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ABSTRACT: 
 
The LoD2 building models defined in CityGML are widely used in 3D city applications. The underlying geometry for such models is 
a GML solid (without interior shells), whose boundary should be a closed 2-manifold. However, this condition is often violated in 
practice because of the way LoD2 models are constructed and exchanged. Examples of the resulting errors are holes in the wall 
surface, intersecting and overlapping building parts etc. Those invalid models often cannot be accepted by downstream analytical 
applications that demand 2-manifold exterior shells for LoD2 building models. Unlike traditional local mesh repair approaches, this 
paper presents a global repair method for invalid LoD2 building models. Our method is based on the idea of shrink-wrapping a valid 
bounding surface to the invalid model. It starts by extracting the convex hull of a given model, all the faces of both the input model 
and the convex hull are treated as constraints in the subsequent tetrahedralization process. Defects like intersections and overlapping 
between polygons are also handled in the process. Then, based on a heuristic carving process, the bounding convex hull shrinks by 
incrementally deleting the insignificant boundary tetrahedra and wrapping the exact geometry of the building, holes and gaps are 
filled accordingly. The method makes no assumption on the input model, regardless of the type of geometric errors and the forms of 
the building. The output model is a watertight bounding shell, which is valid and represents the exterior of the building.  
 
 
 

                                                                 
*  Corresponding author. 

1. INTRODUCTION 

Three-dimensional (3D) LoD2 building models defined in 
CityGML are widely used in GIS applications, such as city 
planning, navigation and environmental analysis (Kolbe, 2008; 
Kolbe et al., 2008; Gröger and Plümer, 2009). The geometric 
type of such models is solid without interior shells, whose 
boundary should be a closed 2-manifold (Herring, 2005; Gröger 
et al., 2012). However, a LoD2 building model is often 
modelled incorrectly in practice due to mistakes made in data 
acquisition or modelling processes (Wagner et al., 2012). As a 
result, geometric errors such as gaps in a surface (Figure 1 a), 
intersection between surfaces (Figure 1 b), non-manifold 
situations (Figure 1 c) and degenerated edge and surface 
primitives (Figure 1 d) are present, which violates the criteria of 
a valid LoD2 building geometry. These flawed geometric 
models eventually lead to serious errors or crashing of the 
downstream applications. Therefore, they should be repaired 
before being used. 
 
The repair of 3D models, especially of a triangular mesh, is 
already a popular research area in the field of CAD and 
computer graphics (McKenney, 1998; Mezentsev and Woehler, 
1999). Campen et al. (2012) have provided an elaborate review 
of the current progress of mesh repair researches, but most of 
the existing methods are proposed for continuous meshes and 

few of them deal with regular shaped 3D building models. In 
the GIS field, 3D model repair has become an important topic in 
recent years because of the increasingly available 3D city 
models worldwide. However, not much work has been done 
except the validation of datasets (Kazar et al., 2008; Ledoux et 
al., 2009; Karki et al., 2010) and the 2D repair using 
triangulation (Ledoux et al., 2012). Recently, a validation and 
repair pipeline for CityGML models has been proposed 
(Bogdahn and Coors, 2010; Wagner et al., 2012). Although both 
the geometric as well as semantic errors are visited, its repair 
capability is still quite limited. 
 
This paper proposes a repair method for LoD2 building models, 
which uses an initial approximation to gradually approach the 
correct shape of the input building model following a shrink-
wrapping process. This repair method takes the advantage of 
constrained tetrahedralization and therefore can accept any 
arbitrary input model. A heuristic carving process, where 
tetrahedra are removed sequentially, is employed, which 
guarantees validity for the output and maintains the shape of the 
building. Our experiments show that common errors like gaps 
in the model, holes in the surface, intersections between 
building parts and unnecessary interior building structure can all 
be fixed using the proposed method.  
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Figure 1. Demonstration of errors in a 3D building model (a) a gap on the façade of the left model; b) intersections between building 

parts in the left model; c) a non-manifold edge shared by multiple faces; d) a T-junction caused by a degenerated triangle) 

 
2. RELATED WORK 

2.1 Geometric repair of 3D models 

The existing model repair methods can be classified into two 
broad categories: local approach and global approach.  
 
Local approaches deal with each of the defects locally, for 
example the filling of holes (Liepa, 2003), the splitting of non-
manifold edges (Guéziec et al., 2001) and the removal of 
intersections (Campen and Kobbelt, 2010). However, this kind 
of approach usually solves one or a few of errors and may 
introduce new errors, as stated by Campen et al. (2012). 
Moreover, the local approaches are sensitive to the error types 
contained in the input model and may not function properly 
when unexpected errors are present, such as intersection of 
surfaces.  
 
Global approaches take the advantages of a volumetric 
representation, i.e. voxels, tetrahedra. These methods try to fix 
the volumetric representation of the object and then reconstruct 
the surface, thus are robust. In (Nooruddin and Turk, 2003), 
voxels are used to represent the spaces divided by the input 
mesh. Holes and other geometric errors are healed by using 
morphologic operators defined for voxels. The final mesh is 
extracted using iso-surface extraction. In the repair step, each 
voxel has to be classified properly by using an expensive multi 
ray-stabbing method, and unwanted discretizing artefacts are 
introduced in the result, even with a smoothing and a mesh 
optimization process applied afterwards. This is especially 
problematic for regular and planar surfaces like these of 3D 
buildings. In (Bischoff and Kobbelt, 2005), a shape preserving 
method is proposed to extract the sharp features from an Octree-
based representation of the input, but this method cannot 
preserve the input tessellation.  
 
2.2 Shrink-wrapping algorithm 

The concept of shrink-wrapping is not new in geometric 
processing. It simulates the process where a membrane is 
shrunk and finally wrapped an object. Kobbelt et al. (1999) 
introduce the idea to remeshing a polygonal surface model into 
a result with the property of subdivision connectivity. This 
method uses an initial mesh with the desired property as a 
membrane, and then a force that applied to each of the vertices 
moves the vertices accordingly. However, this method is not 
proposed for flawed models with holes or intersections. Koo et 
al. (2005) use a similar method to shrink-wrap an unstructured 
point cloud to reconstruct the mesh model. Voxels are used to 

structure the points and thus smoothing has to be applied in the 
end. This approach cannot deal with input surfaces. In order to 
simplify a polygonal mesh, Hagbi and El-Sana (2010) propose a 
tetrahedron carving approach, which can generate several 
topologically simplified models. This method uses the similar 
shrink-wrapping concept and incrementally carves the 
tetrahedra according to certain criteria. Although the heuristic 
carving paradigm seems similar to our approach, this method 
only accepts valid input, thus it cannot deal with geometric 
errors. Furthermore, their carving operation may produce non-
manifold results, which have to be fixed by using stitching and 
cutting method (Guéziec et al., 2001). Another similar approach 
is the approximation of the input polygon soup based on 
implicit surfaces (Shen et al., 2004). However, the interpolation 
with an implicit surface cannot preserve the tessellation of the 
input geometry and introduce a smooth effect, which is not 
wanted for 3D buildings.  
 

3. REPAIR BY SHRINK-WRAPPING 

With regard to the solid-based geometric form of a LoD2 
building model, the repair method from top-down using a 
shrink-wrapping approach is desirable, because most of the 
geometric errors can be solved in this uniform process and the 
validity of the result can be ensured. To implement this idea, 
first of all, a “membrane” has to be constructed for the input 
model, which should be valid and easy to build. Then, a step-
by-step shrinking process should be applied. There are two 
options for this task. One is to directly move all the primitives 
of the membrane, i.e. vertices or faces, towards the proper 
positions of the original input model. However, the exact 
correspondences between primitives of the membrane and the 
input model are difficult to model, especially for the input with 
non-zero genus or even with holes or intersections (Kobbelt et 
al., 1999). Another option is to develop the process implicitly 
based on an intermediary structure, such as voxels or tetrahedra. 
As discussed before, the voxelization of an input model could 
not preserve either the exact shape of the model or its 
tessellation. The latter defect is particularly unacceptable for the 
repair of an input model with properties attached to its 
primitives, such as a CityGML model. Therefore, the 
constrained tetrahedralization is a better choice to structure the 
input model and provide elements for shrinking process.  
 
The purpose of shrinking is to gradually eliminate the 
superfluous elements and only keep the desired ones, and finally 
wrap the correct exterior shell of the model. By using 
tetrahedra, this process can be implemented by a carving 
operation similar to (Hagbi and El-Sana, 2010). However, 

a) b)

c) d)
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proper heuristics and constraints should be introduced to guide 
and confine the operations, so that to fix the errors. 
 
According to the above analysis, the proposed repair work flow 
using shrink-wrapping includes four consecutive steps: 1) the 
initial approximation; 2) the constrained tetrahedralization; 3) 
the heuristic carving and 4) the extraction of the exterior shell. 
 
3.1 Initial approximation 

The initial approximation of the shrink-wrapping process which 
acts as a membrane can be any valid shell that bounds the input 
model. It is straight forward to use the convex hull of the input 
model, which is easy to compute and satisfies the validity 
criterion for the approximation. Comparing to the alternative 
bounding box or sphere, a convex hull reuses a subset of the 
input vertices thus easies the sequent step of tetrahedralization. 
In addition, it offers a tight bounding shell which is more 
efficient for carving. 
 

3.2 Constrained tetrahedralization 

The constrained tetrahedralization (CT) decomposes the 
geometric set into 3-simplices (tetrahedra) that are non-
overlapping and every input constraint, i.e. triangle surfaces in 
both the input model as well as the convex hull, are represented 
in the tetrahedralization result. Therefore, the input geometry 
can be preserved during repair. However, CT cannot be directly 
conducted due to the possible errors of intersections and 
degeneracies. These errors should first be handled by 
tessellation and decomposition. The tessellation step 
triangulates all the input polygons and results in triangles that 
are not degenerated as illustrated in Figure 2 b). Then, the 
decomposition step detects all sorts of intersection between 
triangles and decomposes the intersected ones (Figure 2 c)). The 
result of this step is a complex (can be further improved by 
coplanar merging as shown by Figure 2 d)), which is the 
demanded input for CT. During the process of CT, the Delaunay 
property is not mandatory because more Steiner points will not 
help improve the repair result but rather introduce extra 
expenses for carving.  

 

 
Figure 2. Tessellation and decomposition of intersecting objects (a) the input model; b) tessellated result; c) decomposition using 

triangle-triangle intersection; d) refined result by merging coplanar triangles) 

 

 

Figure 3. The 2D demonstration of the approach (in heuristic carving, a hole is filled because carving inwards the hole breaks one of 
the constraints) 

 

 
Figure 4. Demonstration of the carving operation (a) the candidate tetrahedron with a triangular facet colored in red1; b) after carving, 

the rest three triangular facets are classified as candidate triangles colored in yellow; c) if the tetrahedron is preserved, all its 
triangular facets are classified as fixed, colored in blue) 

                                                                 
1 This color configuration will be used throughout this paper (current candidate tetrahedron: red; candidate triangles: yellow; fixed 

triangles: blue). 
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3.3 Heuristic carving  

The carving operation is only executed on the candidate 
tetrahedra. These tetrahedra are extracted based on the 
candidate triangles, which are on the boundary shell but not part 
of input model. After a carving operation, a candidate 
tetrahedron is removed and its adjacent tetrahedra that were not 
on the boundary are then converted to candidates, as shown in 
Figure 4. Then the boundary shell is shrunk. To make sure the 
carving does not produce invalid geometry (non-2-manifold) in 
the final output, validity constraints are required. A candidate 
tetrahedron that breaks the constraints should be removed from 
the candidates and be preserved in the result. Carving should 
also take the shape of a building into consideration, especially 
the planar features. As a result, a shape constraint is also 
developed to preserve candidate tetrahedra with such a feature. 
Additionally, because the carving operation only eliminates one 
tetrahedron each time, a heuristic paradigm should be used to 
guide the process. Otherwise, all the tetrahedra have to be 
examined before a carving operation, which is expensive. The 
above process is the key of this repair method and will be 
discussed in detail in the next section. 
 
3.4 Extraction of the exterior shell 

Finally, the exterior shell is extracted from the boundary 
tetrahedra remained after the heuristic carving process. An 
illustration of the whole process in 2D is shown in Figure 3. 
 

4. HEURISTIC CARVING 

This section explains the heuristics and constraints used in 
detail. Hagbi and El-Sana (2010) also discuss and use different 
carving styles for simplification, however these styles cannot 
heal errors of the input model and the validity of the output 
model is not considered. 
 
4.1 Triangle classification 

As mentioned before, the candidate tetrahedra are extracted 
based on the type of triangles. For this purpose, all the triangles 
that are in the input model and the convex hull are classified 
into two categories, namely the fixed triangle and the candidate 
triangle. The fixed triangles are those that will contribute to the 
final output. Because we assume that all the input surfaces 
should be preserved during repair, these fixed triangles thus are 
initialized by all the triangles of the input model after 
tessellation and decomposition. The candidate triangles are 
boundary triangles newly generated from the shell 
approximation. If a tetrahedron is carved, its unclassified 
triangular facets are converted to candidate triangles on the fly 
(Figure 4 b)). Otherwise, all its four triangular facets are tagged 
as fixed (Figure 4 c)). Based on this classification, the candidate 
tetrahedra are then defined as those with at least one of their 
four triangular facets tagged as candidate triangle.  
 
4.2 Carving constraints 

The criteria for the decision of a carving operation are specified 
as constraints. We consider two basic constraints essential for 
the repair of building models, i.e. the validity constraint and the 
shape constraint. If the carving of a candidate tetrahedron 
breaks one of these constraints, (that means the operation will 
either introduces invalid geometry to the result or damages the 

desired shape of the input model), the tetrahedron should 
therefore be converted to fixed.  
 
4.2.1 Validity constraints: Validity is the underlying 
requirement for all the repair methods. When carving, it is 
therefore uppermost to test whether a possible invalid situation 
will be introduced. Because the output should be a 2-manifold, 
the validity constraints detect possible non-manifold situations 
after a carving operation. However, it should be noted that when 
a non-manifold situation occurs after carving, it does not 
necessarily mean that the final result will also be invalid, 
because the temporary invalid situations might be resolved by 
the succeeding carving operations. Therefore, we check the 
validity constraints based on the fixed triangles in a candidate 
tetrahedron and its neighbours.  
 
As showed by Botsch et al. (2007), the non-manifold situations 
can happen at triangles, edges or vertices. Thus the validity of 
all these primitives of a candidate tetrahedron should be 
ensured. For a fixed triangle, the invalid case is that the triangle 
becomes a dangling triangle after carving, as shown in Figure 5. 
Topologically speaking, each of the fixed triangles of a 
candidate tetrahedron to be carved should have exactly two 
neighbouring tetrahedra. This is defined as Constraint I in this 
repair method.  
 
For an edge, it should be ensured that carving will not turn the 
edge into a complex edge, i.e. an edge shared by more than two 
fixed triangles. Figure 6 a) and b) illustrate the star tetrahedra of 
an edge and its projection in 2D. It is obvious that only when 
the edge is already on the boundary of the approximated shell 
(as shown by the red edge in Figure 6 a)), its validity should 
then be checked due to the possible non-manifold situation 
generated after carving. To prevent such invalid case, the 
carving around the edge should result in a connected component. 
Therefore, all the neighbouring tetrahedra of the edge should be 
carved continuously. As shown in Figure 6 b), because the 
carving operation could not go cross the fixed triangles, which 
should be preserved in the result, it will eventually produce two 
disconnected components. However, in Figure 6 c) and d), 
carving from the left side of adjacent tetrahedra will finally 
reach the existing boundary shell, therefore valid results can be 
obtained. As a result, the Constraint II for edges is defined as: if 
an edge of a candidate tetrahedron to be carved is on the 
boundary shell, a path made up by non-fixed triangles in the star 
tetrahedra of the edge must exist. It should connect the 
triangular facets of the tetrahedron to be carved and the surface 
of the existing boundary shell.  
 
For a vertex, its validity constraint is similar to that of an edge: 
if it is already on the boundary of the shell, its validity should 
be checked while carving one of its incident candidate 
tetrahedra. The non-manifold case of a vertex is that the vertex 
is singular, i.e. shared by more than one volumes. This can be 
illustrated by using the sphere map concept (as illustrated in 
Figure 7 c) and f)) where the sphere represents the local 
neighbourhood of a vertex in which the black half-spaces 
indicate the incident “occupied” volumes and the white half-
spaces indicate the incident “void” volume (Granados et al., 
2003). It is obvious that if the sphere map of a vertex is 
segmented into more than two disconnected “occupied” half-
spaces in the result, the vertex becomes invalid (Figure 7 f)). 
Therefore, if a path made up by the adjacent non-fixed 
tetrahedra (face-to-face adjacency) can be found which 
connected the triangles of the candidate tetrahedron to be carved 
and the current boundary shell (Figure 7 a)), this means the 
carving will not introduce one more half-space to the 
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neighbourhood of the vertex thus is valid (Figure 7 b)). 
Otherwise, if such a path does not exist (Figure 7 d)), the 
carving operation will result in invalid output as shown in 
Figure 7 e). As a result, the Constraint III for vertices is defined 
as: if a vertex of a candidate tetrahedron to be carved is on the 

boundary shell, the tetrahedron should connect to the boundary 
shell from a path of connected non-fixed tetrahedra. 
 
 

 
 

 
Figure 5. Illustration of Constraint I (a) a candidate tetrahedron with a fixed triangular facets; b) the carving results in a dangling 

triangle which breaks the constraint I) 

 
 

 
Figure 6. Illustration of Constraint II (a) the star tetrahedra of an edge (red) in the candidate tetrahedron; b) the 2D projection of the 

left case (top) and the carving will lead to an invalid result (bottom); c) d) two valid cases for carving) 

 
 

 
Figure 7. Illustration of Constraint III (a) the star tetrahedra of a vertex of a candidate tetrahedron, in which a path (black arrow) can 
be found from the candidate tetrahedron to the boundary shell (yellow); b) the possible result of carving of a); c) the sphere map of 
the center vertex of b); d) another case of the star tetrahedra of the vertex, in which all paths from the candidate tetrahedron to the 

boundary shell are blocked by the fixed tetrhedra; e) the possible result of carving of d); f) the sphere map of the center vertex of e)) 
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4.2.2 Shape constraints: Based on the validity constraints, 
the result of the shrinking-wrapping will be a closed 2-manifold 
surface. However, if holes are present in a model (Figure 8 a)), 
the shrink process may carve these areas and results in an 
undesired concave shape on the surface as shown in Figure 8 b). 
This is especially undesired for building models because such 
models are often formed by planar features. As a result, a 
constraint, concerning the planar shape characteristics of a 
building, is introduced (Constraint IV). This constraint detects 
all the connected coplanar candidate triangles of a candidate 
triangle. If all these triangles are bounded by fixed triangles (as 
shown by triangles 2 in Figure 9 b), it implies that these 
triangles can be a missed planar surface of the input model. 
Therefore carving should be prohibited inside this area. Instead, 
if these triangles are not bounded by fixed triangles (as shown 
by triangles 1 in Figure 9 b), these triangles must be the 
auxiliary geometry generated from approximation and can then 
be carved. Based on the experiments, we found this simple 
shape constraint to be sufficient to fix many missing geometry 
of a building model. However, more shape constraints should be 
proposed for specific feature types, such as non-planar holes.  
 
4.3 Carving priority 

Besides the introduced constraints, the carving operations 
should be executed in a proper order, so that the knowledge of 
the input model is considered as much as possible in each step 
of carving. A pragmatic choice is the best-first strategy which 

first carves the most promising candidate tetrahedron. 
Therefore, two indicators which describe the “promisingness” 
of a tetrahedron are proposed. One is the “degree of freedom” 
(DoF) and the other is the “carving profit” (Cp).  
 
The DoF is defined as the number of known triangles of a 
candidate tetrahedron, e.g. a tetrahedron with 𝑖  candidate 
triangles and 𝑗 fixed triangles (where 1 ≤ 𝑖 + 𝑗 ≤ 4) has a DoF 
of (4 − 𝑖 − 𝑗 ). The smaller the DoF, the stronger the 
consequence of the carving is bounded and vice versa. The Cp 
is defined as the difference of the number of candidate triangles 
of a candidate tetrahedron with the number of newly produced 
candidate triangles after carving. For instance, if a tetrahedron 
with 𝑖 (where 1 ≤ 𝑖 ≤ 3) candidate triangles is carved, which 
introduces 𝑘  (where 1 ≤ 𝑘 ≤ 3) new candidate triangles, the 
Cp of this tetrahedron is (𝑖 − 𝑘) . Carving that starts with a 
larger Cp decreases the overall DoF of all the candidate 
tetrahedra in the sequent steps. As a result, a candidate 
tetrahedron with smaller DoF and higher Cp should be carved 
first. 
 
The proposed heuristic carving work flow is shown in Figure 
10. In practice, the volume of the candidate tetrahedron is also 
used in the heuristics. We found that carving of a tetrahedron 
with a larger volume first will generally improve the overall 
performance of the method.  

 
 
 

 
Figure 8. Demonstration of the effect of Constraint IV (a) a cube with a hole; b) the result of repair without the constraint IV; c) the 

result of repair with the constraint IV) 

 
 

 
Figure 9. Illustration of Constraint IV (a) the 2D projection of the tetrahedralized result of the left case: a tessellated coplanar surface 

where boundary edges of fixed triangles are colored in blue; b) the connected neighbours of two candidate; c) carving result when 
applying the constraint IV) 
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Figure 10. The flow chart of the heuristic carving process 
 

5. EXPERIMENTAL RESULTS 

5.1 Implementation details 

In the implementation, the constrained tetrahedralization is one 
of the essential parts. We employ the third-party package 
Tetgen to realize the process (Si, 2006). Tetgen allows the 
preservation of the convex hull of an input and therefore can 
accept input models with holes. The latest version of Tetgen 
also allows the minimising of the Steiner points, which results 
in a smaller set of tetrahedra. However, Tetgen is not designed 
to solve the intersections and degeneracies of the input. Thus, 
all these cases should be detected first and the input model 
should be decomposed into a valid complex, i.e. surfaces only 
touch at shared boundary edges. Due to the simplicity it brings 
to the following processes, triangle tessellation of polygons is 
first conducted for the input models. Then a fast triangle-
triangle intersection test is executed for each pair of possible 

intersected triangles (Möller, 1997). When intersecting, both 
triangles are decomposed accordingly into smaller triangles that 
are free of intersection. If the semantics, i.e. properties of 
surfaces, need to be preserved, this information should be kept 
or propagated to the tessellation of input polygons, which is 
intuitive. During the carving process, our algorithm does not 
violate the original tessellation thus preserves the semantics. Of 
course, the semantics of the newly generated surfaces should be 
extracted or deduced from the input model according to certain 
rules. Moreover, if the coplanar triangles share the same 
semantics, they can be merged which further simplifies the 
surface. 
 
5.2 Repair of real building datasets 

We take two flawed building models as the test data. The 
building model shown in Figure 11 a) contains two intersecting 
building parts with the bottom surface and part of the roof 
surfaces missing (indicated by the blue arrows). Figure 11 b) 
shows the decomposition result. In Figure 11 c), the convex hull 
of the input model is constructed as the initial approximation. 
All the surfaces of the convex hull and of the input model are 
used as constraints in the tetrahedralization. After carving, the 
missing surfaces are filled as shown in Figure 11 d). Then, the 
exterior shell of the tetrahedra is extracted which is a watertight 
shell that correctly represents the shape of the input building 
model. 
 
Figure 12 a) shows the tessellation result of the previously 
shown model in Figure 1. This model is a typical imperfect 
building model generated in a manual process. It contains a gap 
on one of its facade, several missing surfaces (holes) at the 
bottom and on the roof and the facades, and many intersections 
between building parts. In Figure 12 b), all the intersecting parts 
with the main body, such as the attached building installations 
on the facades and the roof constructions are all decomposed 
and triangulated. The non-manifold and degenerate situations 
are also eliminated. The result of this step is a complex, free of 
intersection. In order to ease the repair processes, coplanar 
merging is employed to simplify the result tessellation. We then 
conduct tetrahedralization and use all the triangles of the 
decomposed model and its convex hull as constraints as shown 
in Figure 12 c). The heuristic carving process gradually shrinks 
the convex hull surface and wraps the correct shape of the 
building (Figure 12 d)). We then extracted the final result as 
shown in Figure 12 e). This experiment shows that a model with 
serious errors can be automatically repaired with our proposed 
method. 
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Figure 11. The experimental result of a flawed building model (a) the tessellated input model with intersecting building parts and 
several missing surfaces; b) the decomposition result of the model; c) the convex hull of the input model and itself are sent to the 

tetrahedralization; d) the carving result; e) the extracted exterior surface, which is a watertight valid model ) 

 
Figure 12. The experimental results of the models shown in Figure 1 (a) the tessellation of the input model; b) the result of 
decomposition and coplanar triangle merge; c) the initial approximation; d) the result after heuristic carving, with boundary 

tetrahedra visible; e) the final exterior surface extracted from d)) 

 
6. DISCUSSION AND FUTURE WORK  

Two experiments prove that the proposed repair method is well 
capable of solving common occurring errors of a 3D building 
model, e.g. holes, non-manifold primitive, intersections etc. The 
validity constraints introduced well protect the manifoldness of 
the approximation during the shrinking process and the shape 
constraint preserves the missing planar area of a building model. 
In addition, the valid input model parts are well preserved after 
repair. 
 
By using a global top down shrink-wrapping process, the 
method is robust and tolerates arbitrary input model. 
Experiments on different kinds of models show that the 
proposed heuristics based on the DoF, the Cp and the volume of 
a tetrahedron is effective. However, in some extreme cases, 
such as an unstructured polygon soup with probable nonzero 
genus, we found the manifoldness of the result might be broken 
because of the order of carving in a local area. This should be 
prevented by enhancing the caving operator. Furthermore, the 
third heuristic parameter, volume, can be replaced by other 
factors such as the area of the candidate triangle or the shape of 
a tetrahedron which will also be studied in the future.  
 

Rounding-error is one of the obstacles we encountered during 
the current implementation. We did observe some unexpected 
decomposition results when a triangle is decomposed too many 
times. Therefore, a threshold is employed to determine the 
duplicated primitives and truncate the coordinates in each 
carving step. However, we plan to use the exact predicates to 
make the method more robust (Richard Shewchuk, 1997). 
 
Because our method preserves the input tessellation, the 
semantics attached with geometry can be held and be 
propagated to the output model. This will also be implemented 
in the future. If the input building model is of a higher LoD, e.g. 
a LoD 3 or LoD 4 model, our method can also be used as a 
generalization mean to extract the LoD2 model automatically.  
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