HYPERSPECTRAL IMAGE DENOISING WITH CUBIC TOTAL VARIATION MODEL
Keywords: Hyperspectral Image, Denoising, Cubic Total Variation, Augmented Lagrangian Method
Abstract. Image noise is generated unavoidably in the hyperspectral image acquision process and has a negative effect on subsequent image analysis. Therefore, it is necessary to perform image denoising for hyperspectral images. This paper proposes a cubic total variation (CTV) model by combining the 2-D total variation model for spatial domain with the 1-D total variation model for spectral domain, and then applies the termed CTV model to hyperspectral image denoising. The augmented Lagrangian method is utilized to improve the speed of solution of the desired hyperspectral image. The experimental results suggest that the proposed method can achieve competitive image quality.