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ABSTRACT: 

 

The latest breed of very high resolution (VHR) commercial satellites opens new possibilities for cartographic and remote sensing 

applications. In fact, one of the most common applications of remote sensing images is the extraction of land cover information for 

digital image base maps by means of classification techniques. When VHR satellite images are used, an object-based classification 

strategy can potentially improve classification accuracy compared to pixel based classification. The aim of this work is to carry out 

an accuracy assessment test on the classification accuracy in urban environments using pansharpened and panchromatic GeoEye-1 

orthoimages. In this work, the influence on object-based supervised classification accuracy is evaluated with regard to the sets of 

image object (IO) features used for classification of the land cover classes selected. For the classification phase the nearest neighbour 

classifier and the eCognition v. 8 software were used, using seven sets of IO features, including texture, geometry and the principal 

layer values features. The IOs were attained by eCognition using a multiresolution segmentation approach that is a bottom-up region-

merging technique starting with one-pixel. Four different sets or repetitions of training samples, always representing a 10% for each 

classes were extracted from IOs while the remaining objects were used for accuracy validation. A statistical test was carried out in 

order to strengthen the conclusions. An overall accuracy of 79.4% was attained with the panchromatic, red, blue, green and near 

infrared (NIR) bands from the panchromatic and pansharpened orthoimages, the brightness computed for the red, blue, green and 

infrared bands, the Maximum Difference, a mean of soil-adjusted vegetation index (SAVI), and, finally the normalized Digital 

Surface Model or Object Model (nDSM), computed from LiDAR data. For buildings classification, nDSM was the most important 

feature attaining producer and user accuracies of around 95%. On the other hand, for the class “vegetation”, SAVI was the most 

significant feature, obtaining accuracies close to 90%. 

 

 

1. INTRODUCTION 

With the launch of the first very high resolution (VHR) 

satellites such as IKONOS in September 1999 or QuickBird in 

October 2001, conventional aerial photogrammetric mapping at 

large scales began to have serious competitors. In this way and 

in Spain there have already been several operational 

applications using QuickBird for othoimage generation covering 

large regions such as Murcia. In 2008 was launched a new 

commercial VHR satellite called GeoEye-1 (GeoEye, Inc.), 

which, nowadays, is the commercial satellite with the highest 

geometric resolution, in panchromatic (0.41 m) and in 

multispectral (1.65 m) products. More recently, on January 4, 

2010, have begun to commercialize imagery of the last of the 

VHR satellites launched. It is WorldView-2 (DigitalGlobe, 

Inc.), whose more relevant technical innovation is the 

radiometric accuracy improvement, since the number of bands 

that compose its multispectral image are increased to 8, instead 

of the 4 classic bands (R, G, B, NIR) of all the previous VHR 

satellites.    

Many recent studies have used (VHR) satellite imagery for 

extracting georeferenced data in urban environments (e.g., 

Turker and San, 2010; Pu et al., 2011). In fact some of them 

used the newest GeoEye’s satellite for extracting buildings (e.g., 

Hussain et al., 2011; Grigillo and Kosmatin Fras, 2011). 

Concretely, automatic building extraction or classification from 

VHR is a very challenging task and has been the focus of 

intensive research for the last decade.  

The high resolution satellite images are being increasingly used 

for the detection of the buildings. Of the techniques used, 

automatic image classification is the most widely used 

technique for the detection of buildings. But very high 

resolution of the input image is usually joined to a high local 

variance of urban land cover classes. In this way, their statistical 

separability is limited using traditional pixel-based classification 

approaches. Thus, classification accuracy is reduced and the 

results could show a “salt and pepper” effect (e.g., Treitz and 

Howarth, 2000). Classification accuracy is particularly 

problematic in urban environments, which typically consist of 

mosaics of small features made up of materials with different 

physical properties (Mathieu et al., 2007). To overcome this 

problem, object-based classification can be used (Carleer and 

Wolff, 2006; Blaschke 2010). 

The aim of this work is to carry out an accuracy assessment test 

on the classification accuracy in urban environments using 

GeoEye-1 orthoimages. In this assay, the influence on 

supervised object-based classification accuracy is going to be 

evaluated with regard to the sets of image object (IO) features 

used for classification of the land cover classes selected. 

Concretely, seven sets of IO features are tested. A statistical test 

is carried out in order to strengthen the conclusions. 
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2. STUDY SITE AND DATASETS 

2.1 Study site 

The study area comprises the little village of Villaricos, 

Almería, Southern Spain, including an area of 17 ha (Fig. 1). 

The working area is centered on the WGS84 coordinates 

(Easting and Northing) of 609,007 m and 4,123,230 m. 

 

 

 
Figure 1. Location of the working area.  

 

2.2 GeoEye-1 orthoimages 

Over the study site an image of GeoEye-1 Geo from the 

imagery archive of GeoEye was acquired. It was captured in 

reverse scan mode on 29 September 2010, recording the 

panchromatic (PAN) band and all four multispectral (MS) bands 

(i.e., R, G, B and NIR). Finally, image products were resampled 

to 0.5 m and 2 m for the PAN and MS cases respectively. For 

these products, the pancharpened image with 0.5 m GSD and 

containing the four bands from MS image was attained using 

the PANSHARP module included in PCI Geomatica v. 10.3.2 

(PCI Geomatics, Richmond Hill, Ontario, Canada). Finally, two 

orthoimages (PAN and pansharpened) were computed using the 

photogrammetric module of PCI Geomatica (OrthoEngine). 

Rational function model with a zero order transformation in 

image space, 7 DGPS ground control points and a very accurate 

LiDAR derived digital elevation models (which is going to be 

detailed later) were used for obtaining both orthoimages. These 

orthophotos presented a planimetric accuracy of 0.46 m, 

measured as root mean square error (RMSE) at 75 independent 

check points (Aguilar et al., 2012).  

 

2.3 Soil adjusted vegetation index (SAVI) 

Vinciková et al. (2010) reported that between the most 

commonly used vegetation indices in remote sensing 

applications are the Normalized Difference Vegetation Index 

(NDVI) and the Soil Adjusted Vegetation Index (SAVI). In fact, 

the attained results using these methods were very similar. In 

our work SAVI index was used. It was computed by SAVI 

algorithm from PCI Geomatica, and a new image was calculated 

from Red and NIR bands included in pansharpened orthoimage 

(Fig. 2).    

 

2.4 Normalized Digital Surface Model (nDSM) 

The digital elevation model (DEM) and digital surface model 

(DSM) used in this work were a high accuracy and resolution 

LiDAR derived DEM with a grid spacing of 1 m. This LiDAR 

data was taken on August 28th, 2009, as a combined 

photogrammetric and LiDAR survey at a flying height above 

ground of approximately 1000 m. A Leica ALS60 airborne laser 

scanner (35 degree field of view, FOV) was used with the 

support of a nearby ground GPS reference station, being 1.61 

points/m2 the average point density. The estimated vertical 

accuracy computed from 62 ICPs took a value of 8.9 cm. The 

Normalized Digital Surface Model (nDSM) was generated by 

subtracting DEM from DSM. In this way the buildings can be 

easily distinguished (Fig. 2). Also, orthoimages with 15 cm 

GSD were attained from this flight by Intergraph Z/I Imaging 

DMC (Digital Mapping Camera).     

 

Figure 2. From left to right, details of pansharpened orthoimage, 

SAVI index, and nDSM.  

 

3. METHODOLOGY 

3.1 Multiresolution segmentation 

The object-based image analysis software used in this research 

was eCognition v. 8.0. This software uses a multiresolution 

segmentation approach that is a bottom-up region-merging 

technique starting with one-pixel objects. In numerous iterative 

steps, smaller IOs are merged into larger ones (Baatz and 

Schäpe, 2000). But this task is not easy, and it depends on the 

desired objects to be segmented (Tian and Chen, 2007).  

 

Figure 3. Multiresolution segmentation. Left: Scale 20 at pixel 

level. Right: Scale 70 above.  

 

However, this work is not focused on VHR segmentation. So, 

and after visually inspecting the degree to which IOs matched 

the feature boundaries of the land cover types in the study area, 

we used the multiresolution segmentation with a scale of 20 at 

the first, and at the pixel level. Finally, a scale of 70 on the first 

segmentation level was used (Fig. 3). The segmentation was 

always developed using the four equal-weighed bands from 

pansharpened orthoimage. Furthermore, the compactness was 

assigned a weight of 0.5 and the shape was fixed at 0.3. 

Following this way, 2723 IOs were detected. For using this 

segmentation into ArcGis v. 9.3 and carrying out the following 

phases of manual classification and training areas selection, 
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2723 IOs were exported from eCognition as a shapefile vector 

data format (.SHP). 

 

3.2 Manual Classification 

Only 1894 IOs from the initial 2723 could be visually 

indentified as meaningful objects. The hand-made or manual 

classification was developed into ArcGis v. 9.3 using the 

available datasets (orthoimages from GeoEye-1 and DMC, 

MDE, DSM, nDSM, SAVI). Table 1 shows the correctly 

manual classified IOs in each of the ten considered classes. A 

subset of 945 well-distributed IOs were selected to carry out the 

training phase of the classifier used in this work (i.e., nearest 

neighbour). The remaining 949 IOs, also well-distributed in the 

working area, were used for the validation or accuracy 

assessment phase. For each class, approximately a 50% of IOs 

were in the training subset, while the other 50% were selected 

for the validation subset.  

 

Class No. IOs 
Subset IOs 

Validation 

Subset IOs 

Training 

Red buildings 298 149 149 

White buildings 558 279 279 

Grey buildings 68 34 34 

Other buildings 55 28 27 

Shadows 477 239 238 

Vegetation 194 97 97 

Bare soil 93 47 46 

Roads 72 36 36 

Streets 71 36 35 

Swimming pools 8 4 4 

Table 1.  IOs after the segmentation process.  

 

3.3 Training areas 

In this work, an object-based supervised classification has been 

used, being nearest neighbour the classifier chosen. In this type 

of automatic classification, the accuracy is a function of the 

training data used in its generation, principally size and quality 

(e.g., Foody and Mathur, 2006). Guidance on the design of the 

training phase of a classification typically calls for the use of a 

large sample of randomly selected pure or meaningful objects in 

order to characterise the classes.  

 

Class 

No. Training 

IOs for  each 

repetition  

Area of IOs (m2) 

Mean 
Standard 

Deviation 

Red buildings 30 74 1.72 

White buildings 56 30 2.58 

Grey buildings 7 77 3.37 

Other buildings 6 55 1.55 

Shadows 48 45 1.60 

Vegetation 20 89 1.64 

Bare soil 10 166 2.74 

Roads 8 218 5.24 

Streets 8 103 2.99 

Swimming pools 1 43 9.36 

Table 2.  Characteristics of four IOs repetitions extracted for the 

classifier training.  

 

In this work, four different repetitions of 10% IOs were 

extracted from the training subset of 945 IOs. This percentage 

was tried to keep constant for every classes, both in number of 

objects and in the mean area or size of them. In this way, Table 

2 shows the number of IOs chosen for training the nearest 

neighbour classifier. For example, the 298 IOs from “Red 

Buildings” class had a mean area of 74.5 m2 per object, 

presenting a high standard deviation of 51.6 m2. Thus, for every 

different repetition chosen in this work, training areas for “Red 

Buildings” were always composed by 30 objects with a mean 

area of around 74 m2. The selection of training areas was 

developed into ArcGis, and after it was exported as GEOTIFF 

file. Four GEOTIFF files (four repetitions of training samples 

containing about 10% of total objects) were finally attained. 

They were imported into eCognition as a Test and Training 

Area mask (TTA Mask), and later on they were converted to 

samples for carrying out the training task. 

 

Feature Description 

Blue Mean of pansharpened GeoEye-1  blue band 

Green Mean of pansharpened GeoEye-1  green band 

Red Mean of pansharpened GeoEye-1  red band 

NIR Mean of pansharp GeoEye-1 infrared band 

Pan Mean of panchromatic GeoEye-1 band 

SAVI Mean of soil-adjusted vegetation index 

Bright Average of means of four pansharp bands 

Max. Diff. Maximum difference between bands 

nDSM Digital Surface Model or Object Model 

NDBI Normalized Difference of Blue band Index 

Std. Blue  Standard deviation of blue 

Std. Green Standard deviation of green 

Std. Red Standard deviation of red 

Std. NIR Standard deviation of infrared 

Std. Pan Standard deviation of pan 

Std. SAVI Standard deviation of SAVI 

Ratio 1  Ratio to scene for blue band  

Ratio 2 Ratio to scene for green band 

Ratio 3 Ratio to scene for red band 

Ratio 4 Ratio to scene for infrared band 

Ratio 5 Ratio to scene for pan band 

Ratio 6 Ratio to scene for SAVI band 

Hue Mean of Hue image processed from 

pansharpened GeoEye-1 bands RGB 

Intensity Mean of Intensity image processed from 

pansharpened GeoEye-1 bands RGB 

Saturation Mean of Saturation image processed from 

pansharpened GeoEye-1 bands RGB 

Compact The product of the length and the width of the 

corresponding object and divided by the number 

of its inner pixels. 

Shape Index The border length of the IO divided by four 

times the square root of its area 

Compactness The ratio of the area of a polygon to the area of 

a circle with the same perimeter 

Num. Edges The number of edge that form the polygon 

GLCMH 1 GLCM homogeneity from infrared 

GLCMH 2 GLCM homogeneity from pan 

GLCMC 1 GLCM contrast from infrared 

GLCMC 2 GLCM contrast from pan 

GLCMD 1 GLCM dissimilarity from infrared 

GLCMD 2 GLCM dissimilarity from pan 

GLCME 1 GLCM entropy from infrared 

GLCME 2 GLCM entropy from pan 

GLCMStd 1 GLCM standard deviation from infrared 

GLCMStd 2 GLCM standard deviation from pan 

GLCMCR 1 GLCM correlation from infrared 

GLCMCR 2 GLCM correlation from pan 

GLDV2M 1 GLDV angular second moment from infrared 

GLDV2M 2 GLDV angular second moment from pan 

GLDVE 1 GLDV entropy from infrared 

GLDVE 2 GLDV entropy from pan 

GLDVC 1 GLDV contrast from infrared 

GLDVC 2 GLDV contrast from pan 

Table 3.  Image Object (IO) features used in the classification 

phase.  
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3.4   Feature extraction and selection 

In addition to the four features (Red, Green, Blue and Infrared 

bands from pansharpened GeoEye-1 orthoimage) used for 

creating the IOs at the segmentation phase, other 43 features, 

described in Table 3, were used for supervised classification. A 

more in depth information about them could be found in the 

Definiens eCognition Developer 8 Reference Book (Definiens 

eCognition, 2009). The 47 features could be grouped as: (i) ten 

features were mean layer values, (ii) six standard deviation layer 

values, (iii) six ratios to scene layer values, (iv) three hue, 

saturation and intensity layer values, (v) two geometry features 

based on the shape, (vi) two geometry features based on 

polygons, and (vii) eighteen texture features based on the 

Haralick co-occurrence matrix (Haralick et al., 1973), as Gray-

Level Co-occurrence Matrix (GLCM) or as Gray-Level 

Difference Vector (GLDV), always considering all the 

directions. A similar feature space for classification was utilized 

by previous researchers (Pu et al., 2011; Stumpf and Kerle, 

2011). 

Finally, seven sets of features were carried out for this work, 

and each of them supposed a different strategy for 

classification:  

(i) Set 1: This set is including only seven basic features of mean 

layer values such as Blue, Green, Red, Infrared, Pan, Brightness 

and Maximum difference. 

(ii)  Set 2: It is composed by the seven basic features plus SAVI 

index. 

(iii) Set 3: It is formed by the seven basic features plus nDSM. 

(iv) Set 4: It is composed by the seven basic features plus SAVI 

and nDSM. 

(v) Set 5: Seven basic features plus SAVI and Normalized 

Difference of Blue band Index (NDBI), being the last computed 

as NDBI =(NIR−Blue)/(NIR+Blue). 

(vi) Set 6: Seven basic features plus CONTRAST texture 

feature (GLCM Contrast), computed from panchromatic band. 

(vii) Set 7: All the features presented in Table 3 except nDSM 

and NDBI.  

 

3.5 Classification and accuracy assessment 

For computing the classification, the seven sets of features were 

run applying standard nearest neighbour to classes. Bearing in 

mind that there were four repetitions of training samples, 28 

different classification projects were carried out into 

eCognition. In all of them, the accuracy assessment was 

computed by mean of an error matrix based on a TTA Mask.           

 

Class 
Occupied 

area (%) 

Grouped 

Class 

Occupied 

area (%) 

Red buildings 17.74 

Buildings 38.02 
White buildings 13.60 

Grey buildings 4.22 

Other buildings 2.46 

Shadows 17.24 239 17.24 

Vegetation 13.73 97 13.73 

Bare soil 12.35 47 12.35 

Roads 12.55 36 12.55 

Streets 5.84 36 5.84 

Swimming pools 0.27 4 0.27 

Table 4.  Area per class occupied by the 1894 IOs meaningful 

objects manual classified.   

This accuracy assessment TTA Mask always included the same 

949 IOs. Overall accuracy, producer’s accuracy and user’s 

accuracy were the studied values in this work. It is noteworthy 

that before computing these accuracy index, the four classes 

related with buildings (i.e., red, white, grey and other buildings) 

where grouped in only one class named buildings. Table 4 

shows the area percentage occupied by the 1894 IOs which 

were manually classified. In the working area, “buildings” were 

the more extended class, following by “shadows”, “vegetation”, 

“bare soil” and “roads”. “Streets”, and especially “Swimming 

pools”, were the two classes with less area within the working 

area. 

 

3.6 Statistic analysis 

In order to study the influence of the studied factor (i.e., seven 

different strategies or features sets) on the final classification 

accuracy, an analysis of variance (ANOVA) test for one factor 

was carried out by means of a factorial model with four 

repetitions (Snedecor and Cochran, 1980). The observed 

variables were the overall accuracy, producer’s accuracy and 

user’s accuracy respectively. The source of variation was the set 

of features used for the nearest neighbour classifier. When the 

results of the ANOVA test turned out to be significant, the 

separation of means was carried out using the Duncan’s 

multiple range test at 95% confidence level. 

 

4. RESULTS AND DISCUSSION 

Table 5 shows the overall accuracy results for each set of 

features tested in this work, considering the four classes related 

with buildings (i.e., red, white, grey and other buildings) 

grouped in one class named “buildings”. Sets 2 (7 basic features 

plus SAVI), 4 (7 basic features plus SAVI and nDSM), 5 (7 

basic features plus SAVI and NDBI) and 7 (45 features) were 

the strategies with the best results. Although these four sets 

could not be statistically separated, globally and bearing in mind 

the extremely high computation time or “running time” needed 

for carried out the set 7 due to texture features principally, the 

best strategy could be the set 4, with nDSM and SAVI. Figure 4 

shows a classification detail of one of the four repetitions using 

SAVI and nDSM, both for 10 classes and for 7 classes. 

The following tables (5 to 10) try to assess the behaviour of the 

different sets of features or strategies tested in this work for the 

most relevant class. In all of them, values in the same column 

followed by different letters indicate significant differences at a 

significance level p < 0.05 and the bold values show the best 

significant accuracies.  

Features Overall Accuracy (%) 

Set 1 74.36 a 

Set 2 77.21 abc 

Set 3 75.92 ab  

Set 4 79.39 c 

Set 5 77.47 cb 

Set 6 75.66 ab 

Set 7 79.16 c 

Table 5.  Comparison of mean values of Overall Accuracy for 

the seven set of features tested. 

 

Regarding “buildings” class (Table 6), the most important 

feature for classifying them turned out to be the nDSM. This 

fact have already been reported by many authors such as 

Hermosilla et al. (2011), Awrangjeb et al. (2010), Turker and 

San (2010) or Longbotham et al. (2012). In our assay, both 

producer and user accuracy for buildings class were 

significantly better when nDSM was employed into the features 
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set. In fact, a high accuracy level (around 95%) was reached 

using nDSM.  

 

 

Figure 4. Classification detail of one of the four repetitions 

using SAVI and nDSM, with 10 classes (left above) and with 7 

classes (left bellow). Class hierarchy is showed on the top right 

and samples for training are down to the right.  

 

Regarding “shadows” class (Table 7), any features set was 

significantly better, although perhaps the texture feature 

“CONTRAST” could be highlighted.  

In the case of vegetation (Table 8), the best sets for producer 

accuracy were those which were containing the SAVI feature. 

With regard to user accuracy, both SAVI+nDSM (set 4) and 

SAVI+NDBI (set 5) were the best, although not significant 

features. For detecting vegetation, Zerbe and Liew (2004) 

pointed out that NDBI could help to distinguish vegetation 

class. In other way, authors as Haala and Brenner (1999) 

demonstrated the use of LiDAR to extract trees, besides 

buildings, in an urban area. 

Regarding “roads” class (Table 9), nDSM and CONTRAST 

were the features with less repercussion in the classification 

results. On the other hand, using NDBI (set 5) the producer 

accuracy of the “roads” class was improved. Dinis et al. (2010) 

had already used this feature to discriminate between bare soil 

and roads in a QuickBird satellite image.  

“Bare soil” class had very poor results both in producer’s and 

user’s accuracies (Table 10). It could be due to the high 

heterogeneity of this class, which was including agricultural 

soils, non-asphalted road, building lots, and even beach. 

       

Features Buildings Producer’s 

Accuracy (%) 

Buildings User’s 

Accuracy (%) 

Set 1 88.90 a 83.05 a 

Set 2 90.27 ab 85.04 ab 

Set 3 94.98 c 95.46 c 

Set 4 95.18 c 95.35 c 

Set 5 90.51 ab 85.75 ab 

Set 6 89.26 a 86.50 ab 

Set 7 91.81 b 88.12 b 

Table 6.  Comparison of mean values of producer’s and user’s 

accuracies for “buildings” class and the seven sets of features 

tested.   

 

            

Features 

Shadows Producer’s 

Accuracy (%) 

Shadows User’s 

Accuracy (%) 

Set 1 87.99 87.87 

Set 2 91.26 85.33 

Set 3 85.38 85.03 

Set 4 89.41 84.72 

Set 5 90.89 85.22 

Set 6 90.07 90.15 

Set 7 92.46 91.23 

Table 7.  Comparison of mean values of producer’s and user’s 

accuracies for “shadows” class and the seven sets of features.   

 

Features Vegetation Producer’s 

Accuracy (%) 

Vegetation User’s 

Accuracy (%) 

Set 1 74.02 a 84.62 bc 

Set 2 81.14 ab 81.14 b 

Set 3 70.02 a 72.97 a 

Set 4 79.10 ab 87.83 bc 

Set 5 83.04 ab 91.70 c 

Set 6 74.65 a 84.45 bc 

Set 7 88.43 b 86.36 bc 

Table 8.  Comparison of mean values of producer and user 

accuracy for “vegetation” class and the seven set of features.   

 

Features Roads Producer’s 

Accuracy (%) 

Roads User’s 

Accuracy (%) 

Set 1 62.62 abc 61.88 

Set 2 70.21 bc 62.77 

Set 3 53.21 a 57.20 

Set 4 59.00 abc 62.67 

Set 5 72.21 c 63.39 

Set 6 56.07 ab 59.54 

Set 7 69.86 bc 68.16 

Table 9.  Comparison of mean values of producer’s and user’s 

accuracies for “Roads” class and the seven sets of features 

tested.   

 

Features Bare Soil Producer’s 

Accuracy (%) 

Bare Soil User’s 

Accuracy (%) 

Set 1 42.89 ab 44.30 ab 

Set 2 39.90 a 50.90 ab 

Set 3 44.52 ab 41.59 a 

Set 4 52.31 ab 49.57 ab 

Set 5 38.20 a 50.63 ab 

Set 6 57.84 b 49.96 ab 

Set 7 52.17 ab 53.77 b 

Table 10.  Comparison of mean values of producer’s and user’s 

accuracies for “Bare Soil” class and the seven sets of features.   

 

5. CONCLUSION 

The accuracy assessment test on the supervised classification 

phase in urban environments using GeoEye-1 orthoimages, both 

pansharpened and panchromatic, and the statistical analysis 

carried out in this work has allowed us to draw the following 

conclusions: 

1.- Using seven basic features of mean layer values such as 

Blue, Green, Red, Infrared, Pan, Brightness and Maximum 

difference, a vegetation index as the Soil Adjusted Vegetation 

Index (SAVI), and the normalized Digital Surface Model or 

Object Model (nDSM), the best overall accuracy (79.39 %) was 

reached. This result improved even those carried out using 45 

features, being the last strategy much more time consuming in 

terms of CPU.   

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-7, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

103



 

2.- nDSM was the most important feature for detecting 

buildings, as it had already reported by many authors working 

with other sources of images, such as Ikonos, WorldView-2, or 

digital aerial images.   

3.- The inclusion of SAVI index was related with the detection 

of vegetation, and, together with NDBI, was a good strategy for 

the classification of roads. 

4.- A percentage of 10% of training areas was enough for 

attaining good accuracies using object-based supervised 

classification with the nearest neighbour classifier.    
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