
TOWARDS AUTOMATIC VALIDATION AND HEALING OF CITYGML MODELS FOR  

GEOMETRIC AND SEMANTIC CONSISTENCY 
 

 

N. Alam a, D. Wagner a, M. Wewetzer b, J. von Falkenhausen b, V. Coors a, M. Pries b 

 

 
a
 HFT Stuttgart – University of Applied Sciences, Faculty C, Schellingstraße 24, 70174 Stuttgart, Germany 

(nazmul.alam, detlev.wagner, volker.coors)@hft-stuttgart.de 
b
 Beuth Hochschule für Technik Berlin – University of Applied Sciences, Department II, Luxemburger Straße 10, 

13353 Berlin, Germany 
(mark.wewetzer| julius.von.falkenhausen | margitta.pries)@bht-berlin.de 

 

KEY WORDS: Healing, Validation, 3D City models, CityGML, Geosemantics 

 

 

ABSTRACT: 

 
 A steadily growing number of application fields for large 3D city models have emerged in recent years. Like in many other domains, 

data quality is recognized as a key factor for successful business. Quality management is mandatory in the production chain 

nowadays. Automated domain-specific tools are widely used for validation of business-critical data but still common standards 

defining correct geometric modeling are not precise enough to define a sound base for data validation of 3D city models. Although 

the workflow for 3D city models is well-established from data acquisition to processing, analysis and visualization, quality 

management is not yet a standard during this workflow. Processing data sets with unclear specification leads to erroneous results and 

application defects. We show that this problem persists even if data are standard compliant. Validation results of real-world city 

models are presented to demonstrate the potential of the approach. A tool to repair the errors detected during the validation process 

is under development; first results are presented and discussed. The goal is to heal defects of the models automatically and export a 

corrected CityGML model. 

 

1. INTRODUCTION 

Application and analysis of geo data is moving from traditional 

GIS applications with 2D map data towards deployment of real 

3D data. Virtual 3D city models become more and more 

available for urban areas. More sophisticated tools for data 

analysis and information extraction are under development. 

Quality assessment becomes mandatory because reliable and 

reproducible processing results can only be obtained with 

correct original data. Different views on the term “correctness” 

exist, existing standards such as ISO 19107 or CityGML 

spectification provide a good starting point. This is not 

sufficient for an unambiguous definition of modeling 

guidelines. Consequently, a discussion of the definition of 

guidelines for modelers and users and methods to check the data 

set for compliance with these specifications are necessary.  

A general overview of the concept of data quality in the 

geographic domain is included in (Kresse & Fadaie 2004), 

which offers a comprehensive summary of the relevant 

standards, notably of the ISO 19100 series. The paper of (Akca 

et al. 2010) has a focus on geometric accuracy with respect to 

the generation process of a model from Lidar data. Discussing 

the problems of polygonal models, (Krämer et al. 2007) define 

quality measurements for 3D city models. Some simple 

algorithms for quality assessment and healing of geometries are 

presented.  

 (Campen et al. 2012) provide an extensive collection of typical 

defects of polygonal 3D models and existing techniques for 

processing and repair with respect to different fields of 

application. A detailed analysis of completeness and separation 

issues in city models is presented by (Zhao et al. 2012). They 

consider typical properties of semi-automatic generated models 

and their insufficiencies and develop a generalization method. 

However, other geometric errors are not investigated. 

Limited research was done regarding healing of 3D city models 

so far. Approaches to repair triangle meshes such as (Liepa 

2003) and (Attene & Falcidieno 2006) exist but can only be tied 

loosely to our approach. We map CityGML features to an 

internal data structure which is designed to maintain links to the 

semantic properties of the original model. Using volumetric 

techniques, as suggested by (Nooruddin & Turk 2003) requires 

conversion to a voxel representation which creates difficulties 

in maintaining model-inherent semantics. An alternative 

approach is presented recently by (Ledoux 2013). A top-down 

approach is described as favorable because it enables repairing a 

model in one single step. The implementation shows that a 

hierarchical processing of the model is necessary before the 

actual volume-based approach for healing solid defects can be 

performed. We present an overview of our research results 

leading to the definition of certain quality criteria for CityGML 

models and the development of an automated validation tool. A 

quality report is the result of this processing step. It includes 

detailed descriptions of all detected errors. This information is 

used as input of a healing process which tries to repair as many 

errors automatically as possible. The healing procedures are 

described in detail and experiences with the tool are discussed. 

 

2. AUTOMATIC VALIDATION 

2.1 Validation Rules 

A validated a data set is expected to be clean, correct and useful 

for a given application. This implies that different sets of 

validation rules exist, depending on the intended application. 

We separate the validation process in two general steps: first a 

schema validation for CityGML data to assure schema 

conformant input to the second step, geometric and semantic 

validation of the data set. Only the second step is discussed here 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
Volume II-2/W1, ISPRS 8th 3DGeoInfo Conference & WG II/2 Workshop, 27 – 29 November 2013, Istanbul, Turkey

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 1



 

because XML schema validation is a standard procedure for 

which sophisticated tools are available. 

For the basics of geodata validation we refer to the explanations 

in (Wagner et al. 2013). 

The Special Interest Group 3D has developed guidelines for 

modeling of 3D city models. The goal is to clearly specify valid 

alternatives and recommend one of them for general usage. This 

should lead to city models with known specifications in contrast 

to the situation today where only the modeler knows how 

certain features are reproduced. These recommendations are the 

base for geometric validation rules which have been developed 

and implemented as part of the research project CityDoctor at 

University of Applied Sciences Stuttgart, Germany. The 

geometric model as described by (Gröger & Plümer 2011) is 

used.  

In addition, some geometric-semantic rules resulting from 

CityGML requirements are included as plausibility checks for 

consistency of the data set. 

A short listing of the checks is given in the following, more 

detailed explanations are given in (Wagner et al. 2013). The 

algorithms and the underlying data structure are suitable for 

CityGML LODs 1 and 2. 

Polygon checks 

1. A linear ring must consist of a minimum of 4 points 

2. First and last point of a linear ring are identical. 

3. All points of a linear ring R are different, with exception 

of first and last point. 

4. Two edges can intersect only in one start-/end point. 

Other points of intersection or touching are not 

allowed (to account for rounding errors or polygons 

which are not perfectly planar, a small tolerance is 

allowed). 

5. All points of the polygon must be located in a plane (a 

small tolerance is allowed). 

NB: since we consider only outer rings, polygons with holes 

are not processed currently (they occur only rarely in LOD 

1 or 2). 

Solid checks 

6. The minimum number n of polygons to define a solid is 

four. They must be situated in different planes. 

7. A valid intersection of two polygons of a solid either 

contains a common edge, a common point of a linear 

ring, or is empty. Common edges and points must be 

elements of both polygons. 

8. Each edge of a linear ring defining a polygon is used by 

exactly one neighboring polygon. 

9. Consistent orientation of polygons of a solid such that 

common edges according to check 8 are used in 

opposite direction. 

10. The normal vectors of the polygons must point 

towards the outside of the solid. 

11. All parts of a solid must be connected. 

12. The graph GS = (VP,EP) of polygons and edges which 

are meeting in point pi is connected for all p. Each 

vertex v ∈ VP represents exactly one polygon which 

contains p. Two vertices are connected with an edge e 

∈ EP if the polygons represented by these vertices 

have a common edge that is bounded by p. 

Semantic checks 

13. Orientation of RoofSurface, WallSurface and 

GroundSurface elements 

Figure 1. Umbrella check 

14. measuredHeight in same range as height of building 

geometry 

15. numberOfStoreysAboveGround plausible for height of 

the building geometry 

16. numberOfStoreysBelowGround plausible for height of 

underground geometry of the building 

17. Relationship of Building and BuilidingPart 

 

 
Figure 2. Alternative modeling scenarios for BuildingParts 

 

3. HEALING 

For each error detected during the validation process a specific 

error object contains all necessary parameters for healing. Our 

approach assumes that all errors should be healed 

hierarchically, according to the dependency of the respective 

checks. An iterative approach assures that after an error is 

healed, the geometry is checked repeatedly for new errors which 

might have been introduced during the last healing step. This 

enables to manipulate to original model in a controlled and 

reproducible way. 

  

 
Figure 3. Complete Healing workflow 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
Volume II-2/W1, ISPRS 8th 3DGeoInfo Conference & WG II/2 Workshop, 27 – 29 November 2013, Istanbul, Turkey

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 2



 

For the cases where problems can’t be solved by the healing 

algorithms after a user-defined maximum number of iterations, 

an error object is returned. Healing is done in two phases. 

Firstly all the polygons are healed and then if polygons pass the 

validation process solid-errors are healed. In figure 3 the 

healing process is illustrated. 

 

3.1 Geometry Healing 

POLYGON HEALING 

In this phase one error is healed at a time. That means each 

iteration heals an error and checks the result for validation.  

CP_CLOSE: The first and the last vertex of a polygon must be 

same, therefore healing would be just to copy the first vertex at 

the end of the pointlist. If a Linear Ring contains four vertices 

in a sequence {P1, P2, P3, P4} where the last point and the first 

point are not same. The healed pointlist would look like {P1, P2, 

P3, P4, P1}. 

CP_NUMPOINTS: A Linear Ring must contain a minimum 

number of four vertices in the sequence where the first and the 

last point are same. A closed Linear Ring with less than 4 

vertices is either a line or a point but not a valid polygon, in this 

case healing is to delete these polygons. But if a polygon 

contains 3 different vertices and the first and the last vertex are 

not same then it will be healed by the previous healing process 

and then the number of vertices of the healed polygon will be 4. 

CP_DUPPOINT: In a Linear ring only the first vertex is 

allowed to repeat at the end of the point sequence. No other 

vertex is allowed to repeat within the sequence at any position. 

In Figure 4 first Linear Ring X contains the point sequence of 

{P1, P2, P3, P4, P5, P3, P1} where P3 is repeating twice. In second 

Linear Ring Y point sequence is {P1, P2, P3, P4, P4, P1} where 

P4 is repeating twice. In third Linear Ring Z point sequence is 

{P1, P2, P3, P4, P2, P1} where P2 is repeating twice. In all the 

Linear Rings one or more vertex is repeating more than once 

excluding the last point so there are Duplicate Point Error in the 

Linear Rings. These are healed in two different ways. For 

Linear Ring Y vertex P4 comes twice back to back so only one 

of the instance are kept and the other one is deleted from the 

pointlist. But for X and Y deleting an instance of vertex will 

result change in the shape of polygon. So here loops are 

searched within the pointlist. For X the loops will be {P3, P4, 

P5, P3} and {P3, P1, P2, P3} and for Z it will be {P2, P3, P4, P2} 

and {P2, P1, P2}. So the polygons will be split into multiple 

polygons according to the newly found loops. 

 

 
Figure 4. Healing CP_DUPPOINT error 

CP_SELFINT: Two edges are allowed to intersect only at start 

and end point of the edge and any other intersection will 

considered as an error. In Figure 5 first polygon contains point 

sequence {P1, P2, P3, P4, P1} where edge (P2, P3) and edge (P4, 

P1) intersects at a point which doesn’t belong to the point 

sequence and in second polygon point sequence is {P1, P2, P3, 

P4, P5, P1} where edge (P2, P3), edge (P4, P5) and edge (P5, P1) 

intersects at a point which doesn’t belong to the point sequence. 

So, both has Self-intersection Error of Edges. There are two 

healing options one is to rearrange the point sequence which 

works sometimes fine with simple polygon and another one is to 

extract the intersection points create new vertices with those and 

place the new vertices in between each intersecting edges. So 

the first polygon would be {P1, P2, Px, P3, P4, Px, P1} where Px 

is the new vertex. This is not a valid polygon but there is no 

self-intersection error any more, the double point errors will be 

healed by the next iteration by its healing process. 

 

 
Figure 5. Healing CP_SELFINT error 

CP_PLAN: This is very common error and difficult to heal. All 

vertices of a polygon must lie within the same plane regarding a 

user specified tolerance. If a polygon contains point sequence of 

{P1, P2,…., Pn, P1}, all of the vertices will lie within a plane 

formed by any three vertices from the point sequence and 

normal of all vertices on the surface must be parallel. In Figure 

6 the polygon has a point sequence of {P1, P2, P3, P4, P1} where 

i.e. vertex P3 doesn’t lie within the plane formed by P1, P2, P4. 

Sometimes the error is very small like less than a 1 mm. Those 

are most probably caused by the measurement issue or floating 

number. In this case a little adjustment of vertices might heal 

the polygon.  

Another healing option is to triangulate the polygon and split it 

into multiple triangular polygons. But again it is very difficult 

to decide how to triangulate because there is always more than 

one possibility and only one is correct. So a little bit of 

customization according to the error pattern of the model helps 

a lot. For example while repairing a vertical non planner 

polygon of wall surface only vertical triangles are accepted as 

newly triangulated polygons.  

 

 
Figure 6. Healing CP_PLAN error 

The healing of non-planar surfaces of a building with the first 

method is divided in three phases: 

Healing of the GroundSurface: 

 

 

 
Figure 7. Healing of the Ground and WallSurface 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
Volume II-2/W1, ISPRS 8th 3DGeoInfo Conference & WG II/2 Workshop, 27 – 29 November 2013, Istanbul, Turkey

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 3



 

The healing of the GroundSurface is identical for the LoD1 and 

the LoD2. We are identifying the GroundSurface for a LoD1 

geometry as the surface with the smallest z-coordinate and the 

least deviation in respect to direction of the normal vector  of 

the xy-plane . All points belonging to the linear ring of the 

GroundSurface are being projected on a plane, parallel to  

and passing through the minimal z-value of the ring. See figure 

7 for an example. The blue, non-planar polygon is being 

projected on the green, planar one. 

Healing of the WallSurfaces: 

As above we are not distinguishing between LoD1 and LoD2 

during the healing process of WallSurfaces. We assume that 

each WallSurface shares a common edge with the 

GroundSurface and each Surface of a LoD1 geometry, adjacent 

to the GroundSurface is a WallSurface. Let  be the i-th 

WallSurface,  the common edge with the GroundSurface and 

 the normal vector of the least squares plane through all 

points of the linear ring of . If  is smaller 

than a given , then all points of the linear ring are being 

projected into the plane, spanned by the directional vector of  

and . With this approach we omit walls with a given angle of 

slope. An example is shown in figure 7. 

Healing of the RoofSurfaces: 

There are two algorithms for healing the RoofSurfaces. The first 

one handles LoD1 roofs and LoD2 flat roofs. The RoofSurface 

of a LoD1 building is determined similar to its GroundSurface. 

It’s the polygon with the least deviation according to  and 

maximal z-value. Additionally it’s not adjacent to the 

GroundSurface. We will projecting all points of the linear ring 

of the RoofSurface into a plane parallel to , passing through 

the average z-value of all points in the ring, as you can see in 

figure 8 . 

 
Figure 8. Healing of the LOD1 and LOD2 RoofSurface 

The second one handles all other LoD2 roof types and 

calculates the least square fitting plane for all RoofSurfaces. 

Each point of a linear ring of the corresponding RoofSurface is 

projected along the z-axis into the according least square fitting 

plane of its linear ring. This procedure will be repeated until all 

RoofSurfaces are planar or a maximum number of iteration is 

reached. Note that the points are only projected along the z-

axis. Hence healed the WallSurfaces remaining planar, even if 

shared points of RoofSurfaces are moved. See figure 8 for an 

example. 

SOLID HEALING 

In this phase one error is healed at a time. That means each 

iteration heals an error and checks the result for validation. 

CS_NUMFACES: To form a solid minimum four surface is 

required. Any solid having less than four valid polygons has 

insufficient number of face error. If a solid has less than 4 

polygons then it is not possible to repair, only exception is a 

triangular pyramid with one missing triangle. For all other cases 

the solid would be invalid and deleted from the model by the 

healing process. 

CS_SELFINT: Polygons of a solid must meet each other only 

through edges. Any other intersection of polygons will be 

considered as a self-intersection error of solid. We assume that 

the polygons of a solid, in the sense of CP_PLANAR, are 

planar, hence the user defined tolerance for the intersection 

algorithm should not be greater than the one used for 

CP_PLANAR. This might lead otherwise to false positives 

and/or irrational results. The Tolerance i.e. is used to determine 

if the intersection of two polygons is a line or only a point (the 

length of the line segment is below the tolerance). Furthermore 

each intersection is classified by its type: partially embedded 

edge, fully embedded edge, partially embedded polygons, fully 

embedded polygon, normal intersection and undefined 

intersection. In figure 9 for partially and fully embedded and 

edge errors like A and B overlapping edge (P1, P3) and edge (P2, 

P4) are merged into 3 edges (P1, P2), (P2, P3) and (P3, P4) and 

the pointlists of respective polygons are rearranged like H. And 

for partially embedded polygon errors like Y the overlapping 

regions are trimmed out from the overlapped polygons and new 

polygons are created from the overlapping regions like R. For 

fully embedded polygon errors like X the overlapping region is 

only trimmed out from the bigger polygon. 

 

 
Figure 9. Healing CS_SELFINT error 

For a normal intersection like figure 10 healing doesn’t brings a 

valid result. If the intersecting polygons are split into multiple 

polygons an overused edge error occurs which is very difficult 

to heal. But still it solves the issue with self-intersection. 

 

 
Figure 10. Healing complex CS_SELFINT error 

CS_OUTEREDGE: Every edge of a solid will bound exactly 

two polygons. Any edge of the solid bounding less causes 

incorrect number of polygons with edge error and there is a hole 

somewhere in the solid. Firstly all the error edges are searched 

for loops. And new polygons are formed with the newly found 

loops. The incomplete parts of the loop are left out without 

healing.  

CS_OVERUSEDEDGE: Any edge of the solid bounding more 

than two polygons causes a topological error. In figure 10 if the 

self-intersection error is healed then there will be an edge 

sharing 4 polygons. This type of error are not possible to heal 

automatically the possible options are to manually edit the solid 

or delete the polygons. 

CS_FACEORIENT: Each edge must bound two polygon and 

the orientation of the edge must be opposite in the polygons. In 

figure 11a two polygons P {P1, P2, P4, P3, P1} anti-clockwise 

oriented and Q {P6, P4, P3, P5, P6} clockwise oriented, are 

bound by the edge (P4, P3). But the order should be in one 

polygon (P4, P3) and in another polygon (P3, P4). If all or most 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
Volume II-2/W1, ISPRS 8th 3DGeoInfo Conference & WG II/2 Workshop, 27 – 29 November 2013, Istanbul, Turkey

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 4



 

of the edges of a polygon have wrong orientation then it is 

wrong oriented and healing would be to reverse the order of the 

pointlist. So if pointlist Q is wrong oriented then the healing 

process will correct the pointlist in {P6, P5, P3, P4, P6} and the 

orientation will be anti-clockwise.  

 
Figure 11. Healing CS_FACEORIENT error 

CS_FACEOUT: If every polygon of a solid is wrong oriented 

then the solid will be valid by face orientation check because 

each edge will find an opposite pair. So every surface normal of 

a solid must direct outwards. Even after healing the face 

orientation error it is not guaranteed that all the polygons will 

face outward. In figure 11b the red polygon has a face out error. 

Healing of this error is to reverse the orientation of the polygon.  

CS_CONCOMP: If a solid contains a disconnected polygon 

then it has an error and it will be detected by the outer edge 

check. But if the polygons defined in a solid forms two valid 

solid like figure 12 then it will pass all the checks until 

connected component check. Healing of this error is to convert 

each disconnected solid into a solid data structure and delete the 

original solid. 

 

 
Figure 12. Healing CS_CONCOMP error 

CS_UMBRELLA: Healing this error is still in progress but 

one option is to split the adjacent polygons into groups where 

they are connected by edges and then create new vertices for 

each group with same coordinates then move those vertices a 

little bit away from each other like figure 13. 

 

 
Figure 13. Healing CS_UMBRELLA error 

 

4. RESULT AND DISCUSSION 

Some real world models have been validated and healed using 

this tool. LOD1 and LOD2 Models of Stuttgart, Ludwigsburg, 

Dusseldorf and Rotterdam are some of those. An overview of 

the validation result is given in Table 1. All models are in 

LOD2. Here A represents 1 building with 580 polygons, J 

represents 61 buildings with 3455 polygons, L represents 4 

buildings with 69 polygons and X represents 1922 building 

with 32546 polygons. 

Check ID  A J L X 

CP-NUMPOINTS  0 0 0 0 

CP-CLOSE  0 0 0 0 

CP-DUPPPOINT  0 0 0 0 

CP-SELFINT  0 0 0 0 

CP-PLANDIST  4 0 4 177 

CP-PLANDISTALL  8 0 4 161 

CP-PLANTRI  67 0 5 269 

CS-NUMFACES  0 4445 0 0 

CS-SELFINT  0 - 2 4575 

CS-2POLYPEREDGE  155 15484 0 467 

CS-FACEORIENT  - - 0 - 

CS-UMBRELLA  - - 0 116 

CS-CONCOMP  - - 1 980 

Table 1. Results for geometry validation 

In 16-99-HOOGVLIET-ZUID of Rotterdam model there are 

10828 buildings with around 11000 ground, 23000 roof and 

68000 wall surfaces. After validation with all geometric check 

approximately 118000 CS_OUTEREDGE, 33000 

CS_SELFINT and 2000 CP_DUPPOINT error have been found 

in 10332 buildings like in figure 14. Only 496 buildings were 

found valid. 8474 buildings were healed after an iterative 

healing process. So 82% of invalid buildings were healed. 

Those building which couldn’t be healed has been replaced by 

the original model. Although some of those errors can be healed 

but if still the building contains error then it is not possible to 

know by the automated process whether the process has 

minimized the error or made it more complex. 

 

 
Figure 14. Error distribution before healing 

So if there were 50 outer edge error and 49 edged has been 

found in different loops then still the remaining 1 edge will 

cause error and we wouldn’t know those new polygons were 

correctly drawn or not until someone takes a look into it 

manually.  

 

 
Figure 15. Error distribution after healing 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
Volume II-2/W1, ISPRS 8th 3DGeoInfo Conference & WG II/2 Workshop, 27 – 29 November 2013, Istanbul, Turkey

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 5



 

There have also some difficulties while healing Rotterdam 

model. Some corner buildings of a series of houses were very 

strangely modeled like in figure 16. It has been modeled like 

two buildings joined together by a wall surface but the opposite 

walls of each building have been removed (like H shaped cross 

section). Those buildings couldn’t be healed at this moment 

because the wall surface which lie in the middle, causes some 

over used edge error which are not possible to heal. 

  

 
Figure 16. WallSurface splitting a building 

Another type of error commonly found was some walls between 

two buildings out of nowhere like in figure 17. It is not clear 

that the walls should be modeled within the building or should 

have its own geometry in different building or building part. 

The buildings have complete structure without that wall. But 

together it creates same type of overused error which makes it 

difficult to heal. 

 

 
Figure 17. Extra WallSurface attached to the building 

There has also been some overused error because of the 

structure of the building. Like in figure 18 height difference of 

roof has caused 4 polygons sharing an edge. There is nothing 

wrong with the modeling, the original building has been built 

like this.  

 
Figure 18. Two corner edges of two box shaped parts of a 

building touching each other at an edge. 

 

5. CONCLUSION 

All of the checks and most of the healing process has been 

already implemented and tested and the results have been 

discussed here. There are always new problems arising with 

new model. Mostly a model has similar type of errors in each 

building. One thing to mention here is computation time and 

system requirements. Normally the process works pretty fast but 

it depends upon how big the model is and how many iterations 

are set as limit.  

 

REFERENCE 

Akca, D. et al., 2010. Quality assessment of 3D building data. 

In The Photogrammetric Record. pp. 339–355. 

Attene, M. & Falcidieno, B., 2006. Remesh: An interactive 

environment to edit and repair triangle meshes. In 

IEEE International Conference on Shape Modeling 

and Applications. p. 41. 

Campen, M., Attene, M. & Kobbelt, L., 2012. A Practical 

Guide to Polygon Mesh Repairing. In The 

Eurographics Association. 

Gröger, G. & Plümer, L., 2011. How to achieve consistency for 

3D city models. GeoInformatica, 15(1), pp.137–165. 

Krämer, M., Haist, J. & Reitz, T., 2007. Methods for Spatial 

Data Quality of 3D City Models. In Eurographics 

Italian Chapter Conference. pp. 167–172. 

Kresse, W. & Fadaie, K., 2004. ISO standards for geographic 

information, Berlin-Heidelberg: Springer. 

Ledoux, H., 2013. On the validation of solids represented with 

the international standards for geographic 

information. Computer-Aided Civil and Infrastructure 

Engineering. 

Liepa, P., 2003. Filling holes in meshes. In Proceedings 2003 

Eurographics/ACM SIGGRAPH Symposium on 

Geometry Processing. pp. 200–205. 

Nooruddin, F.S. & Turk, G., 2003. Simplification and repair of 

polygonal models using volumetric techniques. In 

IEEE Transactions on Visualization and Computer 

Graphics. pp. 191–203. 

Wagner, D. et al., 2013. Geometric-semantical consistency 

validation of CityGML models. In J. Pouliot et al., 

eds. Progress and New Trends in 3D Geoinformation 

Sciences. Lecture Notes in Geoinformation and 

Cartography. 3D Geoinfo. Quebec, Canada: Springer 

Berlin Heidelberg. 

Zhao, J. et al., 2012. Repair and generalization of hand-made 

3D building models. In Proceedings 15th Workshop 

of the ICA Commission on Generalisation and 

Multiple Representation. 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
Volume II-2/W1, ISPRS 8th 3DGeoInfo Conference & WG II/2 Workshop, 27 – 29 November 2013, Istanbul, Turkey

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 6


