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ABSTRACT:

In most Photogrammetry and computer vision tasks, finding the corresponding points among images is required. Among many, the
Lucas-Kanade optical flow estimation has been employed for tracking interest points as well as motion vector field estimation. This
paper uses the IMU measurements to reconstruct the epipolar geometry and it integrates the epipolar geometry constraint with the
brightness constancy assumption in the Lucas-Kanade method. The proposed method has been tested using the KITTI dataset. The
results show the improvement in motion vector field estimation in comparison to the Lucas-Kanade optical flow estimation. The same
approach has been used in the KLT tracker and it has been shown that using epipolar geometry constraint can improve the KLT tracker.
It is recommended that the epipolar geometry constraint is used in advanced variational optical flow estimation methods.

1. INTRODUCTION

Without the loss of generality, the motion vector field computed
by most optical flow estimation methods provides dense pixel
correspondences between consecutive images, which is required
in applications such as 3D recovery, activity analysis, image-
based rendering and modeling (Szeliski, n.d.). It is also a pre-
processing step for the higher level missions like scene under-
standing. Despite its common applicability, precise optical flow
estimation remains an unresolved problem in computer vision.
While advances have been made, unaccounted variations in the
scene content and depth discontinuities pose challenges to opti-
cal flow estimation.

Optical flow was introduced in the 1980s, and is based on the
brightness constancy assumption between matching pixels in con-
secutive images. However, the brightness constancy does not pro-
vide adequate constraint to estimate the flow vector and spatial
smoothness constraint has been utilized by Lucas and Kanade
(Lucas and Kanade, 1981) and Horn and Schunck (Horn and
Schunck, 1981) to overcome this limitation. The spatial smooth-
ness constraint, however, blurs the object boundaries in the es-
timation motion vector field. Researchers have attempted to ad-
dress this shortcoming by extending the Horn and Schuck’s ap-
proach. Brox et al. (Brox et al., 2004) introduced a gradient
constancy term, a spatio-temporal smoothness term in the cost
function that was in the form of L1 norm. In a follow up study,
the authors employed a descriptor matching strategy to estimate
the optical flow in the case of large displacements (Brox and Ma-
lik, 2011). While improves the results, such temporal smoothness
heuristics do not truly reflect the changes in the optical flow ap-
propriately. Total variation has been employed to estimate the
optical flow estimation (Zach et al., 2007, Javier Sanchez1 et al.,
2013).

Due to the complex camera and object motions, modeling tempo-
ral changes in optical flow using only the image information is a
difficult task. In contrast to extensive studies on image based esti-
mation of the optical flow, few studies has been conducted on us-
ing other complimentary sensors to improve the results. Hwangbo
et al. 2008 have used homography transformation based on the

rotation measurements collected by gyroscope and approximated
the neighborhood of the corresponding pixels. They showed that
the KLT tracker initialized by rotational homography works bet-
ter in handling the fast motion and rotation. Wedel et al. (Wedel
and Cremers, 2011) have combined the epipolar geometry and
optical flow to estimate the position, velocity and orientation of
the moving objects in the scene. IMU measurements has been
employed to cancel out the camera motion and recover the pure
object motion. Slesareva et al. (Slesareva et al., 2005) used the
epipolar geometry constraint as a hard constraint and Valgaerts et
al. (Valgaerts et al., 2008) has minimized the epipolar geometry
constraint associated with the brightness constancy assumption.

In another study, the sensed gravity in IMU has been used as
the vertical reference to find the horizon line and vertical van-
ishing point in the images (Corke et al., 2007). The integration
of the IMU measurements and the estimated pose using image
sequences has been extensively studied (Jones and Soatto, 2010,
Kelly and Sukhatme, 2011, Li and Mourikis, 2013). Leung and
Medioni (Leung and Medioni, 2014) have used the IMU mea-
surements to detect the ground plane and use the points on the
ground plane to estimation the pose of the camera. The IMU
measurements has been used to compensate the camera motion
blur (Joshi et al., 2010).

In this paper, the motion vector field is estimated using epipolar
geometry constraint. The epipolar geometry based on the IMU
measurements are used to formulate the optical flow between
consecutive images with respect to both rotation and translation
of the camera. The KITTI dataset is employed to evaluate the
proposed method and the results are compared to a brightness
constancy based the Lucas-Kanade optical flow estimation. The
results show significant improvement in optical flow estimation
using the proposed approach.

In the next section, the brightness constancy based optical flow
estimation and the epipolar geometry is briefly explained. An ap-
proach has been proposed in section 3 which solve the motion
vector field using brightness constancy and epipolar geometry.
Section 4 explains evaluation of the proposed approach and pro-
vide the results for the KITTI dataset. In final section, it is drawn
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conclusion for this paper.

2. BACKGROUND

In spite of great improvements in optical flow estimation over the
last two decades, exploiting complimentary sensory data for op-
tical flow estimation has not extensively been studied. Hence, in
order to facilitate the proposed discussion we first introduce some
basic concepts of optical flow and IMU measurements, which
will be followed by a discussion on how the fusion of the two
sensory data works to aid optical flow estimation.

2.1 brightness constancy assumption

Optical flow estimation is based on the brightness (or color) con-
stancy assumption. It means that two corresponding pixels in
consecutive images at times t and t + 1 should have the same
brightness:

I(x, y, t) = I(x+ u, y + v, t+ 1). (1)

where x, y = pixel coordinates
u, v = motion vector
I(x, y, t) = brightness of the pixel which is a
non linear function of pixel coordinates and time

Equation (1) expresses a non-linear functional which can be lin-
earized using Taylor series expansion

Ixu+ Iyv + It = 0. (2)

where Ix = ∂I(x+u,y+v,t+1)
∂x

Iy = ∂I(x+u,y+v,t+1)
∂y

It = ∂I(x+u,y+v,t+1)
∂t

The brightness constancy, however, provides a single constraint
for estimation of motion vector which has two unknowns. A typi-
cal constraint used many is to assume that the neighboring pixels
share the same motion, such that an overdetermined system of
equations can estimate the motion parameters. This effectiveness
comes at the expense of blurring the object and depth boundaries
and creates incorrect results. Assuming that the neighboring pix-
els move together, the motion vector can be estimated

l = Au. (3)

where A =


Ix(1) Iy(1)
Ix(2) Iy(2)

...
...

Ix(N) Iy(N)


u =

[
u
v

]

l =


It(1)
It(2)

...
It(N)


the numbers in parenthesis is the number of each
pixel in a neighborhood

Equation (3) can be estimated using least squares

u = (N)−1c. (4)

where N = AT A
c = AT l

The covariance matrix of the estimation motion vector field is

Σu = σ2
0N−1 (5)

where σ2
0 = reference variance

Σu = the covariance matrix of the estimated
motion vector field

The Lucas-Kanade optical flow can be improved if a filter is used
in the neighborhood. First, the gaussian filter which the central
pixel of the neighborhood has more contribution in the optical
flow estimation improves the motion vector field estimation. Sec-
ond, the anisotropic filter which suppresses the contribution of the
pixels with different brightness values and therefore, the similar
pixels have more impact on the motion vector field estimation.
The bilateral filter, which has been used in this paper, combines
the gaussian filer and anisotropic filter

w(i, j, k, l) = e
(− (i−k)2+(j−l)2

2σ2
d

)− ||I(i,j)−I(k,l)||
2σ2
r

)

. (6)

where i, j = coordinates of the central pixel in the
neghborhood
j, k = coordinates of the each pixel in the
neighborhood
I(i, j)− I(k, l) = the brightness difference of the
central pixel and its neighborhood pixel
σd = the standard deviation of the gaussian filter
σr = the standard deviation of the anisotropic filter

2.2 Epipolar geometry constraint

If the translation and rotation of the camera are known from ex-
ternal sensors, the geometry of the camera exposure stations can
be constructed. This dictates a constraint that the corresponding
pixel of a pixel in the first image lies on a line in the second im-
age, known as epiline. This line is

l
′
= Fx (7)

where l
′

= a vector which indicates the epiline in the second
image
x = the inhomogeneous pixel coordinates in the first
image
F = the 3×3 matrix known as fundamental matrix

The corresponding pixel lies on the epiline in the second image
and therefore

x
′T

l
′
= x

′T
Fx = 0 (8)
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where x
′

= the inhomogeneous coordinates of the
corresponding pixel of the first image in the
second image

This equation is known as epipolar geometry constraint. Replac-
ing x

′
= [x + u, y + v, 1]T into equation (8), it can be written

as

u(xf11 +yf12 +f13)+v(xf21 +yf22 +f23)+xT Fx = 0 (9)

where fij = the element of the fundamental matrix
at row i and column j

The fundamental matrix indicates the geometry of the camera ex-
posure stations. It is a rank deficient 3× 3 matrix

F = K−T [t]×RK−1 (10)

where K = the calibration matrix of the camera
R, t = rotation and translation of the camera between
two camera exposure stations
[.]× = the skew symmetric matrix corresponding
to the cross product.

Inertial measurement unit (IMU) is a collection of accelerometers
and gyroscopes which measures the acceleration and the angular
rate of the IMU frame with respect to the inertial (space-fixed)
frame independent from the environment. The translation, veloc-
ity and rotation can be calculated from the IMU measurement and
this process is called IMU mechanization (Jekeli 2007). In or-
der to integrate IMU and camera information, the measurements
should be synchronized and should be converted into the same
coordinate system. The sensors can be synchronized by using
hardware and software triggering for real time purposes and can
be interpolated in post processing mode.

Since the IMU measurements have various error sources, ie. bias
and scale error, its error accumulates over time; hence, it is cus-
tomary to integrate the IMU measurements with GPS to maintain
the navigation accuracy over time. For this purpose, Kalman fil-
ter and its variations are used to provide the optimal navigation
solution.

The camera calibration matrix, K, can be calculated from cali-
bration operation. The rotation and translation can be estimated
from the external sensors such as IMU accelerometers and gyros.
Therefore, the geometry of the camera exposure stations can be
reconstructed and the fundamental matrix is known. Hence, the
epipolar geometry constraint can be used to improve the motion
vector field estimation. This constraint does not provide a one
to one correspondence between two images and therefore, other
constraints such as brightness constancy assumption should be
employed in conjunction with the epipolar geometry constraint
to estimate the motion vector field.

It should be noted that epipolar geometry constraint holds if the
back projection of the pixels in the images do not lie on a plane
and the motion of the camera does include the translational mo-
tion. In this paper, the camera mounted on a car records the im-
ages in an urban environment. In this scenario, there are many
objects on the road and the back projection of the pixels lie on
multiple planes. In addition, the dynamic of the car dictates that
translational motion is unavoidable even at turns. Therefore, we
justify that there is no violation of the epipolar geometry assump-
tion.

2.3 Sensor fusion

Each sensor has its own frame, an origin and orientation. For the
camera, its origin is at the camera center and x and y coordinates
define a plane parallel to the image plane and the z coordinate
(principal axis) is perpendicular to image plane toward the scene.
The origin of IMU is its center of mass and its orientation depends
on the IMU. GPS origin is the carrier phase center of receiver and
it does not have any orientation.

If the sensors are mounted on a rigid platform, different sensor
measurements can be transformed to another sensor frame and
the measurements of different sensors can be integrated. In or-
der to find the transformation between sensors, their location and
orientation are measured before the operation. The displacement
vector between two sensor origins (IMU center of mass and the
camera perspective center) is called the lever-arm, and the ro-
tation matrix between two frames (IMU orientation and camera
alignment) is called boresight. In the following text, we use the
subscript to denote the source reference frame and the superscript
as the destination sensor frame. Also, the letter ”i” and ”c” in
subscript or superscript stand for IMU frame and camera frame
respectively.

In the optical flow estimation, the motion vector field is estimated
with respect to the previous image. Therefore, the rotation and
translation of the camera should be calculated with respect to
the previous epoch. Since the IMU and camera frames are mov-
ing with the vehicle, the measurement of these sensors should be
transformed to the reference frame. The navigation frame is de-
fined as an intermediate frame to facilitate this transformation.
the origin of the navigation frame is assumed at the IMU center
of mass and it is aligned toward East, North, and Up, respec-
tively. The axes of navigation frame is assumed to be fixed since
the platform movement does not travel more than few hundred
meters in this dataset. It should be noted that the subscript or su-
perscript ”n” indicates the navigation frame. The camera rotation
with respect to reference frame is given as follows:

Cc,k
c,k−1 = Cc,k

i,k Ci,k
n Cn

i,k−1C
c,k−1
i,k−1 (11)

where i, k = first letter indicates the frame and the second
letter is the epoch number.

Obviously, Cc,k
i,k and Cc,k−1

i,k−1 are boresight and it is does not
change when the vehicle travels. Cn

i,k−1 and Ci,k
n can be esti-

mated using IMU measurements at reference epoch and epoch
k. Similarly, the translation vector from the camera frame to the
reference frame, tc,k−1

c,k , is:

tc,k−1
c,k = Cc,k−1

i,k−1 Ci,k−1
n (tni,k − tni,k−1 + Cn

i,k−1Ci,k−1
c,k−1d).

(12)

where d = lever arm

3. OPTICAL FLOW ESTIMATION USING EPIPOLAR
GEOMETRY CONSTRAINT

In this paper, we provide an approach to improve the Lucas-
Kanade optical flow and KLT tracker using epipolar geometry.
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In the Lucas-Kanade optical flow, the motion vector field is ini-
tialized with zero. This brightness constancy assumption is used
to converge the motion vector in an iterative scheme. In order to
improve the Lucas-Kanade approach using epiline, epiline can be
redefined using equation (6)

a1u+ a2v = a3 (13)

where a1 = xf11 + yf12 + f13
a2 = xf21 + yf22 + f23
a3 = -xT Fx

It should be noted that epiline should be defined in the same co-
ordinate system as the coordinate system of brightness constancy
assumption. Knowing that the corresponding pixels lie on the
epilines, the pixels of the first image can be projected into the
epiline in the second image and the projected point can be used
as the initial motion vector. It improves the initial motion vector
field which lead to faster convergence. Figure (1) presents the
scheme of the proposed approach.

Figure 1: Optical flow estimation: Left: the Lucas-Kanade;
Right: the Lucas-Kanade aided by epipolar geometry

After motion vector field initialization using the epiline, the epipo-
lar geometry constraint is employed as a hard constraint and the
brightness constancy assumption is used to estimate the motion
vector which lies on the epiline. In other words, we transform
the 2D motion vector field estimation into 1D motion estimation
problem

{
Au = l
bu = z

(14)

where b =
[
a b

]
z = [a3]

This equation is known as least squares with constraint. it can be
estimated as follows

u = N−1c + N−1bT (bN−1bT )−1(c− bN−1l) (15)

the term c−bN−1l is called vector of discrepancies which states
how different are the brightness constancy and the epipolar geom-
etry constraint. In other words, it shows the brightness constancy
assumption follows the epipolar geometry. The covariance of the
optical flow estimation using epipolar geometry is

Σu = σ2
0 [N−1 −N−1bT(bN−1bT)−1bN−1] (16)

The first term is brightness constancy assumption covariance ma-
trix and using epipolar geometry decreases the covariance matrix
and improves the precision of the optical flow estimation.

4. EXPERIMENT

In this section, the dataset which is used in this paper is de-
scribed, and the evaluation procedure and the results of the pro-
posed method is presented.

4.1 KITTI dataset

In this paper, the KITTI dataset #5 collected on September 26,
2011 is used to evaluate the IMU based optical flow estimation.
The dataset includes the two monochromic and two color cam-
eras, laser scanner, and GPS/IMU sensors. The left monochromic
camera image sequence and GPS/IMU integration has been used
in this paper. The GPS/IMU solution has been provided by OXTS
RT 3003 navigation system. This system can provide 2 centime-
ter position accuracy using L1/L2 carrier phase ambiguity resolu-
tion. It can also maintain 0.1 degree orientation accuracy (Geiger
et al., 2012, Geiger et al., 2013).

The dataset uses PointGray Flea2 grayscale camera. The car’s
hood and sky are removed from the images. The camera calibra-
tion is given which provides focal length and principal point in
pixel unit. The camera measurements in pixels should be con-
verted to the metric unit and then it can be integrated with IMU.

The information are provided in each sensor frame; GPS/IMU
navigation unit is aligned to front, left and up of vehicle and the
camera is oriented toward right, down and front of the car. The
lever arm and boresight between camera and IMU can be com-
puted from the provided information. GPS/IMU navigation so-
lution and images are synchronized with a reasonable accuracy.
Figure (2) demonstrates the sensor configuration on the vehicle.

Figure 2: Sensor configuration in KITTI dataset

4.2 Procedure

If the motion vector field is assumed as a solution to partial differ-
ential equation problem, the motion vector fields is initialized as
zero and it can be considered as Dirichlet boundary value prob-
lem. Also, we consider that the gradient of the image is zero on
the border of image and out of it which is the Neumman bound-
ary value problem. Since equation (2) is a linearized form of
the equation (1) and higher order terms are neglected, it holds
when the motion vector is small. Therefore, the larger motion

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-1, 2014
ISPRS Technical Commission I Symposium, 17 – 20 November 2014, Denver, Colorado, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-1-9-2014 12



vector can be estimated in a pyramidal scheme. In pyramidal
scheme, the image is smoothed and downsampled to lower level
of the pyramid. In the lowest level of the pyramid, the Lucas-
Kanade optical flow is employed to estimate the motion vector
field. Then, the motion vector field is upsampled and it is used as
initial motion vector field in the upper pyramid level. The number
of the levels depend on the maximum motion in the image. Here,
5 levels of pyramid has been considered for the images and it has
been downsampled and upsampled by 2.

In equation (3), it can be seen that motion vector is estimated
within a neighborhood using the Lucas-Kanade optical flow. The
size of the neighborhood is of importance, the small neighbor-
hood leads to more precise optical flow estimation and the large
neighborhood provides more reliable motion vector field. In this
paper, the window size of the optical flow estimation is 17 × 17
at the finest level (level 0) and it decreases by 2 per level. There-
fore, the window size from finest to coarsest levels of pyramid
are 17 × 17, 15 × 15, 13 × 13, 11 × 11, 9 × 9 and 7 × 7. This
helps us to have lower window size when the image size has been
reduced.

Also, the bilateral filter is employed to increase the precision
of the motion vector field estimation (gaussian filter) and im-
prove the estimate of motion vector field at the object boundaries
(isotropic filter). The standard deviation for the gaussian filter
and isotropic filter are considered as 4 and 50, respectively.

It also should be noted that the fundamental geometry is differ-
ent for each level. In other words, the calibration matrix should
be downsampled at each level and the fundamental matrix should
be constructed for each level. Figure (3) shows the output of
GPS/IMU which explains the dynamic of vehicle along the oper-
ation.

(a) a

(b) b

Figure 3: (a) Azimuth (b) Velocity of the vehicle

4.3 Results

The results of the proposed method is shown in Figure (4) and
Lucas/Kanade optical flow estimation results are given for com-
parison purposes. The results are given in four subfigures which
shows the motion vector field between image 0 and image 1, im-
age 49 and image 50, image 99 and image 100, and image 149
and image 150 for subfigures (a), (b), (c), and (d), respectively.
These subfigures include four component. The first component
(top-left) shows the overlaid of the previous image on the current
image where the previous image is in green channel and the cur-
rent image is in red channel. The second component (down-left)

shows the reconstructed the current image from the previous im-
age using the estimated motion vector field known as warped im-
age. The third component illustrates the estimated motion vector
field using the proposed method and the fourth component shows
the Lucas-Kanade motion vector field. The motion vector field is
color-coded, that is the direction of the motion vector is shown
by color and the brightness of the color indicates the magnitude
of the estimated motion vector.

It should be noted that the warped image has been estimated us-
ing the proposed method. In contrast, the warped image using
the lucas-Kanade method is not given in this paper and the length
of the paper did not allow us to provide these results. Therefore,
the proposed approach and the Lucas-Kanade method has been
compared using the color-coded motion vector field in left com-
ponents of each subfigure.

The black regions in warped images has occurred where the warped
image goes beyond the image boundaries and there is no pixel
value for those regions of the warped image. It occurs more fre-
quently at borders of image where there are many occlusions.
Also, the motion vector field estimation is not reliable at the bor-
ders of the image since there is not enough information in the
neighborhood. The poor estimation of the motion vector field
lead to some artifacts in warped images.

As can be seen in Figure (3), there is not significant rotation in
camera motion and the translation motion is very slow in epoch 0.
The left side of subfigure (a) shows that the proposed method has
smoother motion vector field estimation. However, it introduces
incorrect motion vector field estimation at the region of the car.
The epipolar geometry assumes that the scene is static and the
motion is purely due to the camera motion. Therefore, the motion
vector field may not be correctly estimated on the moving object
in the scene. As previously motioned, both method show some
problems at the border of the image. In the warped image, the
poorly estimated motion vector field generates some artifact in
the warped image. For instance, the bar of the traffic light is not
straight in the warped image and the incorrect motion vector field
has generated artifacts there.

In subfigure (b), the motion vector field has been poorly estimated
in the right side of the image. The right side of the image is very
dark and there is very low contrast there. Lack of rich texture
leads to ambiguous motion vector field in this part of the image.
However, it is clear that the proposed method can handle the tex-
tureless regions much better than the Lucas-Kanade optical flow
estimation since it exploits the epipolar geometry constraint and
it can resolve the ill-conditioned optical flow estimation problem
in low contrast and textureless regions.

In subfigure (c) the translational motion of the camera is faster
and motion vector field is larger. Surprisingly, the Lucas-Kanade
method has better performance with respect to the proposed method.
For instance, the ground motion (lower part of image) has been
estimated smoother and more realistic in the Lucas-Kanade. In
the warped image, left side of the image has severely distorted.
The optical flow estimation is poor in this region due to very large
motion vector field.

In subfigure (d), there is a large motion in the right side of the
image and the Lucas-Kanade fails to estimated the correct mo-
tion, but the proposed method has better estimate of the motion
vector field in this region. It can be concluded that the proposed
method has superior performance over the Lucas-Kanade in large
motion vector field. The warped image displays some artifacts in
the right side of the image due to the occlusion in this part of the
image.
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(a)

(b)

(c)

(d)

Figure 4: top left: first and second images are overlaid in different colors; top right: the color coded optical flow LK+epipolar geometry
constraint; down left: warped image LK+epipolar geometry constraint; down right: warped image LK; a, b, c and d are 1, 50, 100 and 150
frame numbers in the image sequence
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The proposed method can be generalized to the KLT tracker. The
KLT tracker uses the estimated motion vector for interest points
to locate them in the next image. The KLT tracker uses the bright-
ness constancy assumption, but the epipolar geometry can aid
the KLT tracker as explained in this paper. We refer to the KLT
tracker aided by epipolar geometry constraint as ”modified KLT
tracker” here. Figure (5) shows the modified KLT tracker be-
tween image 80 and image 81. Likewise Figure (4), The first
image in green channel is overlaid on the second image in red
channel.

Seven points has been tracked in a modified KLT tracker and
these points are displayed in small hollow light blue points. The
epiline has been estimated for each of these tracked point using
IMU measurements and it has been displayed in blue line. The
epilines intersect at a point known as epipole. The epipole is the
same as focus of expansion if the motion is translational motion
and it lies at the center of the image. However, the epiline is not
at the center of the image since the camera has rotation too. It can
be seen in Figure (3).

The projection of these points on the epipolar line is displayed in
solid yellow points. Some of the projected points (yellow) cov-
ered the tracked points (blue) since the tracked points were close
to the epiline. The proposed method has been used to estimate
the corresponding points in the second image which is shown by
solid red points. Obviously, the epilines pass trough the corre-
sponding points (red dots) in the second image. The tracking
points have been converged to the corresponding points in the
second image. Therefore, the proposed method can be used in
sparse correspondence to track the interest points faster and make
them more reliable.

5. CONCLUSION

In this paper, we proposed a method to improve Lucas/Kanade
optical flow using epipolar geometry constraint. The IMU mea-
surement obtains the translation and rotation of the camera expo-
sure stations and if the camera is calibrated, the epipolar geome-
try can be reconstructed. The brightness constancy assumption in
association with the epipolar geometry constraint leads to more
reliable motion vector field estimation. In the proposed method,
first the original point is projected on the epiline and the projected
point is used as an initialization point. Then, the epipolar geom-
etry constraint and the brightness constancy assumption are used
in a least squares with constraint scheme to estimate the motion
vector field.

The KITTI dataset has been used to verify the proposed method.
The GPS/IMU measurements are transformed to the camera co-

Figure 5: KLT tracker aided by epipolar geometry constraint

ordinate system. The translation and rotation from GPS/IMU and
the camera calibration are employed to compose the epipolar ge-
ometry. Since the motion vector filed is large, it has been esti-
mated in a pyramidal scheme. Using the epipolar geometry and
brightness constancy assumption, the motion vector field is es-
timated for each pyramid level and the estimated motion vector
field has been upsample and it has been used as initial motion vec-
tor field. The estimated motion vector field in the highest level of
pyramid has been demonstrated in this paper.

The results show that the proposed method can improve the es-
timated motion vector field. The proposed method may fail in
the moving object regions since the epipolar geometry constraint
assumes that the motion vector field is due to the camera motion
and the scene objects are static. On the other hand, the proposed
method has superior performance in textureless and low contrast
regions.

The proposed approach can be used for sparse correspondence.
Once the interest points are detected in an image, the proposed
method can be used to track the interest points in the upcom-
ing images. Likewise with the dense correspondence, the interest
points are projected on the epiline and then brightness constancy
assumption and epipolar geometry constraint are used to estimate
the motion vectors and subsequently the corresponding points.

The epipolar geometry constraint can be integrated with a high
performance optical flow estimation. It can be used as an addi-
tional term in the optical flow cost function. It has been discussed
in the literature, but these papers estimate fundamental matrix in
conjunction with the motion vector field and they do not con-
sider the IMU measurements to reconstruct the epipolar geome-
try. Here, it is suggested that the IMU measurement are employed
in motion vector field estimation using variational method.
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