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ABSTRACT: 

 

Underground pipelines pose numerous challenges to 3D visualization. Pipes and cables are conceptually simple and narrow objects 

with clearly defined shapes, spanned over large geographical areas and made of multiple segments. Pipes are usually maintained as 

linear objects in the databases. However, the visualization of lines in 3D is difficult to perceive as such lines lack the volumetric 

appearance, which introduces depth perception and allows understanding the disposition and relationships between the objects on 

the screen. Therefore the lines should be replaced by volumetric shapes, such as parametric shapes (cylinders) or triangular meshes. 

The reconstruction of the 3D shape of the pipes has to be done on the fly and therefore it is important to select a 3D representation 

which will not degrade the performance. If a reconstruction method provides a good performance, the visualization of pipes and 

cables is guaranteed to provide a smooth experience to the final user, enabling richer scenes but also establishing the visualization 

requirements in terms of hardware and software to display underground utilities. 

 

This paper presents our investigations on a strategy for creating a 3D pipes for 3D visualisation. It is assumed that the pipelines are 

stored in a database and portions of them are retrieved for 3D reconstruction and 3D visualization. Generally, the reconstruction of 

underground utilities can be performed in different ways and should lead to realistic appearance, produce visual continuity between 

segments, include objects depicting specific connections and even consider buffer volumes displaying the uncertainty and the 

security distance between objects. The creation of such visually pleasing reconstructions may require very detailed shapes, which 

will increase the complexity of the scene and degrade the performance. This research has identified four criteria to measure the 

complexity of the scene and conclude on a 3D reconstruction strategy: number of scene graph nodes, number of triangles and 

vertices on the screen, needed transformations and appearance options. On the basis of these criteria a testing framework is 

developed. Ten different strategies for 3D reconstruction are defined and tested for X3D, X3DOM and WebGL. The paper analyses 

the results of the tests and concludes on the best strategy. 

 

 

1. INTRODUCTION 

Many utility networks are currently managed as 2D/3D line 

objects with attributes in databases. This representation is 

sufficient for performing a variety of tasks but faces numerous 

challenges when these data have to be visualised in 3D 

environments. The visualization of 3D lines on the screen is 

often unclear as it lacks the volumetric appearance, required to 

produce depth perception, which is the key issue to understand 

the disposition and relationship of the objects on the screen. 

Lines displayed on current graphics hardware cannot be shaded 

as do not have any volume or surface, and as consequence 

occlusion and relative size are impossible to achieve. Their 

portrayal on 2D or even 3D displays cannot provide any depth 

information. With lines only, it is impossible to determine the 

closest object and the understanding of the scene becomes 

difficult if not impossible. Many projects have been initiated to 

investigate these issues, e.g. DeepCity3D 

(http://www.deepcity3d.eu) or 3DSDI (http://maasvlakte2-

3dsdi.ddss.nl/).  

 

To solve this problem, volume should be added to non-

volumetric 3D lines, i.e. their 3D shape has to be reconstructed 

by creating the outer shell of the desired object and making 

them suitable to real-time rendering using computers equipped 

with Graphics Processing Units (GPUs). 

 

Substantial research has been carried out for working with 

underground utilities information on different aspects. Part of it 

concerns the computer models and storage solutions for pipes 

and cables. Another relevant part for this research deals with the 

transformation of GIS data into visual representations, both in 

2D or 3D. Research on modelling and visualization of utilities 

in 3D has been done by Du and Zlatanova (2006), where 

information is transformed into 3D objects and visualized on 

the fly as shapes with volumetric appearance and symbols 

depicting special pipeline attachments. A corresponding 

prototype is presented using a spatial database as storage 

solution, implemented with Oracle Spatial built-in spatial types. 

Results are visualized and transformed using MicroStation and 

the Java edition of MicroStation Development environment 

(JDML) to convert on the fly the lines into 3D shapes.  

 

This desktop platform can be seen as a limiting factor towards 

the seamless distribution of information to different 

stakeholders. The benefits of managing centralized utilities 

information using DBMS and providing 3D visualization have 

been shown of critical importance by Zlatanova et al. (2011), 

revealing better relationships between pipes and objects, 

making easier the visual inspection while reducing the 

misunderstanding to the minimum. 
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The management and registration of utility networks in 4D 

(space + time) using a spatial DBMS is presented as a 

promising solution to maintain centralized management and a 

correct registration of legal rights and obligations, facilitating 

the analysis and comparison with the related parcels (Döner et 

al., 2011), as some legal aspects can only be solved using 3D 

information to determine its spatial relationship with utilities 

above or under the ground. Work on overlaying utilities 

information over panoramic images has been studied by 

Verbree et al. (2004), addressing the problem of understanding 

maps while translating their contents into reality and the other 

way around, closing the gap between geo-referenced 

information and augmented reality. 

 

The process of creating 3D visualizations from 2D geographical 

sources on the fly has been elaborated by Schall et al. (2008) 

with a transcoding pipeline. This process separates the model 

content from the presentation, allowing generating temporary 

3D models on demand without storing them. This transcoding 

pipeline requires GIS data, rules for the model generation and 

styles for visualization, but also a ‘scene graph’ specification to 

represent the transcoded model. This process has been applied 

by Schall et al. (2010) for modelling underground utilities on 

mobile devices for Augmented Reality applications, consuming 

geographical information encoded in Geographical Modeling 

Language (GML) and converted into ‘scene graphs’. 

Standardization efforts towards separating content from 

presentation are proposed in (Basanow et al., 2008) and 

presented via ‘Styled Layer Descriptors’. A specific description 

useful for visualization of underground utilities has been 

proposed for lines, reconstructing them based on radius and 

colour information. 

 

So far, most of these works have been done on the desktop or 

for a web environment using plugins to display 3D content. 

With the advances on the Web, WebGL has appeared as a 

technology for displaying 3D content without the need of 

plugins. Given the novelty of this technology and the 

interpreted nature of the JavaScript language, research 

performed towards the suitability of this technology has not 

been carried out and moreover, the implications on the 

transcoding procedures on performance have not been 

addressed. 

 

This paper presents a framework for 3D reconstruction of pipes 

and cables for visualization on the Web. The framework is 

tested for visualization with X3D, X3DOM and WebGL. This 

paper is organized as follows: The next section presents the 3D 

reconstruction flow, section 3 discusses the implementation and 

the tests, Section 4 concludes on the results of the tests. 

 

2. RECONSTRUCTION FLOW  

The proposed reconstruction flow is an abstraction created to 

understand and implement the reconstruction process of the 

studied geometrical features. This flow is basic for 

implementing 3D web applications and resembles the proposal 

of Schall et al. (2008) to convert the 2D geospatial data into 3D 

models and deliver them through 3D scenes. This delivery 

mechanism is a concept also used by Altmaier and Kolbe 

(2003), Heinen et al. (2005), Basanow et al. (2008), where Web 

3D Service (W3DS) and other related Web Services encapsulate 

the server side functionality and deliver geographical scenes. 

 

1. The reconstruction flow (Figure 1) starts with the information 

stored into a spatial database, from which an arbitrary user 

request triggers a query (spatial or not) to the data store, 

producing a series of results organized in tables where each row 

or record returned corresponds to a feature in the database, 

composed of a geometry definition and a set of attributes. 

 
Figure 1: 3D reconstruction flow for pipe lines and cables 

 

2. Given the geometry, the attributes and appearance mapping, 

the actual creation of the 3D objects starts by choosing a 

reconstruction approach. The chosen approach transforms the 

geometric object with lower dimensionality into a 3D object 

based on its own conversion rules. Depending on the method 

used, graphical primitives or custom 3D meshes can be used in 

replacement to construct the objects and reused along the 

procedure. 

 

3. After all the pipes and cables are reconstructed; the scene is 

assembled by linking the produced 3D shapes to their 

appearance, including identifiers, actions and names for object 

picking (e.g. highlighting their attributes by hovering over with 

a pointer device). 

 

4. When a scene is finally assembled, it is made available to the 

3D engine which parses the information to produce an internal 

representation suitable for rendering. In this step, the declared 

objects, materials, identifiers, names and additional information 

are converted into a scene graph. 

 

5. After creating the scene graph, the objects are displayed to 

the user as sequences of two-dimensional images producing the 

illusion of movement. If the user interacts with the scene this 

requires different elements from those present on the scene, the 

3D application redirects that request into a database query, 

starting a new reconstruction flow and displaying the new 

elements to the user. 

 

3. THE FRAMEWORK FOR RECONSTRUCTION 

The reconstruction flow described before requires the choice of 

a reconstruction method to convert the 2D linear underground 

objects into 3D volumetric shapes suitable for visualization and 

interaction. The reconstruction methods set high level rules and 

procedures for interpreting the 2D data, but also define low 

level procedures to create a set of scene graph nodes 

representing the objects.  

 

The high level modelling considers two approaches: the first 

considers that an underground object is modelled with simple 

independent objects, producing multiple scene graph nodes. 

The second approach considers that the smaller parts composing 

underground utilities are dependent on each other and should 
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produce a bigger single entity. Reconstruction approaches 

following the first category are termed here as Split methods 

while the others are termed Non-split methods. 

 

In the low level, specific decisions for creating the scene graph 

are taken and the basic scene graph nodes considered for this 

purpose are adapted from (Strauss and Carey, 1992) and 

include: 

 

Shape Nodes represent geometric or physical objects. The 

Shape nodes are leafs on the graph and are associated to low-

level representations of triangulated models. Examples of those 

include Indexed Face Sets, Triangle Strips, Triangle Fans, 

Indexed Triangle Meshes, Line Sets, among many others. These 

nodes can also include definitions for common objects like 

Cone, Sphere, Cylinder, etc. For the reconstruction purposes, 

only indexed representations are considered but specifically, the 

Indexed Triangle Meshes, which holds a list of vertices, their 

normals and list of triangles representing the 3D object. 

 

Group Nodes are to connect other nodes into graphs or sub-

graphs. Examples include the Switch node, useful to implement 

libraries of objects and materials. The Group node is also useful 

to aggregate multiple nodes and share common attributes. 

 

Property Nodes describe attributes of the objects related to the 

appearance of the objects, necessary to provide distinctive 

appearance. Examples of the used classes include BaseColor, 

Material, Normal, Texture, Transform (for affine 

transformation), among many more.  

 

With these elements in consideration, four basic decisions are 

taken towards reconstructing the objects: 

 

1. Geometry The first choice corresponds to the geometry used 

to encode the objects, which in this case can be based on 

primitives like the Sphere or Cylinder or arbitrarily defined 

using Indexed Triangle Meshes. 

 

2. Transformations are a property node and one of the basic 

operations used to scale, rotate or translate siblings of that node. 

Geometric primitives and templates need to be transformed 

every time to place them on the desired positions. 

 

3. Object Reuse Scene graphs allow creating objects and 

reusing their definitions, acting as templates for the creation of 

other similar objects. Such objects should be defined on local 

coordinates so transformations parameters, can be provided to 

transform them during runtime. An example of template could 

be a traffic sign used, which can be further reused by providing 

only its transformations parameters. 

 

4. Material Reuse Finally, every scene graph node requires the 

definition of appearance in order to be rendered. The 

hierarchical structure of the scene graphs allows sharing 

appearance definitions among its siblings, but some 3D engines 

also allow sharing definitions across different nodes. Similarly 

to the object reuse, sharing material definitions reduce 

representation space but also can trigger optimizations in the 

rendering engine to avoid state changes and improve rendering 

performance. 

 

Figure 2 shows all the possible reconstruction paths obtained 

when considering all the decisions, adding up to 12 

possibilities. Paths reaching the right side are considered 

possible and depicted with continuous lines, otherwise denoted 

with dotted lines. 

 

 
 

Figure 2: Possible reconstruction paths  

 

3.1 Split reconstruction methods 

Split method 1: Primitive based. This method involves the use 

and reuse of the Sphere and Cylinder primitives and the 

definition of their transformation parameters to model each 

element of the pipe with a primitive. The transformation 

parameters take the geometry of the primitives and transform 

them on its final configuration. 

 

Split method 2: Custom Primitive based. The difference with 

the first one is the replacement of the built-in primitive with a 

custom geometry to control the appearance quality of the 

objects. Besides the use of different primitives based on the 

same definition, the rest of the procedures are identical to the 

previous method so no further details are provided to compute 

the transformation parameters; however the details of the actual 

reconstruction of the objects are important to understand the 

differences on final performance and the size of the objects. 

 

Split method 3: World based primitives. In this case, each 

cylinder or sphere or created in their final position, i.e. 

expressed in world coordinates instead of local coordinates. The 

reason to follow this approach is to skip transformations during 

runtime in order to save processing time. A drawback of this 

method is the increase in storage to define each unique object 

instead of reusing primitives along the scene. 

 

3.2 Non-split reconstruction methods  

The second main branch of the reconstruction taxonomy 

corresponds to approaches where the reconstructed objects are 

modelled visually and logically as a single scene graph node. 

The difference imposes a stricter control on the modelling of 

objects involving more restrictions in order to reduce the 

number of scene graph nodes representing the object. A first 

simple and naive approach just appends all the objects modelled 

with triangles into a single mesh before rendering, reducing the 

final object count but not the triangle and vertex count. A 

further refinement referred here as ‘stitching’, requires 

computing the actual intersection points between the composing 

objects, avoiding invisible triangles, allowing vertex recycling 

and storage savings. 
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Non-Split method 1: Appending world based geometries 

One of the main drawbacks of the ‘split’ methods is the increase 

of the number of scene graph nodes, leading to additional 

render calls or batches per modelled object. To deal with this 

situation, an important fact about the scene graphs can be used: 

every node is an explicit list of independent triangles. These 

independent triangle lists can be ‘appended’ at the end of each 

other and drawn instead within a single render call or ‘batch’, as 

long as they belong to the same administrative object and share 

appearance options. 

 

Non Split method 2: Stitching world based geometries 

The final approach is an improvement over previous methods 

aimed to reduce the vertex count, triangle count and scene 

graph node count by sharing vertices, avoiding spheres and 

modelling the pipe as a single object without breaks and 

ruptures. The basis of this method is the removal of the spheres 

placed between consecutive cylinders and adjusting their length 

so they can match in both ends. To accomplish this, the pipes 

are extended and cut at the bisecting plane between two 

consecutive centrelines. 

 

The reconstruction methods can follow more than one path due 

to variations in the appearance reuse policy and if possible in 

the object reuse policy. Split Methods 1 and 2 follow 4 paths 

each, Split Method 3 follow only 2 paths, while Non Split 

Methods 1 and 2 follow 2 paths each one. All the possibilities 

add up to 14 paths to test and cover the five methods and their 

variations. 

 

4. IMPLEMENTATION AND TESTS 

Based on the presented decision structure, the performance of 

each reconstruction method can be directly evaluated. However, 

due to the dependency on the input objects, varying in length, 

span area, and other details affecting the scene complexity and 

the rendering performance, the high level decisions are ignored, 

keeping only the low level decisions for the tests.  

 

With only four parameters, abstract tests are created and only 

low-level decisions are tested instead of the full reconstruction 

methods. With the remaining parameters, only 10 combinations 

are left. In practise 9 are tested since the last one, i.e. no 

primitives, no transformations, no object reuse and no material 

reuse, is not expected to bring advantages over the previous 

ones. 

 

4.1 Abstract tests 

The abstract tests replace specific objects, pipes in this case, 

with spheres, which are geometrical objects with high triangle 

count capable of represent objects with less or equal triangle 

count. GPU’s do not differentiate the rendered objects; they 

only process triangles and their corresponding vertices (Figure 

3). In addition, the sphere is a scene graph primitive available in 

various frameworks, making it suitable for testing the primitive 

cases and their optimizations. 

 

For every test, a specific number of unitary spheres are 

randomly placed within a 100 x100 x 100 cube to reduce the 

number of occlusions while making them mostly visible within 

the camera viewport. Rotating the camera around the cube 

simulates user interaction. 

 

For each decision path, an increasing number of nodes (50, 300, 

… , 2050) with an increasing triangle count per object is used 

(128,512,1152), running the tests for 30 seconds and collecting 

the number of displayed frames per second. 

 

 
Figure 3: The spheres used for the abstract test 

 

4.2 Tests implementation 

The testing framework is implemented in a web environment 

using WebGL and X3D/X3DOM as the underlying technology 

stack. Tests are automated via custom code, simulating both the 

workload and user interaction. On the server side a Web server 

is used for dispatching files and a Servlet Container for storing 

results in a database (PostgreSQL). Figure 4 depicts the system 

architecture used for the tests. 

 

 
Figure 4: System architecture 

 

Results obtained are shown in Figures 5: a) Frames per second 

(FPS), b) Batches per second (BPS) and c) Triangles per second 

(TPS). 

 

 
 

a) Frames per second for the different strategies  

From the results, it was found that within the tested range an 

increase in triangle count, does not introduce a performance hit. 
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Indeed, from the TPS graph it is clear that the more triangles are 

given to the system, the more triangles are processed. 

 

 
b) Batches per second 

 
c) Triangles per second 

Figure 5: Results of the tests 

 

From the BPS graph, a bottleneck is found, limiting the number 

of batches per second and as consequence, the number of 

instructions that can be submitted per second. In this regard, the 

use of transformations and material changes require additional 

operations reflected as additional processing time. As 

consequence, it is possible to render a larger number of 

triangles per node without a significant performance hit, leading 

to the main strategy proposed in this paper: the stitching method 

(i.e. the Non-split method 2). 

 

This strategy overcomes the bottleneck in number of batches 

per second of the system by reducing the number of nodes in 

the scene graph, grouping several geometries within the same 

node and avoiding transformations. This strategy can group as 

many geometries as possible within the limitations of the system 

in number of triangles, material changes and the object picking 

implementation. 

 

4.3 Real datasets 

To show the applicability of the abstract tests, for every 

reconstruction approach, a set of pipelines are reconstructed 

within an X3DOM scene graph, and their performance tested 

based on the number of frames per second (FPS). For each 

created scene, the complexity is also indicated by the quality of 

the objects, the number of nodes, the triangle count and 

encoding size. 

 

The tested scene consists of 162 pipes and cables initially 

encoded as polylines, with an average length of 18.7 segments. 

Each pipe its appearance is set accordingly to the pipe category, 

requiring 11 different materials.  

 

Table 1: Performance results using real datasets 

Method Quality Node 

count 

Triangle 

Count 

Encoding 

Size (MB) 

FPS 

1 24 5 902 3 676 544 1.5 2.3 

1 8 5 902 571 776 1.5 2.3 

2 24 5 902 4 064 640 1.5   2.3 

2 8 5 902 4 064 640 1.5 2.3 

3 24 5 902 3 630 524 148 0.3 

3 8 5 902 434 016 16.5  2.7 

4 24 682 3 630 624 148 20 

4 8 189 434 016 18.4 30 

5 24 162 137 760 4.9 50 

5 8 162 45 920 1.6 50 

 

Results in Table 1 confirm that the same scene built using the 

Non-split strategies (Method 5), and in particular the stitching 

approach, increases the number of FPS, reduces the triangle and 

node count, and as a consequence the encoding size. 

 

5. CONCLUSION 

The different reconstruction approaches presented and their 

mapping into the corresponding scene graph showed a clear 

distinction between its produced complexity and the rendering 

performance. This difference showed that reconstruction 

methods with an efficient encoding not necessarily translate into 

an efficient rendering. It also shows that common techniques for 

improving the rendering performance not necessarily deliver the 

desired results in WebGL. In order to assemble the desired 

scenes and achieve real-time visualization using WebGL, the 

following conclusions should be considered when 

reconstructing underground objects: 

 

The CPU is a critical factor. As visible from the results, 

applying some common optimizations like reducing the triangle 

count do not bring tangible benefits on the rendering speed. The 

reason behind it is another factor minimizing the advantages. In 

the studied case based on WebGL, the CPU is a bottleneck 

limiting the number of rendered nodes per frame and vanishing 

the benefits of other improvements. Therefore, improving the 

performance with significant margins can be achieved first by 

reducing the number of nodes in the resulting scene graph.  

 

Aggregating nodes is not only a good solution but also a 

requirement. The reconstructed pipes are composed of multiple 

pieces sharing identical appearance, identifiers and 

administrative information, making them suitable for being 

aggregated or packed into a single node. Indeed, not every 

reconstruction approach allows packing geometries and 

reducing the number of nodes. Fortunately, the described family 

of ‘non-split’ methods allows such packing and in particular, 

the ‘stitch’ approach shines by reducing the triangle count 

while, discarding most of the spheres, reducing the number of 

faces per cylinder, removing the duplicated vertices on the 

shared boundaries, but also keeping the visual quality. 

 

‘Stitching’ is an optimization over the other approaches for 3D 

pipes. The ‘split’ method’ is considered an optimization 

compared to other approaches, reducing the size of the declared 

scene and increasing the performance at the rendering stage. In 

addition, the introduced optimizations are independent of 

specific scene graph implementations and rendering pipelines, 

being able to run on both programmable and fixed pipelines, 

guaranteeing its applicability on different platforms. 

 

WebGL weakness is the performance of JavaScript. WebGL has 

proven to be an interesting technology to display 3D graphics 
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embedded in the browser. However, the inherent characteristics 

of reconstructed underground objects produce scenes which 

show one of the weaknesses of the technology: the speed at 

which the instructions can be submitted to the GPU. This 

weakness originates from the JavaScript language, which is an 

interpreted language producing additional overhead on the CPU 

and therefore reducing the processing power to submit work to 

the GPU. In comparison, X3D web plugins and standalone X3D 

players are usually developed using compiled languages and 

have a closer integration with the underlying hardware and 

graphic drivers. If X3D/X3DOM were implemented into the 

browser, it could produce twice to ten times more frames per 

second than its JavaScript counterpart. However, since this 

requires introducing an interface to interact with the scene 

(Scene Access Interface), the performance gain would remove 

the benefits of having direct access to the 3D scene via WebGL.  

 

In this research the 3D shapes for the pipes needed to be 

reconstructed on the fly after the pipes are fetched from a 

DBMS, where they are managed as 3D lines. Therefore mesh 

optimisation approaches were not considered at all. The mesh 

optimisation will be very suitable if the 3DX files are stored on 

the server. Limper et al 2013 and Lavoue et al 2013 have shown 

that the performance can be significantly improved also in case 

of WebGL-based rendering when mesh optimisations are 

applied.  
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