the diagonal in contour maps; BD, below the diagonal in contour maps. 
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Fig. 1. Contour maps showing the values of R2 for the relationships between LCC and SRs (a-h) and NDVIs (i-p) composed of 

random two-bands combinations throughout the range of 350 to 1800 nm across all growth stages for each single variety (a-g/ i-o 

stand for Belana, Marthe, Scarlett, Iron, Sunshine, Barke and Bambina respectively) and for all varieties (h and p). 

 

centered where, on one hand, the wavelengths at 420-500 nm 

paired with the wavelengths at 380-420 nm in the VIS; on the 

other hand, the wavelengths at 650-700 nm paired with the 

wavelengths at 740-1000 nm in the NIR. The best NDVIs with 

highest R2 values in Figure 1 were listed in Table 2. The best 

performing new NDVIs explained 74 % of the LCC variation 

across all varieties and 70 % to 87 % of the LCC variation for 

every single variety. Compared with the published NDVIs, our 

newly selected NDVIs improved the predictive ability for 6 

individual varieties. The most significant improvement was 

observed for Scarlett where R2 increased by 6 % (Table 2). 

 

 

4. DISCUSSION 

The published SRs 1-11 and 15 explained no more than 60 % of 

the LCC variation for each single variety and for that across all 

varieties in this study (data not shown). But these SRs were 

reported somewhere explained more than 90 % of the variation 

in chlorophyll (Gitelson and Merzlyak, 1996; Blackburn, 1998; 

Daughtry et al., 2000; Read et al., 2002), and 85 % of the 

variation in leaf N accumulation (Xue et al., 2004). The SR 11 

explained 61 % of the variation in total LCC across several 

species as reported by Sims and Gamon (2002), but explained 

only 52 % of the LCC variation across the 7 varieties in this 

study. Notably, SR 12 explained 71 % of the variation in LCC 

across all varieties, and more than 75% of that for a single 

variety (i.e. Belana, Scarlett, Barke and Bambina). This is 

consistent with the study by Chappelle et al. (1992) who found 

that 93 % of the variation in chlorophyll concentration of 

soybean leaves was explained by the SR 12. The varied 

performance of these published SRs in present study indicates 

that some published SRs cannot provide a very constant 

performance for estimating LCC of different species in different 

conditions. 

 

For this reason, a large number of SRs were proposed and used 

for chlorophyll or N estimation based on the approaches of 

identifying sensitive bands (Chappelle et al., 1992; Blackburn, 

1998; Zarco-Tejada et al., 2001; Zhao et al., 2003; Zhao et al., 

2005b) or the method of “correlation matrix” (Li et al., 2010; 

Tian et al., 2011). The advantages of the R2 matrix plots are that 
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they provide a quick overview of thousands of wavelengths 
combinations and make it possible to detect wavelengths of 
interest (Hansen and Schjoerring, 2003). Our results indicate 
that, in present study, new SRs of the wavelengths at 350-450 
nm paired with the wavelengths at 400-500 nm or 600-680 nm 
(j > i), and the wavelengths at 750-1000 nm paired with the 
wavelengths at 600-700 nm (j < i) are the best indicators for 
estimating LCC for each single variety and for that across all 
varieties. This not only confirms the empirical bands for 
estimating chlorophyll or N concentration but also reveals that 
several SRs (Ultraviolet bands paired with Red bands, Violet 
paired with Blue, or Blue paired with Blue, Table 2) can also be 
very effective for estimating LCC. Ultraviolet, Violet and Blue 
bands are more efficient for single varieties, whereas Red-edge 
bands are more effective when across all the varieties. 
Compared with published SRs, the best new SRs all improved 
the predictive ability for LCC. Especially, the most significant 
improvement was observed for the variety Marthe where the R2 
value increased by 13 % with the new SR (394, 443).  
 
Published NDVIs in most cases outperformed published SRs 
which were evaluated in this study. The published NDVIs 13, 
14 and 15 were all proposed using the similar method as used in 
present study: for chlorophyll concentration of wheat (Hansen 
and Schjoerring, 2003), for leaf N concentration of rice (Tian et 
al., 2011) and for plant N concentration of rice (Stroppiana et 
al., 2009). However, only NDVI 14 showed a comparative 
performance for estimating the LCC in this study (R2 = 0.58-
0.76, data not shown). This means that the selection of NDVIs 
is also species-specific, as well as that of SRs. Our newly 
selected NDVIs also improved the capability for estimating 
LCC. The most significant improvement was observed for 
Scarlett where the R2 value increased by 6 % with the new 
NDVI (431, 455) (Table 2). New NDVIs of the wavelengths at 
420-500 nm paired with the wavelengths at 380-420 nm, and 
the wavelengths at 650-700 nm paired with the wavelengths at 
740-1000 nm are the best indicators for estimating LCC for 
each single variety and across all varieties. Hansen and 
Schjoerring (2003) reported that the bands for predicting LCC 
were exclusively found in the VIS, mainly in the Blue region 
paired with a Green or a Red band. However, in our results the 
“hot spots” of NDVIs vs LCC are mainly in the Blue bands 
paired with Blue or Violet bands (Table 2). Furthermore, 
Ultraviolet, Violet and Blue bands can play very effective roles 
for estimating LCC in each single variety, whereas Red-edge 
bands are more effective for that across all varieties. This is 
consistent with aforementioned results of selecting SRs.  
 
Although the published NDVIs performed better in most cases 
in this study than the published SRs, our newly selected SRs 
outperformed both the newly selected NDVIs and the best 
published NDVIs. This reveals that the SRs identified with the 
more comprehensive computing method of “correlation matrix” 
may have a better potential of estimating LCC than the NDVIs. 
Generally, in earlier studies, the selection of SRs was conducted 
mainly focused on one case of the probability (either j > i or j < 
i) and thus only “half” of the contour map was generated. For 
instance, Tian et al. (2011) evaluated both SRs and NDVIs to 
estimate the leaf N concentration of rice and found that the best 
selected SR and NDVI have the same bands combination and 
the same capability (R2). This interesting phenomenon can be 
also seen in our results (Table 2). But in a study for estimating 
plant N concentration, Li et al. (2010) reported that a NDVI 
(365, 410) was the best indicator, rather than a SR. This 
inconsistency probably was due to the employment of only one 
single case (j > i or j < i) and the generation of only “half” of 

intact contour map (for instance, only AD or BD as shown in 
Table 2). Our results shown the SRs performed either 
identically or even better than NDVIs for estimating the LCC of 
summer barley. The most significant difference between the 
contour maps of NDVIs and SRs is that the former yield, for the 
two cases of j > i and j < i together, diagonal symmetrical 
images (Fig. 1). It is consistent with the investigations for 
selecting NDVIs and the “second soil adjusted vegetation 
index” SAV2 (Darvishzadeh et al., 2008; Tian et al., 2011). In 
contrast, contour maps of SRs differed greatly from one another 
in different cases of j > i and j < i (Fig. 1). For instance, the best 
SR for the variety Iron was identified below the diagonal, as 
well as the best SR for all varieties (Fig. 1, Table 2). This 
suggests that the best SR in a contour map for a different 
variety can be in different sides of the diagonal, above or below 
the diagonal. However, one best NDVI in the contour map 
normally has an “inverted” form (see Table 2) with the same 
bands and the same predictive ability. Consistence can also be 
found in previous studies (Darvishzadeh et al., 2008; Tian et al., 
2011). Therefore, selecting two-bands combinations improves 
the performance of SRs and NDVIs for estimating LCC. SRs 
seem to be the best indicators (of two-bands combinations) and 
NDVIs seem to be good alternatives for SRs. 
 
A contour map of wavelengths ranging from 350-1800 nm is 
not very commonly seen in literatures. Our results indicate that 
combinations of the wavelengths at 600-700 nm paired with the 
wavelengths at 1000-1350 nm or 1600-1800 nm can also yield 
high R2 values (0.6-0.8). This provides a visual understanding 
that not only the empirical wavelengths region but also the 
longer wavelengths region are effective for estimating LCC 
using the two-bands combinations as SR and NDVI. Moreover, 
most researchers generally do not consider spectral data of 
wavelengths shorter than 400 nm because of noise (Li et al., 
2010). However, our results reveal that SRs and NDVIs with 
the Ultraviolet bands can also be selected as the best indicators 
for LCC. The consistence can be found in previous studies 
(Read et al., 2002; Li et al., 2010). This may improve our 
knowledge base for developing new VIs and crop sensors using 
longer wavelengths. Since the spectral data is often influenced 
by many factors (soil background, LAI, species, growth stages 
etc.), it still needs to be further evaluated. 
 
 

5. CONCLUSIONS 

This study was conducted in a multi-varieties summer barley 
field without artificial nutrient gradients. Using a more 
comprehensive computing method of “correlation matrix”, 
newly selected SRs are competent indicators of LCC and may 
outperform NDVIs. Selecting optimal two-bands combinations 
strengthened the relationships between spectral indices and 
LCC as compared with those empirical combinations (Green, 
Red and NIR) and indices published for estimating chlorophyll. 
Moreover, Ultraviolet, Violet and Blue bands are more effective 
for estimating the LCC in a single variety, whereas Red-edge 
bands are more efficient for that across all varieties. The overall 
performances of both newly selected VIs and published VIs are 
significantly influenced by the varieties. In present study, we 
are the first to our knowledge to compare the difference of the 
two cases (j > i and j < i) for computing and selecting the SRs. 
Our work was inspired by many previous researches, and shall 
be a contribution to the knowledge base of hyperspectral remote 
sensing. However, it remains to be further validated in our 
future work with more datasets involving different years, 
varieties, species, locations, etc. 
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