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ABSTRACT: 
 
Point clouds acquired by RGB-D camera-based indoor mobile mapping system suffer the problems of being noisy, exhibiting an 
uneven distribution, and incompleteness, which are the problems that introduce difficulties for point cloud planar surface segmentation. 
This paper presents a novel color-enhanced hybrid planar surface segmentation model for RGB-D camera-based indoor mobile 
mapping point clouds based on region growing method, and the model specially addresses the planar surface extraction task over point 
cloud according to the noisy and incomplete indoor mobile mapping point clouds. The proposed model combines the color moments 
features with the curvature feature to select the seed points better. Additionally, a more robust growing criteria based on the hybrid 
features is developed to avoid the generation of excessive over-segmentation debris. A segmentation evaluation process with a small 
set of labeled segmented data is used to determine the optimal hybrid weight. Several comparative experiments were conducted to 
evaluate the segmentation model, and the experimental results demonstrate the effectiveness and efficiency of the proposed hybrid 
segmentation method for indoor mobile mapping three-dimensional (3D) point cloud data. 
 
 

1. INTRODUCTION 

With the huge demands of emergency response simulation and 
training, cultural heritage protection, digital city, and other 
related applications, the indoor mobile mapping system (Pathak 
et al., 2009, Bouvrie et al., 2011), which integrated the mobile 
platform with positioning sensors, laser scanners, optical cameras 
and other sensors, provides a highly efficient way to obtain three-
dimensional (3D) point cloud data for an indoor environment. In 
particular, with the use of a Kinect sensor, a commercial RGB-D 
camera providing the depth image along with the RGB image, 
many indoor mobile mapping systems have been developed 
recently (Andreasson et al., 2012, Henry et al., 2012, Endres et 
al., 2012, Wen et al., 2014). 
 
For RGB-D camera-based indoor mobile mapping applications, 
there are two issues of concern: (1) unique structure 
characteristics of the indoor environment, such as close-range 
sensing, multi-occlusion, lack of absolute positioning, and 
uneven lighting, and (2) the limited performance of the 
commercial RGB-D camera, such as low resolution, limited 
working distance, and noisy data acquired (Khoshelham and 
Elberink, 2012). In general, the point cloud data acquired by the 
RGB-D camera-based indoor mobile mapping system suffers the 
problems of being noisy, exhibiting an uneven distribution, low 
resolution and incompleteness (Han et al., 2013). These data 
quality problems are much more obvious than the point cloud 
data acquired by a laser scanner. 
 
Planar surface extraction for point cloud (point cloud 
segmentation) separates the point cloud into surfaces and merges 
the surfaces with similar properties (such as color, geometry) into 
a single surface. Effective point cloud segmentation is a 
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prerequisite of feature extraction, object recognition and scene 
labeling, and the segments achieved from segmentation will be 
the smallest unit for feature extraction and object recognition.  
 
Several works have been performed related to laser scanner-
based point cloud segmentation (Liu and Xiong, 2008, Burunnabi 
et al., 2012, Golovinskiy and Funkhouser, 2009). Additionally, 
Euclidean clustering method segments the point cloud by the 
assumption of continuity of the segmented surface controlled by 
a setting threshold (Rusu, 2010). However, the scattered over-
segmentation surfaces are obtained because only the continuity 
of the point is considered and none of the features are considered 
along with inflexible control over the setting threshold of 
continuity of the points. Ioannou et al. (2012) proposed a 
difference-of-normals method to segment the large scale 
unorganized point cloud; the method has high computation 
efficiency and is also multi-scale adaptive. However, the 
difference-of-normals method can only segment a limited planar 
surface, and there are many planar surfaces that exist in indoor 
scenes. T. Rabbani et al. (2006) proposed a region growth 
method to segment the unorganized point cloud based on the 
similarity of the curvature and the continuity of the local points. 
Incorrect selection of the curvature and angle thresholds will lead 
to excessive under-segmentation or over-segmentation, and also 
the method is sensitive to the seed point selection. In particular, 
the principal curvatures or continuity-based segmentation 
methods are not robust enough when the point cloud is unevenly 
distributed and noisy.  
 
Considering the low-quality problems of the RGB-D camera-
based indoor mobile mapping point cloud, the above point cloud 
segmentation methods cannot solve the segmentation task well. 
As a calibrated sensor, the RGB-D camera provides the RGB 
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information along with depth information for each point. It is 
possible to use color information to improve the robustness of the 
segmentation performance.  
 
In this paper, a color-enhanced hybrid segmentation model based 
on the region growing method is proposed for RGB-D camera-
based indoor mobile mapping point cloud planar surface 
segmentation, and the model is more robust to the clustered, 
noisy and incomplete point cloud data compared to the traditional 
point cloud segmentation method. The model combines the 
color-based information with the curvature-based information for 
the seed point selection in the region growing method. A hybrid 
growing criteria is also developed with consideration of the color 
similarity, curvature similarity and point continuity. The hybrid 
weight is determined by a segmentation evaluation processing 
based on a small set of labeled segmented data. The segmentation 
results are given based on the hybrid weight effect on the 
segmentation performance comparison between the 
segmentation methods. 
 

2. DATA ACQUISITION AND PRE-PROCESSING 

The indoor mobile mapping system is with a weight of 22.5 kg 
and with a size of 46 cm × 50 cm × 82 cm (length × width × 
height). The basic mobile platform is four-wheeled Pioneer3-AT 
robot. The system is equipped with a RGB-D camera (Kinect 
sensor, 640 × 480 pixels, and 57o × 43o field-of-view for 3D range 
data), and the camera acquires 3D range data under various 
illumination situations because it illuminates the object based on 
infrared radiation. A 2D laser scanner (SICK LMS100), which 
covers a scanning area of 270o, is mounted on the platform to 
achieve 2D scan profile for 2D map building. The mapping 
system is capable of operating 4 hours with three full charged 
batteries (12 V lead acid, 7.2 AH), and its core system is an Intel-
i5-2.53 GHz processor and 2 GB RAM with a Linux operating 
system (As shown in figure 1).      
 

 

Figure 1. Mobile mapping system design 
 
Since the point cloud data acquired by the RGB-D camera-based 
system are limited (Han et al., 2013), a pre-processing process is 
needed (shown in figure 2). The point cloud pre-processing 
method used in this paper include: (1) down-sampling for 
acquiring point clouds with consistent resolution, (2) de-noising 
using Gaussian filtering (Liu et al., 2012), (3) point cloud data 
interpolation using the moving least squares (MLS) smoothing. 
We determined that with the down-sampling, the point cloud 
density decreased dramatically but are accompanied by low 
resolution and an uneven distribution. Finally, the points are 
evenly distributed after MLS smoothing. 
 

Down-sampling DenoisingOriginal point cloud

(c)

(b) 4632879 670094 663390 678545

MLS smoothing

(a)

 
Figure 2. Point cloud data pre-processing. (a) Original Point 
cloud. (b) Points number. (c) Close look of the point cloud 

 
3. COLOR-ENHANCED HYBRID SEGMENTATION 

MODEL 

For the original region growing segmentation algorithm, only the 
curvature information is used for seed selection. With the quality 
problem of the RGB-D camera-based indoor mobile mapping 
point clouds data, a more robust seed selection method and 
growing criteria are required. We combine the color moment 
features with the curvature feature for the seed point selection 
and growing criteria, and use a segmentation evaluation process 
to optimize the hybrid weight. 
 

3.1 Color-enhanced Seed Point Selection 

For each point ݌௜ in the point cloud, select k neighbor points of 
radius ݎ and calculate the covariance matrix as: 
 

Cov ൌ
1
݇
෍ሺ݌௜ െ ௜݌ሻሺ݌ െ ሻ୘݌
௞

௜ୀଵ

 

Cov ∙ Ԧ௝ݒ ൌ ௝߬ ∙ ݆			,Ԧ௝ݒ ∈ ሼ0,1,2ሽ                     (1) 
 
where     ݌ = centroid position of the k neighbor points of ݌௜ 

௝߬ = the ݆௧௛ feature value in the covariance matrix 
 Ԧ௝ = the ݆௧௛feature vector in the covariance matrixݒ

 
The smallest component of ݒԦ௝ refers to the normal vector of ݌௜. 
The curvature of ݌௜ is expressed as: 
 

௣௜ܥ ൌ
ఛబ

ఛభାఛమାఛయ
                                 (2) 

 
The first-, second- and third-order moments of the color feature 
of ݌௜ in the radius of r is calculated as: 
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ଵ
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௞
௡ୀଵ ቁ

భ
య , ݄ܿ ൌ 1,2,3       (5) 

 
where    	ߤ௜	ሺ݄ܿሻ = the first-order moment of the hue, saturation 

and illumination components of the HSV color 
space of ݌௜ 

௜ሺ݄ܿሻߪ  = the second-order moment of the hue, 
saturation and illumination components of 
the HSV color space of ݌௜ 

௜ሺ݄ܿሻߛ   = the third-order moment of the hue, 
saturation and illumination components of 
the HSV color space of ݌௜ 

௜݂௡  = one of the color channels of the nth neighbor 
point of ݌௜ 
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When the features of the normal vector, curvature and color 
moments for each point are computed, the seed point for region 
growing is selected based on two principles: (1) the color-stable 
region and (2) the geometry-stable region. As shown in figure 3, 
the steadiness of color feature is represented by the second-order 
moment ( ௜ߪ∑ ). The steadiness of the geometric shape is 
represented by the curvature (ܥ௣௜ ). The unstable value of the 
candidate seed point considering the color and curvature 
information, ߱௜, is represented as: 
 

߱௜ ൌ ߙ ∙
∑ ఙ೔ሺ௖௛ሻ
య
೎೓సభ

ଷ
൅ ሺ1 െ ሻߙ ∙  ௣௜                  (6)ܥ

 
where        ߙ = hybrid weight of the segmentation model 

 ௣௜ = curvature of the pointܥ
∑ ௜ሺ݄ܿሻߪ
ଷ
௖௛ୀଵ  = second-order moment of the color 

feature in HSV color space 
 
A smaller unstable value of the point indicates improved stability 
of the point in the range. Here, the point with the minimum 
unstable value in the neighborhood is selected as the initial seed 
point of region growing. 
 

      (a)                                               (b)            

         (c)                                            (d)     
 
Figure 3. Example of the point cloud curvature and the second-
order moments of the color map color. (a) Original point cloud. 
(b) Corresponding curvature distribution. (c)The second-order 
moment of the color feature (Hue element). (d) Hybrid result. 

 
Example of the point cloud curvature and the second-order 
moments of the color map color is given in figure 3. The red 
portion represents the more stable points in the region, while the 
blue portion represents the more unstable points in the region. 
The seed point selected in the original curvature-based region 
growing method (figure 3(b)) is improved by the color moment-
based feature (figure 3(c), and the hybrid of the color and 
curvature features helps in the selection of a more stable seed 
point (figure 3(d)). 
 

3.2 Growing Criteria 

In the process of region growing, the local color features (color 
moments) and local structural features (normal vectors) are used 
as a basis for growth. For RGB-D camera acquired point cloud 
data, the shape and color information of an object is non-uniform, 
noisy and incomplete; as a result, adding multiple similarity 
measurements of features improves the segmentation algorithm 
by decreasing the computation complexity and adding robustness. 
 

Suppose ݌ଵሺݔଵ, ,ଵݕ ,ଶݔଶሺ݌	and	ଵሻݖ ,ଶݕ ଶሻݖ  are the two points in 
the point cloud, the proposed method merges the two points into 
a segment by determining the similarity of the two points, 
ܵሺ݌ଵ,  :ଶሻ, as݌

ܵሺ݌ଵ, ଶሻ݌ ൌ ൝
1，when	݀௘ ൏ ଵ，݀௖ߝ ൏ ݀௩	or	ଵߤ ൏ ଵߠ
		1，when	݀௘ ൏ ଵ，݀௖ߝ ൏ ݀௩	and	ଶߤ ൏ ଶߠ

0，otherwise																																								
  (7) 

 

݀௘ ൌ ඥ|݌ଵሬሬሬሬԦ
	 െ ଶ݌

	ሬሬሬሬԦ|ଶ                           (8) 
 

dୡ ൌ ඥ|݌ଵሬሬሬሬԦሺߤ௛௦௩, ,௛௦௩ߪ 	௛௦௩ሻߛ െ ,௛௦௩ߤଶሬሬሬሬԦሺ݌ ,௛௦௩ߪ  |ଶ   (9)	௛௦௩ሻߛ
 

	݀௩ ൌ ݊ଵሬሬሬሬԦ ∙ ݊ଶሬሬሬሬԦ                             (10) 
 
where      ݀௘ = Euclidean distance of the coordination between 

the two points 
݀௖ = Euclidean distance of the color moment between 

the two points 
݀௩ = normal vector angel between the two points 
݊ଵ = normal vector of point ݌ଵ 
݊ଶ = normal vector of point ݌ଶ 
 ଵ = a setting angel valueߠ
 ଶ = a setting angel valueߠ
 

The similarity value between the two points is of value 1 when 
they are merged into a segment, while the similarity value is 0 
when the two points go to two segments. The two points in a point 
cloud can be determined to be connected by: ݀௘ ൏  ଵߝ ଵ, whereߝ
is a setting value for the minimum distance between the two 
points. The two points are considered to be in one segment for 
three cases: (1) 	݌ଵ	and	݌ଶ  are two connected points, and the 
Euclidean distance of the color moment between the two points 
is smaller than a setting value ߤଵ ଶ݌	and	ଵ݌	 (2) ;  are the two 
connected points, and the normal vector angle between the two 
points is smaller than a setting value ߠଵ; (3) 	݌ଵ	and	݌ଶ are the 
two connected points, the angle of the normal vector between the 
two points is smaller than a setting value ߠଶ, and the Euclidean 
distance of the color moment between the two points is smaller 
than a setting value ߤଶ (ߠଶ ≫ ଶߤ，ଵߠ ≫  .(ଵߤ
 

3.3 Hybrid Weight Optimization 

The hybrid weight in (6) presents the importance weight that the 
color or curvature features are assigned during the seed selection. 
In the paper, a segmentation evaluation process based on a set of 
labeled segmented data is used to obtain the optimal hybrid 
weight.  
 
For RGB-D camera-based indoor point cloud data, five 
segmentation evaluation states, which are correct segmentation, 
over-segmentation, under-segmentation, mis-segmentation, 
noisy segmentation, are used to determine the segmentation 
performance (Hoover and Jean-Baptiste, 1996). Based on the 
above definition, the first four segmentation states ݈ܽݒܧሺܵ݁݃௜ሻ 
for each segment are represented as: 
 

ሺܵ݁݃௜ሻ݈ܽݒܧ ൌ

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
߬，Correctۓ ൏

ௌ௘௚೔∩ெ௧೔
ீ்೔

	and		߬ ൏
ௌ௘௚೔∩ெ௧೔
ௌ௘௚೔

					
													

False，
ௌ௘௚೔∩ெ௧೔
ௌ௘௚೔

൑ 	߬																																									
	

Over，
ௌ௘௚೔∩ெ௧೔

ீ்೔
൑ ߬			and	߬ ൏

ௌ௘௚೔∩ெ௧೔
ௌ௘௚೔

									
											

Under，
ௌ௘௚೔∩ெ௧೔
ௌ௘௚೔

൑ 	߬			and	߬ ൏
ௌ௘௚೔∩ெ௧೔

ெ்೔
					

												

(11) 
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where      ߬∈ (0,1) = evaluation threshold value 
ܵ݁݃௜ = segments obtained by the proposed method  
ܯ ௜ܶ = corresponding manually segmented results of 

ܵ݁݃௜ 
 
A higher ߬  value denoting a more strict evaluation. The 
segmentation result is exactly the same as the manually 
segmented result when ߬ ൌ 1. The four states (Correct, False, 
Over, and Under) represent the correct segmentation, mis-
segmentation, over-segmentation, and under-segmentation 
results, respectively. Except the above four states of 
segmentation, the unlabeled point cloud segments after 
segmentation are classified as noisy segmentation.  
 
The over-segmentation and correct segmentation states of a point 
cloud are helpful for semantic labeling. Obtaining segments that 
are too dense usually results in segments with meaningless 
content, thereby ultimately leading to low labeling accuracy. The 
point cloud segmentation errors due to under-segmentation and 
mis-segmentation indicate that it will be unable to distinguish 
between two different objects in the underlying semantics.  
 
Suppose there are ݊ segments after segmentation; an evaluation 
score S is defined as: 
 

ܵ ൌ ∑ ௜݁ݎ݋ܿݏ
௡
௜ୀଵ                                    (12) 

 
 

௜݁ݎ݋ܿݏ ൌ

ە
ۖ
۔

ۖ
ሺܵ݁݃୧ሻ݈ܽݒܧ	if，1ۓ ൌ Correct 	
െ1，	if	݈ܽݒܧሺܵ݁݃௜ሻ ൌ False 	
ଵ

௡
，	if	݈ܽݒܧሺܵ݁݃௜ሻ ൌ Over 	

െ1， 	if	݈ܽݒܧሺܵ݁݃௜ሻ ൌ Under

         (13) 

 
The optimal hybrid weight ߙ௢ is determined by the maximum ܵ 
value as: 
 

௢ߙ ൌ argmaxሺܵሻ                             (14) 
 

 
4. EXPERIMENTS AND RESULTS 

4.1 Effects of Hybrid Weight on Segmentation 

The hybrid weight ߙ in the segmentation model determines the 
proportion of color or curvature information used for the seed 
point selection. To test the hybrid weight effects on segmentation, 
we set ߙ ൌ 0, 0.1, 0.2, … 1.0, the color moment threshold value 
ଵߤ ൌ 50.0 , and the normal vector threshold value ߠଵ ൌ 0.06 . 
Then, we compared the segmentation performance under these 
conditions. The subsequent segmentation results of the scene 
using the hybrid model are shown in figure 4.  
 
As shown in figure 4, a scene of a relatively complex indoor 
environment is used to test the segmentation performance. The 
manual segmentation result is used as the ground-truth. Blocks 
with different colors represent different planar surfaces extracted. 
When ߙ ൌ 1, the seed selection for region growing is totally 
dependent on the curvature feature, which mainly results in an 
over-segmented situation. The seed selection for region growing 
is totally dependent on color moment feature when ߙ ൌ 0, which 
primarily results in an under-segmented situation. The 
segmentation result is best when ߙ ൌ 0.7. 
 

RGB Point cloud Ground-truth α=0

α=1α= 0.7α= 0.3

 
Figure 4.  Comparison of the segmentation results with different 

weight values 
 
To better evaluate the proposed method, we also use the Cornell-
RGBD-Database (Cornell database) (Anand et al., 2013) as the 
data input. This database contains two types of scenarios (Office 
or Home) of 52 labels for over 150 frames of point cloud data. 
Three scenes from the Cornell database are selected to test the 
effects that hybrid weight value has on the segmentation results 
(figure 5).  
 
The Original RGBD point cloud data are shown in the first row, 
and the manually segmented results (as ground-truth) are 
presented in the second row in figure 5. With different hybrid 
weight (ߙ) used, the segmentation results purely based on the 
curvature feature (ߙ ൌ 1) and the color moment feature (ߙ ൌ 0) 
are not as good as the segmentation result when the hybrid weight 
is 0.7. 
 

RGB point cloud Ground-truth α=0

α=1α= 0.7α= 0.3

 
(a) 

 

RGB point cloud Ground-truth α=0

α=1α= 0.7α= 0.3

 
(b) 
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RGB point cloud Ground-truth α=0

α=1α= 0.7α= 0.3

 
(c) 

 
Figure 5.  Comparison of the segmentation results along with 

RGB point cloud and ground-truth regarding to different weight 
values. (a) Scene 1. (b) Scene 2. (c) Scene 3. 

 
For scene 3, the number of segments for different segmentation 
states is shown in figure 6. An excessively small hybrid weight 
is found to result in an excessive amount of under-segments. 
Since the segmentation results are used for further scene 
understanding and recognition, over-segments are needed. 
Therefore, a larger hybrid weight is recommended for the 
proposed segmentation model.  
 

 
 

Figure 6. Segmentation results with different combination 
weighting values for scene 3. 

 
4.2 Segmentation Performance Comparison 

To compare the planar surface segmentation performance with 
other popular point clouds segmentation methods, we compared 
our method based on the Cornell database with three other 
methods: (1) the Euclidean clustering segmentation method, (2) 
the difference-of-normals method and, (3) the classical 
curvature-based region growing method.  
 
The same scenes (scene 1, scene 2 and scene 3) in figure 5 are 
used to illustrate the segmentation results based on the four 
above-mentioned methods. The comparison of the segmentation 
results for different segmentation methods is given in figure 7. 
 
Blocks with different colors represent different segments. The 
results from the difference-of-normals segmentation method 
achieved over-segmented elements, and most of the planar 
elements are also filtered (figure 7(a)). The Euclidean clustering 
method is not robust enough for incomplete and noisy data; for 
example, there are too many over-segments on the wall and 
screen area (figure 7(b)). The region growing method only 
extracts the planar elements and omits some of the feature details 
(figure 7(c)). The proposed hybrid segmentation method (ߙ ൌ
0.7) provides the best segmentation results relatively regarding 
to the completeness and quantity of the planar elements extracted 
(figure 7(d)). 

Scene 1 Scene 2 Scene 3

(b)

(c)

(d)

(a)

 
Figure 7. Comparison of the segmentation results for different 

segmentation methods. (a) Segmentation results by the 
difference-of-normals method. (b) Segmentation results by the 
Euclidean clustering method. (c) Segmentation results by the 

region growing method. (d) Segmentation results by the 
proposed hybrid model with ߙ ൌ 0.7. 

 
4.3 Evaluation of the Robustness to Noise 

Because the RGB-D camera acquired indoor point cloud data are 
noisy and incomplete, the excessively small segments obtained 
after segmentation will be assigned as unlabeled noisy 
segmentation. We evaluated the robustness to the noisy data for 
the different segmentation methods by a noisy segmentation ratio. 
The noisy segmentation ratio is defined as: 
 

௡௢௜௦௘ߴ ൌ
∑ௌ௘௚ೠ೙೗ೌ್೐೗
ୱ୧୸ୣሺ௉ሻ

                              (12) 

 
where ݁ݖ݅ݏሺܲሻ  represents the point cloud number, and 
	ܵ݁݃௨௡௟௔௕௘௟  represents the unlabeled point. A smaller noisy 
segmentation ratio value means the method is more robust to the 
noisy and incomplete data. 10 different scenes are tested to 
calculate the noisy segmentation ratio using the above four 
segmentation methods (figure 8). 
 

 
 

Figure 8. Unlabeled noisy segmentation ratio for ten indoor 
scenes processed by four segmentation methods. 

 
As we can see from Figure 8, the proposed hybrid method and 
the difference-of-normals method have the smallest noisy 
segmentation ratio considering all ten scenes in general, followed 
by Euclidean clustering and region growing method. The results 
indicate that the proposed hybrid method and the difference-of-
normals method perform better in robustness to incomplete data 
and noisy data and that these two methods are more suitable to 
address the RGB-D camera acquired indoor point cloud data. In 
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particular, for scenes 4 and 5, all four of the methods exhibit a 
relatively high noisy segmentation ratio because of the more 
incomplete and noisy data due to occlusion and varied lighting. 
 

4.4 Efficiency Evaluation 

For the above four segmentation methods, we also tested the 
computational efficiency based on 25 indoor scenes. The 
comparison results are shown in figure 9.  
 

 
 

Figure 9. Time consumption comparison using four 
segmentation methods to segment 25 scenes. 

 
The difference-of-normals method required more time than the 
other methods.  For the same data, the region growing method 
has the smallest computation complexity of the methods 
considered, the Euclidean clustering method required moderate 
time, followed by the proposed hybrid method. The 
computational time costing among the proposed hybrid method, 
Euclidean clustering method and region growing is comparable. 
It needs to be noticed that the proposed hybrid method has an 
additional step of calculating color moments related to seed point 
selection when compares to traditional region growing method. 
 
The difference-of-normals method can be concluded to be 
suitable for large scale scene segmentation, and it is robust to 
noisy data, with a low mis-segmentation rate but with high 
computational complexity. However, indoor environment 
contains many structured artifacts (such as screen, books, chassis, 
etc.), which will be ignored by the difference-of-normals method. 
The Euclidean clustering method has moderate computation 
complexity, and it is less error prone when dealing with 
clustering and messy indoor scene segmentation. The region 
growing method is of low computational complexity, but its 
output is primarily over-segmented planar surfaces and also it 
exhibits low robustness to noisy and incomplete data. The hybrid 
model works well for clustering and incomplete data and has 
acceptable computational complexity. 
 

5. CONCLUSIONS 

In this paper, a color-enhanced hybrid model of planar surface 
segmentation for RGB-D camera-based indoor mobile mapping 
point cloud data was introduced. The hybrid segmentation model 
is especially effective in dealing with the point cloud data with 
noise, exhibiting an uneven distribution, of low resolution and of 
incomplete nature, which caused are the quality problems that are 
raised by the special structure and lighting situation of the indoor 
environment, as well as the limitations of the RGB-D camera.  
 
The proposed hybrid model makes full use of the color moment 
features and the curvature feature of the point cloud to select the 
seed points by adjusting the hybrid weight. An evaluation process 
using a small set of labeled segmented data is conducted to obtain 
the optimal hybrid weight. A growing criteria with hybrid 
features of the color moment and the normal vector helps to avoid 
excessive over-segmentation according to clustering and a messy 
indoor scene. The experimental results demonstrated the ability 

of the proposed hybrid model to segment the planar surface for 
clustering, noisy and incomplete indoor point cloud data with a 
computational complexity that is accredited compared with three 
popular segmentation methods, and the model was demonstrated 
to be robust and efficient in RGB-D based indoor point cloud data 
segmentation. 
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