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ABSTRACT: 

Least squares image matching (LSM) has been extensively applied and researched for high matching accuracy. However, it still 

suffers from some problems. Firstly, it needs the appropriate estimate of initial value. However, in practical applications, initial 

values may contain some biases from the inaccurate positions of keypoints. Such biases, if high enough, may lead to a divergent 

solution. If all the matching biases have exactly the same magnitude and direction, then they can be regarded as systematic errors. 

Secondly, malfunction of an imaging sensor may happen, which generates dead or stuck pixels on the image. This can be referred as 

outliers statistically. Because least squares estimation is well known for its inability to resist outliers, all these mentioned deviations 

from the model determined by LSM cause a matching failure. To solve these problems, with simulation data and real data, a series of 

experiments considering systematic errors and outliers are designed, and a variety of robust estimation methods including RANSAC-

based method, M estimator, S estimator and MM estimator is applied and compared in LSM. In addition, an evaluation criterion 

directly related to the ground truth is proposed for performance comparison of these robust estimators. It is found that robust 

estimators show the robustness for these deviations compared with LSM. Among these the robust estimators, M and MM estimator 

have the best performances.  

* Corresponding author 

1. INTRODUCTION

Image matching is an active research field in digital 

photogrammetry and computer vision. The main task in image 

matching is to find the corresponding pixel on two images of 

the same physical region. Usually the two images are referred as 

the reference image and the querying image respectively. In 

general, this is one fundamental step of various vision-based 

applications such as camera calibration, panorama generation, 

object recognition, structure from motion (SFM), 3D map 

generation and vision-based navigation. 

Different matching methods such as keypoint matching and 

area-based matching are proposed by many researchers. Among 

them, least squares image matching (LSM) is still attractive for 

its definite mathematical description of the two patches and 

high accuracy. Moreover, quality control in the surveying 

domain can be implemented on LSM. 

LSM’s creation can be traced back to the 1980s when Förstner 

(1982) firstly put forward the basic idea for LSM. Now the most 

widely used LSM utilises the intensity as the observation, and 

combines affine transformation model and linear radiometric 

model. Since it is a nonlinear model, Taylor linearization 

transfers the nonlinear model into the linear one to solve the 

unknowns through iterations. At the same time, because the 

number of observations exceeds that of unknowns, the solution 

can be obtained in a least squares sense. Finally, an accurate 

matching is acquired by the solution. Thus, LSM in essence is 

one process of nonlinear regression. 

LSM has been widely researched and explored to enhance its 

adaptability and performance. For example, Bethmann and 

Luhmann (2011) employed the new projective transformation 

model in the functional model to improve the adaptability. In 

terms of the stochastic model, most researchers assumed that 

the measurements involved had equal precision and statistically 

independent, thus the weight matrix was a diagonal matrix. 

However, Wu et al. (2007) adapted the stochastic model by 

Blue estimator and the result showed that the new stochastic 

model improved matching accuracy by 0.2-0.4 pixel. 

Acting as a matching refinement method, LSM has been 

extensively applied in different types of photogrammetric 

software. For example, Zhang et al. (2011) put forward a three-

step scheme for keypoint matching on low-attitude images 

acquired by remotely piloted aerial vehicles. Pyramid-based 

LSM acted as the last step for refinement to improve the 

precision of keypoint matching. Ultimately a 3D city model was 

generated. Debella-Gilo and Kääb (2012) explored LSM’s 

application on surface displacement and deformation of mass 

movements, and showed that LSM could match the images and 

computed longitudinal strain rates, transverse strain rates and 

shear strain rates reliably and accurately. 

However, LSM is subject to the divergence problem, which 

means that the solution from LSM will not promise a reliable 

result under certain circumstances. According to Bethmann and 

Luhmann (2011), the five aspects will affect the solution of 

LSM, which are the texture, the reference windows, geometric 
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distortions the quality of initial values, and the functional 

model.  

This paper focuses on robust estimation to eliminate the 

influence of derivations from the LSM model. Two sources are 

presented. Firstly, the initial values of the unknowns are 

important since LSM is based on Taylor linearization. Keypoint 

matching is one method to obtain the initial values, but 

mismatches may happen. Therefore if the initial values of the 

unknowns are not close enough to the correct solution, the error 

caused by linearization will be large, resulting in a matching 

failure in the end. However, according to Baine and Rattan 

(2012), compared with their corresponding points in the 

reference image, if all the corresponding points in the querying 

image have a constant bias with the same magnitude and 

direction, the biases can be classified as systematic errors. Thus, 

this paper simulates this special case for LSM applications. 

Secondly, another type of deviation—Salt & Pepper noise—is 

considered in this paper. It models the malfunction of the 

imaging sensor, and simulates other common conditions such as 

poor illumination, signal transmission and high temperature. 

Since LSM already defines the model for the data, which means 

that the “normal” data pattern has been determined. If one set of 

data is “faraway” from the main part of the data, it can be 

identified as deviations. Generally, if the deviation is not large 

enough, there will be a tiny influence on the final result. 

However, if it is sizable, it can be identified as an outlier, 

causing masking and swamping effect, thus it will affect the 

final solution for linear or nonlinear estimations.  

Multiple outliers rather than one single outlier are in existence 

with a higher possibility, and it is well known that the 

estimation in LSM is essentially least squares estimation, which 

is highly sensitive to outliers. Even though certain data pre-

processing procedure has conducted outlier detection, it is much 

safer to involve outlier detection and exclusion in LSM. 

Statistically outlier detection in linear regression can be divided 

into two categories. One method is to detect and exclude the 

outliers based on some criterions such as Hadi potential (Hadi, 

1992), elliptic norm (Cook and Weisberg, 1982) and Atkinson’s 

distance (Anscombe, 1963). These methods are originally 

designed for detecting the single outlier. However, under certain 

circumstance, it can be used iteratively to remove multiple 

outliers. Another method is robust estimation which involves all 

the observations but reduce the influence of underlying outliers. 

In this paper, varieties of robust estimators, such as M estimator 

and S estimator, replace the traditional estimation method (least 

squares estimation) in LSM, and are compared in terms of the 

success rate, which is one measurement for all the simulated 

corresponding points. 

There have been extensive studies concerning the comparison 

on different robust estimators. Knight and Wang (2009) made 

the comparison of robust estimators on simulated GPS 

measurements in terms of the ability of outlier exclusion. They 

demonstrated that no method could correctly exclude all the 

outliers. For the single outlier, the highest performance is 

obtained by MM estimator and L1-norm. Ge et al (2013) made 

the comparison of 13 commonly used robust estimation 

methods in the GPS coordinate transformation of the four- and 

seven-parameter models. With the simulated experiment which 

controls the different coincident points and the number of gross 

errors, they showed that L1 and German-McClure method are 

relatively more efficient. 

To the best of our knowledge, the comparison of robust 

estimator under the situation of systematic errors and outliers 

for LSM has not been analysed. Therefore, it is the focus of this 

paper. The rest of this paper is organized as follows. The brief 

introduction of LSM is presented in Section 2, and the 

description of outlier sources is proposed in Section 3. 

Concerning this issue, we introduce robust estimators in Section 

4, and then details about the preparation of real data and 

simulation data are described in Section 5. Section 6 shows the 

experimental result and related analysis for comparison. Finally, 

the concluding remarks in Section 7 summarize the outcome of 

the experiment and describe possible directions of research of 

LSM in the future. 

2. LEAST SQUARES IMAGES MATCHING

Although LSM has been improved in terms of the functional 

model and the stochastic model for better performance and 

adaptability, the most common LSM will be briefly introduced 

in this section as the foundation for further discussions in this 

paper. 

As an area-based matching method, LSM firstly defines the 

relationship between two patches with the same size in two 

images. It takes advantage of the affine transformation model to 

describe the geometry and the linear model to describe the 

intensity variation as shown in (1). 

  (     ) 

        (                         ) 
(1) 

where     ,   = the intensity of the reference image and the 

querying image respectively. They all depend on the 

image coordinate   and    

      = the unknowns in the affine transformation 

model 

      = the unknowns in the linear model of intensity 

However, the solution cannot be acquired directly since it is a 

nonlinear function.  Therefore with the help of Taylor 

linearization, it is transformed to a linear one as illustrated in (2). 
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The intensity and coordinates of all corresponding pixels from 

the two patches are grouped together in the form of (2). Hence a 

design matrix and its corresponding observations are formed. 

Generally the number of observations exceeds the undetermined 

parameters. Thus, traditionally the unknowns can be solved by 

least squares estimation. Finally the iterative process is applied 

to acquire the final results. However, the iteration needs the 

terminating criterion, which is usually judged by correlation 

coefficient between the two patches, or the norm of the 

corrections is less than a certain small threshold. 

3. SOURCES OF DEVIATIONS IN LSM

Under the condition that the model determined by LSM is 

correct, the inconsistency or deviation with the model will cause 

unexpected outcomes. Provided that the data set, which includes 

both the creation of the design matrix and the observation 
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according to Taylor linearization based on the intensity in the 

patch, cannot appropriately fit the model determined by LSM, 

LSM will not converge to a correct solution, causing 

mismatches in the end.  

To figure out the reason why sometimes LSM work properly n 

some cases, to the best of our knowledge, the two kinds of 

sources, which are systematic errors and outliers, are presented 

and analysed in this section 

3.1   Systematic Errors (Initial Bias) 

As noted above, LSM is essentially based on Taylor 

linearization, which needs the appropriate estimation on the 

initial value of the solution. In other words, the initial values 

have to be close enough to the solution. One method to acquire 

the initial value of unknowns is keypoints matching and 

extraction such as SURF (Bay et al., 2006) and BRISK 

(Leutenegger et al., 2011). Therefore, to obtain the parameter in 

the affine transformation model, the tentative keypoints need to 

be matched as accurately as possible.  

However, for the practical situation such as the commonly used 

method RANSAC, when the keypoints are extracted and 

matched before going through RANSAC with the affine 

transformation model, they still have re-projection errors which 

are the basis for setting the threshold of inliers and outliers. 

Although the error can be controlled with a stricter threshold, it 

still faces the shortage of available corresponding keypoints in 

certain circumstances. For example, in the following stereo 

images pair A and B taken from UAV (Figure 1), SURF and 

BRISK points are extracted and matched, then filtered by 

RANSAC. If the threshold is set from 1 pixel to 6 pixels, the 

number of the available keypoints shows a decreasing trend as 

demonstrated in Figure 3. At the same time, it is an example of 

the existence of initial bias on image matching. 

(a) The image A (b) The image B 

Figure 1. The stereo images taken by a UAV 

Figure 2. The variation on the number of inliers with different 

thresholds 

If all the biases of the keypoints position have the same 

magnitude and direction, it denotes the systematic error, which 

is considered by the simulation in Section 5. 

3.2   Outliers (Imaging Sensor Malfunction) 

This relates to faults in the imaging sensor. A few pixels in the 

COMS or CCD sensor will not function properly, commonly 

resulting in dead or stuck pixels on the generated image. 

However, this rarely happens to the professional 

photogrammetric cameras since they are strictly tested and 

excluded by the manufacturer. Nevertheless, in terms of 

consumer-level cameras, a limited number of pixels (usually 3 

at most for the entire pixels of the sensor) are allowed to exist in 

by the manufacturer considering the cost. Thus, this will also 

lead to the error on the observation (intensity) in LSM though 

the chances are very low. These high-leverage pixels 

statistically can be identified as outliers. 

The imaging sensor malfunction can be modified as Salt & 

pepper noise, which is illustrated in (3). 

 (   )  {
     

 
 (   )

                      
                      

                       
(3) 

where        = the intensity of the noise-free image 

  = the intensity of the image with noises 

  = the percentage of affected pixels 

Usually the traditional method to deal with this kind of noise is 

to denoise the contaminated image with various filters such as 

Mean filter, Gaussian filter and so on (Bovik, 2005). However, 

in this paper, the influence of noise is reduced from the 

perspective of data processing and optimal estimation. Salt & 

Pepper noise acts as the noise model when there are faults in the 

imaging sensor, thus least squares estimation is heavily affected 

and cannot be optimal. Thus the robust estimators are 

introduced in the next section. 

4. ROBUST ESTIMATION

Since LSM possibly involve deviations from various sources as 

mentioned above, it is highly necessary to control the influence 

of deviations. In this section, we will briefly introduce four 

categories of robust estimation method: RANSAC-based 

method, M estimator (Reweighting-based method), S estimator 

and MM estimator.  

Two metrics that describe the robustness and precision of 

estimators are breakdown point and relative efficiency. Among 

these estimators, least median of squares (LMedS) estimator, S 

estimator and MM estimator have high breakdown point of 0.5, 

which means that they can tolerate up to 50% outliers. Besides, 

M estimator’s robustness is related to the selection of weight 

function, and least absolute deviations (LAD) has zero 

breakdown point. For relative efficiency, M and MM estimator 

have the higher efficiency of 95%, while LAD estimator, 

LMedS and S estimator have relative efficiency of 64%, 37% 

and 33% respectively.  

4.1   Ransac-based Methods 

LMedS estimator (Rousseeuw, 1984) minimizes the median of 

squared standardized residuals for the entire data set as shown 

in (4), while LAD estimator (Powell, 1984), which is also 

known as    norm as illustrated in (5), tries to minimize the 
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sum of absolute standardized residuals. There are a number of 

methods to find the minimum of the two objective functions. 

However, RANSAC is applied to research the entire data and 

obtain the solution. 

    (      (  )) (4) 

   ∑|  |

 

   

 (5) 

where    = the standardized residual 

An important parameter for RANSAC is the percentage of 

outliers or the inliers, which define the minimum number of 

iterations for the given success rate, which is shown in (6). In 

this paper, the percentage of inliers is assumed to be 0.5. 

Besides,   and   are set to be 0.95 and 8 respectively.  

  
   (   )

   (    )
(6) 

where    = the success rate of RANSAC 

  = the percentage of inliers 

  = the number of observations to solve the unknowns 

4.2 M Estimator (Reweighting-based Method) 

M estimator is another common method for robust estimation 

with the advantage of high efficiency. Instead of 

minimizing∑   
  

   , these reweighting-based M estimators tries 

to minimize ∑  (  )
 
   , where  (  ) is less increasing than the 

square function in least squares estimation, and it is a 

symmetric, positive-define function with only one unique 

minimum at zero. However, in practice, we make use of the 

weighting functions, which is the second derivative of  (  ). 

The detailed derivation can be found in the book of James 

(2005). The following equations are the weighting functions for 

standardized residuals. All   and   in the following equations 

represent the standardized residuals of the least squares solution 

and the turning value respectively from other searcher’s 

recommendation.  

(a) Huber Method (Huber, 1981) 
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(b) Andrews Method (Andrews, 1974) 
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 (c) Welsch Method (Holland and Welsch, 1977) 
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(d) Fair Method (William, 1983) 
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(e) Cauchy Method 
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4.3   S Estimator 

One characteristic of S estimator is high breakdown point. It 

tries to minimise the dispersion of the residuals. According to 

Rousseeuw and Leroy (1987), it tries to find  , which is the 

dispersion of residuals, as the solution of (12) 
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where   is a constant defined as      ( )  with   having a 

standard normal distribution, and satisfies 
 

 ( )
 

 

 
. Besides,   

is a appreciate function which is symmetric, continuously 

differentiable, strictly increasing on       and constant on 

    ). 

Since S estimator is computationally expensive, S estimator 

with Fast-S algorithm is applied in this paper. Its detailed 

process can be found in Salibian-Barrera and Yohai (2006). 

4.4   MM Estimator 

MM (Yohai, 1987) estimator makes use of S estimator to obtain 

the initial estimate, and the residuals acquired from S estimator 

can be used to determine the scale factor of M estimator. With 

the scale factor, an iteratively reweighted least squares 

procedure like that of M estimator is implemented to acquire the 

final solution. MM estimator has the property of high 

breakdown point and high efficiency. In this paper, to reduce 

the computational burden, Fast S (Salibian-Barrera and Yohai, 

2006) estimator is applied for the initial estimate.  

5. TEST DESIGN

In the following experiments, both simulation data and real data 

are tested to compare the robust estimators’ performance. To 

reduce the bias and ensure test adequacy, seven images 

including 3389 patch pairs are generated and tested. This 

section describes the generation and selection of simulation data 

and real data for LSM. 

5.1   Simulation Data Preparation 

The convergence of LSM is related to image texture, which is 

hard to be controlled. Therefore this paper presents a set of 

images for different environments to reduce the bias of the 

testing data. They are three images taken by a low altitude UAV, 

and one image of Mars surface coming from NASA's Mars 

Reconnaissance Orbiter (MRO), which are all listed 

sequentially in Figure 3.  

Since in the real practice, the exact positions of the 

corresponding points in the reference image and the querying 

image are never known, therefore the accuracy has to be 

evaluated with some indicator such as correlation coefficient 

based on the intensity of two patches. However, another way to 

evaluate the accuracy is to simulate corresponding points. 

Because the exact positions of the corresponding points in the 

querying image and the reference image as well as their 

geometry are known, the accuracy can be evaluated.  
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(a) UAV1 (b) UAV2 

(c) UAV3 (d) Mar 

Figure 3. The reference images for simulation 

To generate the simulated corresponding point in the reference 

image, four nets consisting of such points are created with 

different intervals. The numbers of simulated corresponding 

points for the four images are different since the images have 

different width and length except the image 2 and 3. The 

detailed information about the four images is shown in Table 1. 

 
UAV1 UAV2 UAV3 Mars 

No. of Points 450 609 609 486 

Resolution Ratio 4000×3000 4608×3456 4608×3456 1413×951 

Table 1. The characteristics of the simulated image pairs 

For the generation of “simulated” points in the querying image, 

a special affine transformation model following (13) is applied, 

which is  

(

      

      

   
)  (

   
    
   

) (13) 

Actually the simulation degenerates to a translation model that 

avoids scaling and rotational variation. Besides, there are no 

occlusions in the simulated querying image. It should be noted 

that this is often the case for the epipolar image, which is 

commonly used for stereo matching and digital elevation model 

(DSM) generation. Besides, the epipolar image can be generated 

from non-epipolar image by image rectification, such as the 

images from Middlebury Stereo Datasets. 

Figure 4. The image 1 (the reference image) and its simulated 

image (the querying image) 

Finally, four image pairs are produced from the four testing 

images. For instance, as show in the Figure 4, there is a 20-

pixel-wide strip in its simulated image, which means that all the 

simulated points are translated towards the right direction for 20 

pixels.  

It should be noted that a terminating criterion is applied in the 

iteration of LSM in the simulation experiment. That is when the 

parameters in the affine transformation model lead to the 

overflow from the boundary. This means that LSM has already 

failed. 

To evaluate the accuracy of the final result from LSM, the final 

corresponding coordinates of the simulated points are employed 

from LSM instead of checking correlation coefficient, since a 

higher correlation coefficient does not necessarily reflect the 

higher matching accuracy, therefore, according to the affine 

transformation model in (13), the final accuracy can be 

calculated by using (14).  

√(          )  (       ) (14) 

where   and   are the final coordinate of the simulated 

corresponding points on the reference image and querying 

image from LSM respectively. Subscript    and    represent 

reference images and querying images. If the value obtained 

from (14) is less than 0.001 pixel, it is counted as an accurate 

matching pair. Besides, we count the number of tentative 

matching pairs that pass the terminating criterion, if the total 

number of accurate matching pair, which is the number of 

matching pair that passed (14) divided by the total number of 

tentative matching pair, a ratio can be acquired. This means the 

success rate for LSM.  

5.2   Real Data Preparation 

Three image pairs from Middlebury Stereo Datasets (Scharstein 

and Szeliski, 2003) that involve occlusion and changes of view 

are selected for LSM, which are listed in Figure 5, and the 

details of image are shown in Table 2. 

(a) Baby (b) Aloe (c) Cloth 

Figure 5. The reference images from Middlebury 

Baby Aloe Cloth 

No. of Points 399 418 418 

Resolution Ratio 1110×1240 1110×1282 1110×1282 

Table 2. The characteristics of the real image pairs 

The corresponding point net is generated following the same 

procedure of simulation data preparation for each reference 

image. However, since each image pair has its ground truth 

disparity image with accuracy 1 pixel, the calculation of final 

accuracy is changed to (15) accordingly, which is: 

√(         )  (       ) (15) 

where   is the disparity of corresponding point pairs. In 

addition, since LSM can obtain sub-pixel level accuracy, the 

criterion for the success rate is changed to 1 pixel accordingly. 

Moreover, in the experiments on both simulation data and real 

data, the size of the patch is       pixels and the maximum 

number of iterations is 10. 

Images 

Trait 

Images 

Trait 
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6. TEST RESULT AND ANALYSIS

6.1   Test Result on Simulation Data and Analysis 

Four different noise levels, which are the percentages of 

malfunctioning pixels on the imaging sensor, are set at 0%, 

0.1%, 0.5% and 1% respectively on simulation data. Therefore, 

four scenarios are generated. Systematic error (SE) from 0.5 

pixel to 3 pixels are added on the simulated corresponding 

points in first scenario without noise, However, because of the 

noise and the higher criterion (0.001 pixel) for the success rate, 

OLS seldom work well, therefore the systematic error is set 

from 0.5 pixel to 1.5 pixels in the remaining ones, and more 

extreme conditions with a higher noise level are not tested. For 

a better illustration, all the simulated corresponding points from 

the four images are added together as a whole to evaluate the 

overall performance of various robust estimators under different 

noise levels. The results from different estimators are shown in 

Table 3-6.  

It can be illustrated from the results that with the increase of 

systematic errors, the success rates of all the estimation methods 

generally have decreasing trends, However, it is interesting to 

find that the success rate slightly increases when the systematic 

error changes from 0.5 pixel to 1 pixel on M estimator in Table 

6, which shows the robust estimators’ resistance for outliers  

When the systematic error is around 1 pixel without noise, OLS 

can maintain the success rate at nearly 100% for the simulation 

data. Nevertheless, when the systematic error increases to 3 

pixels, OLS can hardly keep up the success rate as it is heavily 

influenced by the deviation from the model of LSM. However, 

at the same time, other robust estimators show the robustness in 

dealing with the systematic error compared with OLS. When 

the noise is injected in the simulation data, OLS is further 

affected. Moreover, other robust estimators continue to show 

the resistance for outliers.  

The performance of four categories of robust estimators can 

also be demonstrated by the results. The performances of 

RANSAC-based methods are unstable and lower compared with 

other estimators. Especially when the systematic error is higher 

with noise level 0% and 0.1%, they even cannot compete with 

OLS. 

 
0. 5

pixel 

1 

pixel 

1.5 

pixels 

2 

pixels 

2.5 

pixels 

3 

pixels 

OLS 99.07% 99.44% 97.82% 76.93% 69.36% 50.00% 

LMedS 82.17% 75.63% 64.72% 33.66% 24.09% 5.34% 

LAD 71.03% 64.53% 53.25% 28.00% 18.66% 7.99% 

Huber 99.44% 99.81% 98.23% 80.41% 74.00% 55.16% 

Andrews 99.17% 99.40% 98.00% 80.18% 73.16% 54.97% 

Welsh 99.35% 99.68% 98.14% 80.78% 74.19% 56.26% 

Fair 99.40% 99.81% 98.37% 80.64% 74.00% 55.52% 

Cauthy 99.26% 99.77% 98.38% 80.64% 74.32% 56.27% 

FastS 95.41% 95.45% 92.48% 73.49% 63.00% 41.92% 

MM 98.84% 99.16% 97.54% 80.04% 73.49% 55.44% 

Table 3. The success rate on simulation data with noise level 0% 

0. 5 pixel 1 pixel 1.5 pixels 

OLS 76.97% 76.46% 74.88% 

LMedS 81.57% 75.49% 65.69% 

LAD 76.66% 70.01% 60.82% 

Huber 99.35% 98.05% 97.08% 

Andrews 99.12% 99.30% 97.96% 

Welsh 99.44% 99.30% 98.10% 

Fair 98.38% 95.87% 94.94% 

Cauthy 99.30% 99.49% 98.38% 

FastS 95.68% 95.13% 92.53% 

MM 98.93% 99.12% 97.63% 

Table 4. The success rate on simulation data with noise level 0.1% 

0.5 pixel 1 pixel 1.5 pixels 

OLS 27.21% 25.63% 24.98% 

LMedS 81.34% 75.30% 66.16% 

LAD 75.12% 67.73% 56.04% 

Huber 94.66% 86.54% 86.77% 

Andrews 97.96% 96.84% 95.73% 

Welsh 98.42% 96.05% 95.64% 

Fair 89.60% 77.76% 77.16% 

Cauthy 97.31% 94.29% 92.99% 

FastS 95.17% 95.59% 92.71% 

MM 98.93% 99.03% 97.45% 

Table 5. The success rate on simulation data with noise level 0.5% 

0.5 pixel 1 pixel 1.5 pixels 

OLS 7.61% 6.69% 6.31% 

LMedS 81.38% 74.56% 63.51% 

LAD 67.87% 57.29% 46.33% 

Huber 81.57% 66.48% 67.04% 

Andrews 94.71% 89.00% 89.83% 

Welsh 89.14% 80.55% 80.22% 

Fair 72.10% 56.04% 56.17% 

Cauthy 89.88% 81.75% 81.34% 

FastS 95.68% 94.71% 93.18% 

MM 98.75% 98.38% 96.84% 

Table 6. The success rate on simulation data with noise level 1%  

The result from Fast S estimator is also not stable. In the 

scenario without noise, it has a lower performance than OLS. 
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Method 

Method 

SE 

Method 

SE 

Method 

SE 
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However, when the noise is injected into the simulation data, 

Fast S estimator has a competitive performance with MM 

estimator especially when the noise level is 1%. RANSAC-

based methods and Fast S estimator’s performance is 

unsatisfactory in the scenario without noise. One possible 

reason is that they wrongly eliminate the influence of some 

good observations fitting the model.  

When the noise level is 0 and 0.1%, M estimators perform the 

best although their advantages are not obvious. However, when 

the noise level increases to 0.5% and 1%, MM estimator 

outperforms other estimators considerably. 

6.2   Test Result on Real Data and Analysis 

The test on the real data basically follows the same procedure of 

simulation data. However, the interval of systematic error is 

replaced by 0.4 pixel. The results from different estimators are 

shown in Table 7-10.  

The results of the real data basically show the consistent 

performances of robust estimators with that of simulation data, 

but they still have certain differences. 

1.2 

pixels 

1.6 

pixels 

2 

pixels 

2.4 

pixels 

2.8 

pixels 

3.2 

pixels 

OLS 89.72% 86.15% 77.57% 73.04% 64.29% 53.85% 

LMedS 86.32% 79.84% 71.01% 65.51% 52.47% 45.02% 

LAD 82.35% 76.84% 72.71% 62.43% 57.73% 49.23% 

Huber 89.80% 86.72% 80.08% 74.33% 64.78% 56.68% 

Andrews 90.61% 86.80% 79.68% 75.38% 64.86% 54.49% 

Welsh 90.45% 87.29% 79.92% 74.98% 65.75% 55.06% 

Fair 89.80% 86.80% 80.81% 74.90% 66.32% 56.84% 

Cauthy 90.45% 87.13% 79.84% 74.90% 65.43% 56.52% 

FastS 88.74% 84.45% 74.90% 71.09% 60.65% 51.09% 

MM 90.12% 86.56% 78.95% 74.74% 64.78% 54.49% 

Table 7. The success rate on real data with noise level 0% 

 
1.2 

pixels 

1.6 

pixels 

2 

pixels 

2.4 

pixels 

2.8 

pixels 

3.2 

pixels 

OLS 87.77% 84.29% 75.14% 70.28% 61.13% 51.01% 

LMedS 86.56% 80.49% 70.28% 63.48% 54.41% 44.94% 

LAD 82.67% 77.17% 72.47% 65.26% 57.89% 49.47% 

Huber 89.15% 85.18% 77.25% 71.74% 60.81% 53.68% 

Andrews 90.28% 86.40% 78.46% 74.09% 63.24% 53.52% 

Welsh 90.77% 86.48% 78.30% 73.60% 63.81% 53.93% 

Fair 89.72% 85.59% 78.70% 72.96% 63.81% 54.17% 

Cauthy 89.96% 86.56% 78.95% 73.60% 63.24% 55.06% 

FastS 88.83% 83.81% 74.49% 70.12% 59.43% 52.31% 

MM 89.47% 86.48% 78.87% 73.04% 62.91% 53.44% 

Table 8. The success rate on real data with noise level 0.1% 

1.2 

pixels 

1.6 

pixels 

2 

pixels 

2.4 

pixels 

2.8 

pixels 

3.2 

pixels 

OLS 83.89% 77.81% 67.13% 63.48% 51.98% 42.91% 

LMedS 86.80% 81.38% 70.85% 64.21% 54.09% 46.15% 

LAD 81.54% 75.95% 70.36% 63.16% 54.33% 46.96% 

Huber 86.96% 80.73% 70.12% 67.45% 55.79% 48.26% 

Andrews 87.94% 82.59% 73.12% 69.07% 59.43% 48.58% 

Welsh 88.99% 83.24% 72.87% 70.45% 59.68% 49.64% 

Fair 86.23% 79.76% 69.23% 65.99% 53.44% 47.45% 

Cauthy 87.29% 82.19% 72.87% 68.18% 57.89% 49.15% 

FastS 89.31% 83.48% 74.82% 70.20% 57.89% 50.93% 

MM 89.64% 86.15% 75.47% 70.61% 61.54% 51.66% 

Table 9. The success rate on real data with noise level 0.5% 

 
1.2 

pixels 

1.6 

pixels 

2 

pixels 

2.4 

pixels 

2.8 

pixels 

3.2 

pixels 

OLS 79.51% 72.06% 59.51% 55.47% 45.34% 36.68% 

LMedS 86.40% 80.97% 70.45% 63.40% 51.34% 43.81% 

LAD 79.60% 73.36% 69.15% 62.19% 51.09% 44.62% 

Huber 84.70% 77.81% 65.02% 62.67% 49.96% 42.83% 

Andrews 84.70% 77.81% 65.83% 64.86% 49.96% 41.94% 

Welsh 85.43% 77.33% 65.51% 65.10% 51.42% 43.16% 

Fair 81.38% 75.47% 62.75% 61.54% 49.88% 41.86% 

Cauthy 84.78% 77.65% 65.34% 63.48% 51.34% 43.08% 

FastS 89.15% 83.48% 72.06% 68.99% 57.81% 49.39% 

MM 89.31% 84.70% 73.12% 69.88% 56.84% 49.47% 

Table 10. The success rate on real data with noise level 1% 

Overall, the same estimators have lower success rates compared 

with the simulation data. This is because the real data includes 

the factors that are more likely to exist in the real practice such 

as the change of view and occlusion. 

The criterion of success rate for the real data is lower than that 

of simulation data as the accuracy of ground truth is 1 pixel, 

therefore when the systematic error is up to 3.2 pixels in the 

presence of noise, the success rate can be higher than that of the 

simulation data. 

RANSAC-based methods outperform OLS when the noise level 

is 0.5% and 1%. However, when the noise level is lower, their 

success rates are slightly lower than OLS and other estimators 

except in some cases when the noise level is 1%.  

In the noise-free condition, Fast S estimator’s performance is 

almost the same with that of OLS. With the increase of the 

noise, Fast S estimator begins to show its advantages especially 

when the noise level is 1%, which is competitive with MM 

estimator. Besides, the performances of M and MM estimator 

are similar with that on the simulation data. M still hold the best 

performance when the noise level is lower, and with the rise of 
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the noise level, MM perform the best among all the other 

estimators. 

7. CONCLUDING REMARKS

With both simulation data and real data, four categories of 

robust estimation method including RANSAC-based method, M 

estimator, S estimator and MM estimator are applied and 

compared as the estimation method in LSM. Therefore some 

concluding remarks can be made. Firstly, it is found that 

systematic error (initial bias) on LSM should be controlled 

within 1.5 pixels to maintain the high performance. Secondly M 

and MM estimators have the higher ability to eliminate the 

influence of deviations compared with other estimators, thus 

when both systematic error and image quality are unknown, the 

two robust estimators provide a comparative and safe alternative 

of OLS method in LSM.  

To linearize a nonlinear function for parameter estimation, the 

convergence also has the relationship with the function itself. 

Similarly, the model determined by LSM is a function about the 

intensity that depends on the image coordinate    and  , and 

other related coefficients, which directly comes from the texture 

of the image. However, if the nonlinearity of the model in LSM 

does not allow the linearization, LSM will not converge to a 

correct solution. But how nonlinearity of the function is linked 

with the image texture remains a problem that needs to be 

further explored.  
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