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ABSTRACT:

The increasing availability, size and detail of 3D City Model datasets has led to a challenge when rendering such data on mobile
devices. Understanding the limitations to the usability of such models on these devices is particularly important given the broadening
range of applications - such as pollution or noise modelling, tourism, planning, solar potential - for which these datasets and resulting
visualisations can be utilized. Much 3D City Model data is created by extrusion of 2D topographic datasets, resulting in what is known
as Level of Detail (LoD) 1 buildings - with flat roofs. However, in the UK the National Mapping Agency (the Ordnance Survey, OS) is
now releasing test datasets to Level of Detail (LoD) 2 - i.e. including roof structures. These datasets are designed to integrate with the
LoD 1 datasets provided by the OS, and provide additional detail in particular on larger buildings and in town centres. The availability
of such integrated datasets at two different Levels of Detail permits investigation into the impact of the additional roof structures (and
hence the display of a more realistic 3D City Model) on rendering performance on a mobile device. This paper describes preliminary
work carried out to investigate this issue, for the test area of the city of Sheffield (in the UK Midlands). The data is stored in a 3D
spatial database as triangles and then extracted and served as a web-based data stream which is queried by an App developed on the
mobile device (using the Android environment, Java and OpenGL for graphics). Initial tests have been carried out on two dataset sizes,
for the city centre and a larger area, rendering the data onto a tablet to compare results. Results of 52 seconds for rendering LoD 1 data,
and 72 seconds for LoD 1 mixed with LoD 2 data, show that the impact of LoD 2 is significant.

1 INTRODUCTION

The use of 3D City Models on mobile devices (such as smart
phones and tablets) underpins applications including utility in-
frastructure validation (“call-before-you-dig”), planning (Batty et
al., 2001, He et al., 2012, Coors et al., 2009), augmented re-
ality (Chen and Chen, 2008), personalized tourist information
(Schulte and Coors 2008 in (Boguslawski et al., 2011)), real es-
tate sales and 3D navigation (Basanow et al., 2008). Importantly,
3D datasets are now making their way out of the research do-
main and into real-life usage. For example, applications such as
the identification of illegal residential buildings using heat sens-
ing devices (Watson, 2013) and the use of 3D mapping to assist
town planners with noise mapping (Robertson, 2013) highlight
the importance of having access to 3D data and being able to in-
tegrate the data with other information provided in 2D, as well
as display this information in a mobile context to facilitate access
when visiting the sites showing illegal dwellings or noisy envi-
ronments. The prevalence of these applications is growing with
the increase in availability of mobile devices - indeed, there are
over 1.08 billion smartphones globally (Alexander, 2012) which
compares with 1.2 billion personal computers (PCs). In particu-
lar, sales of tablets are forecast to challenge those of PCs by 2017
(Arthur, 2013).

The process of extrusion 2D topographic mapping data to a given
height) is an efficient method of creating the 3D datasets required
for such applications, in particular where coverage should be city
wide and high level of detail - e.g. roof structures - is not required.
It results in flat-roofed buildings and also has the advantage of
integrating 3D buildings with a 2D footprint (Kada, 2009). In-
creasingly, however, more detailed (and realistic) 3D features are
becoming available, including full roof structures. Whereas these
used to be limited to small blocks or individual buildings result-
ing from Computer Aided Design (CAD) models or terrestrial

LiDaR (Light Detection and Ranging) or other scanning, they are
now being generated on a more commercial scale.

For both the flat roofs and more detailed 3D structures, the re-
sulting 3D data is generally quite large in volume and complex in
detail (Glander and Döllner, 2008) and thus potentially difficult
to visualize in its entirety, in particular on a mobile device.

In order to contribute to the understanding of the performance
implications of the varying levels of detail required to underpin
different contexts in which 3D City Models are used, this pa-
per compares the rendering performance obtained when visual-
isng a City Model using flat-roofed 3D buildings and those with
more detailed roof structures. We make use of OpenGL ES (Open
Graphics Library for Embedded Systems, a commonly used plat-
form for 3D rendering in mobile devices) to develop an App for
testing on a tablet Android devices.

2 BACKGROUND

2.1 Generating 3D City Models

3D City Model datasets have varying levels of detail (LoD) (Kolbe
et al., 2005) - ranging from LoD 0 (a digital terrain model), through
LoD 1 (a block model without any roof structures), LoD 2 (a city
model having explicit roof structures and potentially associated
texture) and moving up to LoD 4, which includes interior struc-
tures. Such data can be generated from digital ortho-photos, 2.5D
image draping, extrusion, Computer Aided Design (CAD) mod-
els (Batty et al., 2001), LiDaR point clouds, applications such as
PhotoSynth (PhotoSynth, 2012) and terrestrial Laser Scanning.
Single sources of data have been used (Tse et al., 2008); however,
it is more common to combine multiple sources of data (van Es-
sen, 2008, Richmond and Romano, 2008, Wang and Sohn, 2011).
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Extrusion provides an automated method to generate a 3D model
- combining 2D topographic mapping with height information de-
rived from LiDaR data. This gives a rapid mechanism for gener-
ating an entire City Model to LoD 1.

2.1.1 Constructing Level of Detail 2 Models For more de-
tailed modelling, it is the semi-automated methods such as pho-
togrammetry (Ulm 2003 and Karner 2004 in (Döllner et al., 2005))
or manual modeling based on CAD or 3D modeling tools that are
required (Döllner et al., 2005) and a number of authors have de-
scribed approaches for LoD 2 dataset generation: Dollner and
colleagues (Döllner et al., 2005) describe a process to generate a
“smart building” (with continual levels of detail) starting from a
block model. Sengul (Şengül, 2010) describes a process of gen-
erating 3D models using photogrammetric techniques and then
converting them to CityGML. A semi-automatic approach that
makes use of high resolution satellite imagery is described by
(Krauß et al., 2008), although the method is limited to distin-
guishing between buildings with flat roofs and those with gabled
roofs. The method first creates ortho-photos by combining a Dig-
ital Elevation Model with imagery, and then uses a masking ap-
proach to identify buildings by classifying them as “high, non-
vegetation”. Prieto and colleagues (Prieto et al., 2012) make use
of point cloud data captured for individual buildings, along with
post-processing using tools such as Google Sketch-up to fill in
the gaps that cannot be captured by the scanning process. They
also propose a manual approach to associating semantic informa-
tion with the resulting 3D features. Kada (Kada, 2009) show the
potential of generating a 3D model by cell decomposition, where
solids are decomposed into non-intersecting, typically parameter-
ized primitives. They then identify roof structures by first gener-
ating and then examining the normal vectors of all points inside
the same cell. In all cases, these methods are semi-automated,
requiring some element of manual intervention.

3 IMPROVING PERFORMANCE - EXAMINING
SYSTEM ARCHITECTURE

Research that has been conducted into city modelling for mobile
devices is perhaps limited due to the fact that devices have only
recently become powerful enough to render 3D graphics. Indeed,
mobile computation still faces various limitations, including lim-
ited CPU (Central Processing Unit) and memory, the absence or
limited performance of graphics accelerators, the absence or lim-
ited performance of FPUs (Floating Point Units) and energy con-
sumption issues (Nadalutti et al., 2006). When examining any
issues related to computing performance, it is important to un-
derstand the hardware and software architecture of the system.
This understanding leads to the identification of potential bottle-
necks in the rendering process and permits optimisation where
possible.

Mobile mapping is generally underpinned by a three-tier archi-
tecture (Figure 1), consisting of an end-user device or “client”
(which could be a smart phone or tablet) a web server (which
sends data to the client and retrieves requests from the client) and
a database server, which holds the map and other data to be dis-
played (Mitchell, 2008). Based on this architecture, a number of
considerations can be taken into account when rendering data on
mobile devices: potential bottlenecks include retrieving the data
from the database, transmitting the data from server to client over
a mobile network (i.e. network bandwidth), and rendering the
data on the device using specialist software that takes advantage
of any graphics hardware. For each of these stages both hardware
and software are important. In general, all through the process, it
is important to minimise the amount of data in order to improve
performance.

Figure 1: Mobile 3D Mapping Architecture

3.1 Hardware Improvements

Initial research carried out in order to overcome limitations of
mobile rendering focussed on hardware (Nadalutti et al., 2006).
For example (Woo et al., 2001) produced small graphic acceler-
ator chips to allow high performance combined with low power
consumption. More recently, many mobile devices have embed-
ded graphics chips, increasingly powerful processing units (and
multiple cores (NVIDIA Corporation, 2011)) and increased mem-
ory permitting improved performance and drawing them closer
to the specification of gaming consoles, although battery life re-
mains an issue to be solved (Chester, 2013).

Considering the above architecture (Figure 1), and defining ren-
dering as the process of taking data representing the real world
(i.e. the 3D City Model) and transforming it to a 2D pixel rep-
resentation on screen, two main approaches to mobile mapping
(including 3D mapping) can be identified - rendering data on the
server side and rendering data on the client device. The latter
has been made possible by the increasing specification of mobile
devices.

3.1.1 Server Side Rendering For server-side rendering, data
processing and rendering takes place on a powerful computer
(with performance enhanced by clustering servers and using graph-
ics accelerators) (Lamberti et al., 2003) and only the results are
sent to the mobile client (Nadalutti et al., 2006, Brachtl et al.,
2001), most commonly as an image or “raster”. As with 2D map-
ping, a number of providers have generated 3D raster maps for
use on mobile devices (see Figure 2 which shows 3D mapping
available from Google).

3.1.2 Client Side Rendering When considering architectures
where the rendering is carried out on the mobile client, the aim
is to keep the graphics as simple as possible in order to achieve
satisfactory performance. A number of approaches can be identi-
fied. (Döllner et al., 2005) briefly review optimization strategies
such as view-frustum culling, occlusion culling, and back-face
culling that operate on general graphics primitives. Additional
approaches to reducing the volume of data to be rendered client-
side for a 3D City Model include data compression (van Essen,
2008) and mesh simplification (Sester, 2007).

3.1.3 Combining Server Side and Client Side Approaches
The results of sever side mapping are generally static (i.e a simple
image, or raster). This approach has the advantage of limiting the
amount of data to be downloaded, as well as allowing the images
to be pre-prepared for instant rendering. However, such mapping
does not provide the interactivity of a vector map, which stores
the individual buildings as separate objects rather than as part of
a single image. Although vector datasets can be overlaid onto 3D
raster maps, they often overlap the buildings as shown in Figure
2 rather than being correctly placed. An image based approach
cannot be easily navigated around or updated when underlying
datasets change and does not provide click-and-identify informa-
tion for the building objects. Generating a fully interactive map
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(similar to a GIS, where the user can click on a point to find out
information, i.e. a vector map) (Mitchell, 2008) can be achieved
by making use of the client-side rendering approaches described
above, with, however, the limitation imposed by the hardware on
the amount of data that can be rendered, as well as on the amount
of data to be downloaded over what is frequently a low bandwidth
link.

Hybrid Approaches combine server-side and client-side render-
ing, with the aim of limiting data to be served over the network
and hence processed for rendering on the client. For example,
(Prieto et al., 2012) note the importance of rendering city models
on web-based platforms, and describe a process to take a detailed
point cloud and transform it into a CityGML database structure.
They suggest that the user can be presented with 2D map on
which individual 3D buildings can be requested by clicking. The
data is then presented as a single building in a customised JSON
(JavaScript Object Notation) format (Prieto et al., 2012). Addi-
tionally, (Quillet et al., 2006) developed a system that extracts
feature lines of building facades on the server side and streams
data on demand to the client. The approach forces the point of
view to street level. (Ellul, 2012) describes the use of topological
data structures to remove shared and hidden internal walls in a
model generated by extrusion, rendering the reduced dataset on
the client. (Ellul and Joubran, 2012) also tested an aggregation
approach, looking at the impact of generalisation on rendering
performance in Google Earth.

An additional hybrid approach is proposed in this paper, where
the dataset is pre-structured (triangulated) on the server in order
to avoid executing a triangulation process on the client device.
Common Nodes (x, y, z points) are identified server-side and re-
used in order to minimise the size of the dataset for transmission
to the client. The proposed approach is described in further detail
in Section 5. A hybrid approach requires additional processing
overhead on the client side, but has the advantage of interactivity
which in turn improves the usability of a 3D mobile application.

4 TEST DATA

The data used for testing has been provided by the Ordnance Sur-
vey (the UK National Mapping Agency) and consists of a 3D
dataset for the UK city of Sheffield. The data is based on the
Ordnance Survey’s 2D topographic mapping dataset, Mastermap
(Ordnance Survey, 2013) and covers an area of approximately
1km by 1km square for Sheffield. Height information is available
for all buildings in the city, permitting the data to be extruded
to generate LoD 1 buildings. In the center of the city, additional
roof details have been added bringing the structures to LoD 2. An
extract of this data (showing Mastermap topographic base map-
ping) is shown in Figure 3. For the area in the centre of the city
shown by the darker buildings in Figure 3, LoD 2 buildings are
also available. Figure 4 shows a sample of the LoD 1 and LoD 2
data.

4.1 Summary Dataset Statistics

For testing purposes, two datasets were extracted from the source
data. Firstly a dataset covering the entire extent of the city was
generated at LoD 1. A second dataset for this area was generated
replacing the LoD 1 with LoD 2 data where this was available,
again over the entire area. To further examine the impact of LoD
2 data on performance, a smaller subset of data was also created,
covering an area of the city where LoD 2 data was almost fully
available. Table 1 gives details of the resulting datasets.

Examining the data in more detail, it can be noted that the LoD
2 dataset includes some buildings not present in LoD 1 (Figure

Figure 2: Google’s 3D Raster Mobile Mapping
source: http://www.google.co.uk/intl/en/mobile/

maps/3d/tilt.png

Dataset Details Number of
Buildings

Entire City - LoD 1 1560
Entire City - LoD 1 and 2 1653
Part City - LoD 1 475
Part City - LoD 1 and 2 1 516

Table 1: Dataset Details - Sheffield

5). In the Figure, the case illustrates a greenhouse (glass house)
which was included in the specification for the LoD 2 data but
as it was not included in the original LoD 1 dataset as a build-
ing it was not extruded. In addition, the LoD 2 dataset has been
extended slightly beyond the defined boundary to include two
3D buildings that serve as a test case for LoD 2 data extraction
(Figure 3). To the South of the test area, the Moorfoot Build-
ing (Wikipedia, 2013) is included - this houses many services
offered by Sheffield City Council and is also built with a unique
step-pyramid structure. To the North West, “Park Hill” is an un-
usually shaped 3D structure and Europe’s largest Grade II listed
building (i.e. a building with national conservation importance)
(The Park Hill Estate - Europes Largest Grade 2 Listed Building,
2013).

5 IMPLEMENTING THE VISUALISATION
ALGORITHM

As briefly mentioned above, this paper proposes a hybrid ap-
proach to vector mapping of a 3D City Model. Firstly, data is pre-
structured into a format suitable for rendering within a database
server (making use of Java algorithms to implement the required
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Figure 3: 3D Dataset for Sheffield, showing LoD 1 data (top) and
the mix of LoD 1 and LoD 2 data (bottom)

structuring). The data can then be extracted (queried) from the
spatial database using a query language such as SQL, and pre-
packaged for transmission as an XML dataset. The extraction and
packaging operations can be implemented using a web-based pro-
gramming language such as PHP. Once the data is received on the
client (mobile device), the XML can then be parsed - i.e. the data
elements extracted from the XML file and placed into a the re-
quired structure for rendering. As described below (Section 5.2),
OpenGL ES only supports data in triangulated format. A num-
ber of data preparation stages are therefore required to convert
the data into the appropriate format and structure it for rendering.
These are described here, followed by a description of Open GL
ES and of the implementation of the rendering software itself.

5.1 Dataset Structuring and Transmission

Although it is possible to triangulate the data on the fly in the App
itself (Ellul and Altenbuchner, n.d.) given the quantities of data,
the first step of the hybrid approach described here is to undertake
the triangulation process on the server-side data.

5.1.1 Loading the Dataset into Oracle Spatial The dataset
is provided in ESRI Shapefile Multi-Patch format (ESRI, 2013)
and is then transformed into Oracle’s Spatial Database Format
(the Oracle database is used to serve the data to the test App).
As part of this transformation, the dataset is fully triangulated, as
required by OpenGL ES (Whitrow, 2008). Although the Multi-
Patch format does partially triangulate the data - specifically the

Figure 4: Comparing LoD 1 (top) and LoD 2 data (bottom) for
the same buildling

walls of the building are triangulated - in the case of a standard
extrusion process the roof and floor structure are stored as “geom-
etry rings” and not suitable for rendering in OpenGL ES (ESRI,
2013). The “Feature Manipulation Engine” (FME) software from
SafeSoft (SAFE Software, 2013) was used to first triangulate the
data by converting it to Autodesk 3D Studio format, and then
to import the resulting triangulated features into Oracle Spatial
(Oracle, 2013b). Once imported into the database, the data was
re-structured in preparation for visualisation.

5.1.2 Optimising the Data Structure for Rendering A num-
ber of approaches can be taken to minimise the amount of data
passed through the rendering pipeline. Firstly, given that the sys-
tem architecture is web based and the devices used for testing are
Android Tablets and Smartphones, it is important to reduce the
volume of data that is queried from the database and transferred to
the device. OpenGL ES offers the option of storing all the Nodes
describing the data in a single buffer. As Nodes are used by mul-
tiple triangles, this reduces the quantity of data to be transmitted.
The triangles required for rendering are then constructed by mak-
ing use of an indexing approach, where a list of indices point to
the required Nodes. The lists of Nodes and corresponding in-
dexes were created from the imported data by pre-processing the
data in Java, extracting the triangles from the SDO GEOMETRY
objects, where a single building is made up of multiple triangles,
and storing them as separate, single, triangles. The resulting data
structure, which can be used directly for rendering, is as shown
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Figure 5: An example of an LoD 2 building (a glasshouse, bot-
tom) not included in the LoD 1 dataset (top)

in the example in Table 2 and Table 3. Additional tables link the
individual triangles back to the buildings.

Table 4 gives a summary of the resulting triangulated datasets,
providing a first insight into the impact of LoD 2 data - the num-
ber of Nodes for the full LoD 1 and 2 mixed dataset is 1.4 times
that for the LoD 1 dataset and for the part dataset, this rises to
1.6. The number of triangles for the full dataset at LoD 1 and 2 is
1.37 times that for the LoD 1 data, and for the smaller test dataset
this rises to 1.56.

5.2 OpenGL ES Rendering

The cross-platform and cross-language graphics Application Pro-
grammers Interface (API) OpenGL (Open Graphics Library) is a
software interface to graphics hardware (McReynolds and Blythe,
2005). OpenGL has several specifications for various purposes.
Of relevance here is OpenGL ES, which is commonly imple-
mented for mobile devices . Key features were removed from

Node ID X Value Y Value Z Value
1 435713.69 387269.31 55.43
34 435731.06 387260 54.22
35 435770.31 387249.75 52.36

Table 2: Node Table Structure

Node ID Triangle ID Node Order
1 1 1
34 1 2
35 1 3

Table 3: Index Table Structure

Dataset Number of
Buildings

Number of
Triangles

Number of
Individual
Nodes

Entire City - LoD 1 1560 81236 38055
Entire City - LoD 1
and 2

1653 115937 55135

Part City - LoD 1 475 24349 11421
Part City - LoD 1
and 2 Part

516 37993 18202

Table 4: Pre-Triangulated Data Structure, Optimised for Visuali-
sation

OpenGL for this implementation (Anyuru, 2012)- in particular
OpenGL ES only allows triangle-based surface primitives and
excludes quad, quadstrip or polygon primitives. Triangles make
hardware algorithms simpler and faster, as they are always con-
vex and planar (Cozzi and Ring, 2011).

Figure 6: Rendering Pipeline after (Zechner and Green, 2011)

Figure 6 (after (Zechner and Green, 2011)) shows the path of a
dataset through the rendering process in OpenGL ES. For stan-
dard rendering, the modelling software first generates a triangle
mesh, which defines the shapes of the objects, and their attributes,
colours, textures. Using the hybrid approach here, this is done on
the server. Once transmitted, the client-side software the collates
the triangles into an OpenGL readable structure (arrays contain-
ing the triangle points and index arrays describing how these are
used to describe the objects to be rendered). The data structure
enables OpenGL to reuse the same vertex for several triangles,
reducing memory requirements on the device.

Once the data is correctly structured into arrays, a process of
translation and scaling is required to ensure the 3D City Model
is visible. The dataset is also scaled to ensure that the ratio be-
tween the X and Y extents matches the width:height ratio of the
device (i.e. that the resulting data is not distorted). Data is then
projected into a 2D coordinate system for display on screen, with
an orthographic projection avoiding foreshortening (Smithwick
and Verma, 2012) by disregarding the effect of vanishing points
and applying a one to one correspondence between the real world
units and the pixel positions on screen. This method is widely
used for engineering applications (Whitrow, 2008).

Following projection, a “clipping” process is used to remove any
objects that will not be visible to the user. For example, objects
too close to the user obscure the view, and objects too far away
will not be shown in enough detail to be useful. The penulti-
mate step in rendering is transforming the resulting 2D data once
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again, to move from scaled real world coordinates into the screen
coordinate system. The data is then ready for the final stage in
the process- rasterization, which converts the data into pixels on
screen (Zechner and Green, 2011).

The rendering process thus involves a number of structuring and
transformation processes. It can be expected that a more com-
plex, detailed, datasets will slow down performance.

5.3 The Implemented Rendering Process

The Android device selected for testing is an Acer Iconia 10-inch
tablet, having a screen size of 800 by 1280 pixels, and a Dual
Core, 1GHz processor, with 1GB of RAM, running Android Ver-
sion 3.2.1. As described above, for the first part of the rendering
process, PHP code, combined with SQL queries, is used to gen-
erate three datasets, which are served to the Java Android App as
tagged XML:

1. An ordered list of Nodes, containing the X, Y and Z coordi-
nates for each Node

2. An ordered index list, describing how the Nodes form the
triangular Faces used for rendering

3. A short list detailing the geometrical extents of the dataset -
i.e. the minimum bounding volume. This is used to ensure
that the resulting data is centred on the device’s screen when
rendered.

Traditionally, the XML may be generated by iterating through
each row of the dataset, generating the required tagged data us-
ing string concatenation commands. However, Oracle offers both
“XMLAGG” - which aggregates all rows of a query into one doc-
ument - and the “XMLEMENT” - which wraps individual data
items in XML tags - query statements to automatically generate a
full XML document from a dataset without the need for iteration
(Oracle, 2013a).

Once the XML data is parsed on the client device, it then passes
through the OpenGL rendering pipeline described above. To trans-
form the real-world coordinates (which are in British National
Grid) into values appropriate for display, the initial screen coor-
dinate system was set up with its origin (0,0,0) in the centre of the
viewport. The real world coordinate values of the imported build-
ings are then transformed into screen coordinates by finding the
centre point of each axis for the dataset (e.g. (xmax + xmin)/2)
and then translating the dataset by the respective distance along
the negative x and y. The z-axis is shifted upwards. For the sec-
ond and third steps of the rendering process, OpenGL ES uses
the bounding coordinates of the dataset to project the 3D trian-
gles into 2D space and to set clipping boundaries, which in the
case of this project are set to the extents of the dataset. The near
and far clipping planes were set to 1000 and -1000 in order to
avoid clipping when the user pans the objects in the z-direction.
Projection is set to be orthographic.

Time measurements are taken at various stages through the pro-
cess and written to the device as a CSV file in order to permit
performance comparisons.

6 RESULTS

In total ten rendering time measurements were carried out for
each of the four test datasets. The results were then averaged for
each dataset. Figure 7 shows the resulting rendering times, with

Figure 7: Rendering Results for All Datasets

Figure 8: Sheffield - LoD 1 Dataset - Aerial View

Figure 9: Sheffield - LoD 1/2 Dataset - Aerial View

Figure 10: Sheffield - LoD 1 Dataset - City View

time (in milli-seconds) given in Table 5. Figures 8, 9, 10 and 11
show the resulting rendered datasets.

In Table 5, the “Import XML” time refers to the time to convert
the dataset into XML from the database using PHP and download
the dataset to the mobile device. The “Parse XML” time refers
to the time required to extract the data values from the XML, and
the “Setup Mesh” time refers to the time required to convert the
extracted data into the required format for OpenGL rendering.
“Total Time” includes all these factors and other elements of tim-
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Figure 11: Sheffield - LoD 1/2 Dataset - City View

Dataset Import
XML

Parse
XML

Setup
Mesh

Total
Time

LoD 1 All 8209 34127.2 10807.1 53213.3
LoD 1 and
LoD 2 All

9981.8 39714.8 21221 70967.4

LoD 1 Part 4674.9 7340.9 2195.4 14237.3
LoD 1 and
LoD 2 Part

7213.6 12156.8 3492.1 22888.2

Table 5: Results - All Times in milliseconds

ing (e.g. to change activity from download to rendering), and all
times are measured in milli-seconds.

7 DISCUSSION AND FURTHER WORK

The results obtained, and in particular the overall rendering time
of 52 seconds for the LoD 1 data and 72 seconds for the mixed
LoD 1 and 2 data, highlight the potential of the hybrid approach
for 3D City Model rendering, where part of the dataset restruc-
turing is carried out as a pre-prepared dataset on the server, re-
ducing the computational effort (and specifically the triangula-
tion process) required on the mobile device. In addition, the re-
sults bring to the fore the importance of selecting an appropriate
dataset for rendering and visualisation on mobile devices, with
the mixed LoD 1/2 dataset covering the entire Sheffield area tak-
ing 1.3 times longer to render than the LoD 1 dataset. This in-
creases to 1.6 times when the smaller, mostly LoD 2, dataset is
considered.

For all the four datasets, the parsing of the XML constitutes a
significant proportion of the overall rendering time (between 50
and 64%). However, the significance of the dataset import time
(i.e. the time to download the dataset from the server) varies -
for the larger dataset, it is approximately 15% of the overall time,
rising to 31% for the smaller datasets. Some of this variation may
be due to varying network bandwidth, which was not measured
separately and may also be a bottleneck for performance. Con-
versley, mesh set-up time (i.e. the time to convert the downloaded
data into the required OpenGL arrays - amounts to approximately
25% for the larger dataset, but only 15% for the smaller datasets.
Considering the number of triangles, for the mixed datasets (LoD
1 and LoD 2, both full and partial) the data is represented by
around 70 triangles per building. This is reduced to around 51 for
the LoD 1 dataset. Figure 12 shows these ratios.

Some considerations should be made when reviewing these re-
sults. As noted above, there were a number of additional build-
ings included in the LoD 2 datasets that did not form part of the
LoD 1 data - this will have resulted in a slightly increased overall

Figure 12: Node and Triangle to Building Count Ratios

rendering time for the LoD 1/2 tests, as well as increased num-
bers of nodes and triangles. The triangulation algorithm used to
prepare the datasets was that provided by Safesoft’s FME product
(SAFE Software, 2013) and may have generated a larger number
of triangles than would be produced using other methods.

Figure 13: An extract of the Sheffield Dataset showing that Inter-
nal Walls are also Rendered

A number of areas for further development and testing can also
be suggested. Firstly, as shown in Figure 13, the dataset used for
these tests also includes internal walls, which are not visible to
the end user when viewing the data at city scale. These could
be removed (via a process of aggregation or generalisation) to
reduce the number of triangles to be rendered. Secondly, the pre-
creation of the triangles for rendering potentially resulted in over-
all performance improvements. However, this currently means
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that the triangles are de-coupled from the original data, meaning
that changes in the latter will not be reflected. The “Ear Clipping”
triangulation algorithm is a simple and robust algorithm which
works well for geospatial polygons (Cozzi and Ring, 2011). It
is underpinned by an assumption that the polygons which repre-
sent the building roofs in spatial datasets are “simple polygons”
(i.e. do not have internal holes or self-intersections), iterating
around the Nodes making up the polygon removing each trian-
gular “ear” as it goes. Triggers could be developed inside the
Oracle database to automatically re-triangulate the data when the
underlying buildings change.

An additional dataset for the UK city of Newcastle is available
and should be used to validate the results obtained for these pre-
liminary tests. In addition, having access to additional data will
permit further investigation into the ratios of Nodes and Triangles
present in LoD 1 and LoD 2 buildings. As can be seen in Figure 3
the data is currently very much intermingled, which makes sepa-
rating out the different LoD buildings difficult in a 3D context as
the required spatial queries are not available due to the lack of a
Spatial Reference ID for 3D British National Grid data in Oracle.
Spatial queries in 2D could be used to overcome this issue.

The results do show a significant difference in rendering time
with increasing level of detail - but they also highlight that ren-
dering a city-wide dataset at LoD 1 can be slow - 53 seconds
not being considered acceptable response time in a web-based
situation (Marsh and Haklay, 2010). Further work is thus re-
quired on both server-side and client-side aspects of rendering,
perhaps combining the work described here with additional pre-
preparation of datasets and implementation of the techniques de-
scribed in Section 3 such as data compression (van Essen, 2008)
and mesh simplification (Sester, 2007) over a block of buildings
to test for optimal performance. Techniques to reduce the vol-
ume of transmitted data and the time required to parse this data
could also be considered - for example, (Crockford, 2006) pro-
poses Javascript Object Notation (JSON) as a smaller footprint
data transmission mechanism.

The adequacy of 3D detail, the visual impact of the resulting 3D
dataset, the suitability of the response times and the overall us-
ability of the 3D model is, perhaps, more subjective and will de-
pend on the specific application for which the 3D City Model is
to be used i.e. the context of use (Kjeldskov and Graham, n.d.).
For example, definitions such as “an application should respond
within 2 seconds to provide users with a feeling of interactiv-
ity” cannot be applied universally and in mobile applications, 2
seconds is too long for an application that communicates with a
driver (Marsh and Haklay, 2010). The scale at which the data
is visualised is a second factor to consider. The source dataset
contains a very high level of detail with buildings subdivided into
smaller elements where roof height varies. This detail may be
useful, for example, in a planning context, for large scale map-
ping. However, when a larger extent of the dataset is viewed
(as in Figure 8 and Figure 9 above) the detail perhaps appears to
“clutter” the map and the more simple lines of an aggregated and
simplified dataset could be said to be more visually appealing,
without significant loss of detail or general shape of the overall
city. An aggregated dataset may, therefore, be suitable for visu-
alising data at a smaller scale for example, to visualise 3D air
quality distribution across a city. Therefore the methods devel-
oped should be extended to make better use of the web-based ap-
proach to querying and downloading data, dynamically tracking
the user’s interaction with the data and retrieving detailed (LoD
2) data only when the user is zoomed in.

More generally, the datasets used for this test, the multiple meth-
ods used to generate 3D data, the increasing availability of Build-

ing Information Models (BIM, which go beyond LoD 4 to model
a digital representation of physical and functional characteristics
as a shared resource to be used throughout a building’s life-cycle
(Smith, 2011), and are now becoming mandatory in large gov-
ernment construction in the UK (Ngo, 2012)) and the wide range
of potential applications that make use of 3D mobile mapping
and City Models all highlight the fact that it is unlikely that users
will be working with or require a dataset composed of a single
level of detail - indeed, as discussed above the detail should be
adapted to the specific application and context of use. This in
turn highlights the requirement for further investigation into the
specific detail and model sizes (number of Triangles and Nodes)
generated when using the each of the methods described in Sec-
tion 2.1.1 to generate 3D data. The potential of 3D generalisa-
tion to provide more context (application) specific data and to
address performance issues on mobile devices should also be in-
vestigated, to ensure that the data provided is contextually ap-
propriate and presented at a scale that is relevant while meeting
expected performance.
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