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ABSTRACT:

The advantages of three dimensional (3D) city models can be seen in various applications including photogrammetry, urban and
regional planning, computer games, etc.. They expand the visualization and analysis capabilities of Geographic Information Systems
on cities, and they can be developed using web standards. However, these 3D city models consume much more storage compared to
two dimensional (2D) spatial data. They involve extra geometrical and topological information together with semantic data. Without a
proper spatial data clustering method and its corresponding spatial data access method, retrieving portions of and especially searching
these 3D city models, will not be done optimally. Even though current developments are based on an open data model allotted by the
Open Geospatial Consortium (OGC) called CityGML, its XML-based structure makes it challenging to cluster the 3D urban objects.
In this research, we propose an opponent data constellation technique of space-filling curves (3D Hilbert curves) for 3D city model data
representation. Unlike previous methods, that try to project 3D or n-dimensional data down to 2D or 3D using Principal Component
Analysis (PCA) or Hilbert mappings, in this research, we extend the Hilbert space-filling curve to one higher dimension for 3D city
model data implementations. The query performance was tested using a CityGML dataset of 1,000 building blocks and the results
are presented in this paper. The advantages of implementing space-filling curves in 3D city modeling will improve data retrieval
time by means of optimized 3D adjacency, nearest neighbor information and 3D indexing. The Hilbert mapping, which maps a sub-
interval of the [0, 1] interval to the corresponding portion of the d-dimensional Hilbert’s curve, preserves the Lebesgue measure and
is Lipschitz continuous. Depending on the applications, several alternatives are possible in order to cluster spatial data together in the
third dimension compared to its clustering in 2D.

1 INTRODUCTION

3D spatial city models in different applications require different
analyses and purposes. It is not an immense exertion if it just
meant for 3D object visualization (see (van Lammeren et al.,
2010) and (Nichol et al., 2010)). In most critical applications,
information retrieval time is important (see (Dash et al., 2004)
and (Tomaszewski, 2011)). Without a proper procedure of stor-
ing 3D spatial data, queries for each object will reduce the time
efficiency of processing and information retrieval. Meanwhile for
mobile applications, displaying all 3D objects in a single display
consume a lot of processing-memory allocation and will decel-
erate device performance. Alternatively, by knowing which 3D
objects are within a certain radius or distance from current lo-
cation would be a useful implementation for mobile application
display.

On the other hand, 3D data (spatial and semantic) consume more
disk storage compared to 2D data. Requesting 3D spatial data
from servers requires step by step memory disk searching and
would be a hassle if the information was stored in different servers
in different agencies throughout a country. Yet, again, 3D spatial
data with proper data constellation will boost the retrieval time
and optimize the processing procedure.

Therefore, in this paper, a new method of storing 3D spatial city
models is presented. It is useful for various applications and
improves data retrieval time by providing 3D adjacency, near-
est neighbor information and 3D indexing. The advantages of

implementing the space-filling curve in 3D city model will be ex-
plained as a new method of organizing 3D data in an opponent
arrangement.

This paper is organized as follows. In Section 2, we review the
recent trends in 3D Geoinformation Sciences related to 3D spatial
queries. In Section 3, we review the CityGML standard. Then,
we review space-filling curves and we introduce our own 3D
Hilbert space-filling curve implementation in Section 4. Finally,
we present the analysis and results in Section 5 and conclude this
paper in Section 6.

2 TRENDS IN 3D GEOINFORMATION SCIENCES

Visualization of three dimensional (3D) objects become more
widespread in developments (see (Behley and Steinhage, 2009),
(Jin and Bian, 2006) and (Liu and Fang, 2009)). This can be
seen from demand in 3D based applications (see (Freitas et al.,
2010) and (Zhang et al., 2009)). Visualization of 3D objects can
support a more realistic view as in the real environment than the
two-dimensional (2D) visualization. 3D view of a building model
is more realistic compared to 2D floor plan of a building in a nav-
igation application.

In commercial software development, private companies are com-
peting in developing tools that are capable of managing 3D cities.
ESRI (CityEngine), Bentley (Bentley’s Map V8i) and Google
(Google Earth) offer users the capability to create, visualize and
measure 3D cities in their products (Jazayeri, 2012).
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Since quite a number of 3D city model formats are available,
there is a need for standardizing the 3D city model format for var-
ious applications. City Geography Markup Language (CityGML)
is an example of an exchange standard format for 3D city models
(see Figure 1). It consists of different Levels of Details (LOD);
LOD0, LOD1, LOD2 and LOD3. Different LODs reflect differ-
ent 3D spatial information details. The higher the LoD, more ob-
ject detail and geometry is included. This common information
model is the first standard related to 3D city models (Jazayeri,
2012).

Users want to visualize and analyze their 3D city models (see
(Over et al., 2010) and (Mao et al., 2011)). Among the main steps
in analyzing 3D city models, there is the data retrieval for a spe-
cific computing process. To seek specific information in a huge
volume of data storage, a proper data constellation mechanism is
needed. Although the data is retrievable with today’s computer
technology, the data retrieval routine is not optimal and there is
no reason to sacrifice the computational performance instead of
using it for more intricate procedures.

The construction of large-scale 3D city models faces the prob-
lem that data sets are too huge, the mission is too heavy (in terms
of loading, managing and editing) and the development cycle is
too long (Zhang and Shen, 2008). Two major issues in using 3D
city model data have been listed in previous research on measur-
ing the impact of 3D data geometric modeling on spatial analysis
(Brasebin, M. et al., 2012). First, more complex data implies an
increase in time and memory usage for the analysis (and calls for
more research on the efficiency of the algorithms used). Second,
detailed 3D urban data are complex to produce, expensive and it
is important to be well informed in order to decide whether or not
to invest in such data.

Although a lot of problems arise, researchers have put determi-
nation in improving the CityGML standard. Improving exist-
ing CityGML standard platform for practicality is better rather
than starting from scratch as developing CityGML standard took
many years of development. The next section will describe the
CityGML technical structures in brief for understanding.

3 CITY GEOGRAPHY MARKUP LANGUAGE
(CITYGML)

The City Geography Markup Language (CityGML) is an open
standard for 3D city and landscape modeling that is recognized by
the Open Geospatial Consortium (OGC) and the ISO TC211. The
usage of the CityGML standard can be seen in urban and land-
scape planning, 3D cadasters, environmental simulations, mo-
bile phone navigation applications, disaster management, vehicle
navigation, training simulators, mobile robotics, computer graph-
ics, computer vision and computer games. CityGML is an open
data model and XML-based format for the storage and exchange
of virtual 3D city models and it is implemented as an applica-
tion schema for the Geography Markup Language version 3.1.1
(GML3).

CityGML implements different scales called the Levels of Detail
(LOD). Each five LODs are based on specific models required
in various applications. LOD1 is the well-known blocks model
comprising prismatic buildings with flat roofs. Meanwhile, build-
ings in LOD2 have differentiated roof structures and thematically
differentiated surfaces. LOD3 and LOD4 are more detailed city
models designed for outdoor and indoor applications respectively,
that require higher accuracy for implementations (see Figure 2).

Number of Total Size Number of
Buildings (KB) Lines
2 x 2 4 17 708
10 x 10 100 394 17,412
20 x 20 400 1,592 69,612
50 x 50 2,500 10,084 435,012

Table 1: CityGML Size (in KB) and number of lines comparison
between different numbers of buildings

CityGML defines the classes and relations for objects in cities
with respect to their geometrical, topological, semantical and ap-
pearance properties. This information is stored in a structured
XML-based format with different tags for identifications. Fig-
ure 3 shows a representation of a single building in CityGML
data. CityGML constructs a building with four façades by having
6 polygonal faces consisting of quadrilaterals defined by the co-
ordinates (x, y, z) of their vertices each. The 6 polygonal faces
can be identified as gml:Polygon tags. Whereby each tag has
its own unique gml:id attribute name identification. For each
polyhedron, there is a sub-child tags named gml:LinearRing

and gml:PosList. Information regarding coordinates are stored
in gml:PosList tags in counterclockwise coordinates sequences
for faces that are facing outside and clockwise coordinates se-
quences for faces that are facing inside. A four sided rectangle
is represented by 5 tuples of coordinates (x, y, z). Usually the
first and the fifth coordinate sets refer to the same coordinate
values in order to create a boundary for the polyhedron. Basi-
cally, this sequence is a cycle of coordinates (points). Polyhe-
drons that “belong” to a building are grouped in the same set. In
the example shown (see Figure 3), the group can be identified as
bldg:Building tags.

However, CityGML requires 3.12KB of memory / disk storage
for the building in Figure refCEDS3 (102 lines of tags and el-
ements in XML structure). Table 1 shows the storage size for
different numbers of LoD1 objects in CityGML. Retrieving in-
formation from CityGML data requires an XML tag list search-
ing. The comparison in Table 1 shows a total line of tags for each
category for a number of buildings.

Meanwhile, Figure 4 shows the disk storage comparison of LoD2
objects. Data used as a benchmark test in Figure 4 are down-
loadable at www.citygmlwiki.org. Categorizations were made
based on two categories which are LoD2 MultiSurface and LoD2
bounded by WallSurface, RoofSurface and GroundSurface. LoD2
bounded by WallSurface, RoofSurface and GroundSurface is a
method of classifying the 3D objects into several parts such as
wall, roof or ground surface of a building. This is a common way
of describing CityGML data for 3D implementations. Figure 4
shows that the disk storage for LoD2 bounded by WallSurface,
RoofSurface and GroundSurface rocketed more than double of
LoD2 MultiSurface disk storage size. This graph indicates that it
is vital to organize 3D city model data for optimizing 3D spatial
queries searches.

Therefore, in the next section, we propose the data constellation
mechanism by using space-filling curves for 3D city model data.
The 3D city data will be stored in a more structured way for var-
ious applications. At the same time, it will provide advantages
in terms of providing common spatial topology information such
as 3D adjacency and it will therefore facilitate nearest neighbor
queries.
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Figure 1: LoD2 building illustration: CityGML feature structure as UML instance diagram (taken from (Gröger and Plümer, 2012))

Figure 2: The four levels of detail (LoD) defined in CityGML (taken from (Gröger and Plümer, 2012))

Figure 3: Representation of a building in CityGML done using Karlsruhe Institute of Technology’s IfcExplorer for CityGML (Karlsruhe
Institute of Technology, 2013)
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Figure 4: Disk storage comparison between two LoD2 categories

4 SPACE-FILLING CURVES AND HILBERT’S CURVE

A space-filling curve is a continuous function with its domain in-
terval [0, 1] and its range could be in any topological, uniform
or Euclidean space. Space-filling curves allow a proximity prob-
lem to be reduced from higher dimensional spaces to a binary
search through a one-dimensional space. Such proximity prob-
lems usually involve sorting in a one-dimensional space. Many
applications can be benefited from space-filling curves, but the
most common application of space-filling curves is for storage
and retrieval of multidimensional data in a spatial database. A
proximity problem for which space-filling curves have been used
regularly is the approximate nearest neighbor search or finding
closest points from one location. Until now, there are several
variants of space-filling curves such as Hilbert’s curve, Dragon
Curve, Gosper’s Curve, Moore’s Curve, Z-Order and many more.

The space-filling curve was discovered by Giuseppe Peano in
1890 and called the Peano’s Curve (Peano, 1890). From his find-
ing, a curve must pass through every point on a plane at least
once. But, before his finding, in 1878, George Cantor has demon-
strated a one-to-one correspondence between the unit interval and
the unit square (Thiele and Wos, 2002). In 1879, Netto added
that any such mapping could not be continuous. In 1891, David
Hilbert discovered the Hilbert Curve structure, which is a simpler
variant of the same idea of Peano’s space-filling curve (Kevin,
2008). The Hilbert Curve subdivides squares into four smaller
squares instead of Peano’s nine smaller squares. Figure 5 shows
four iterations of Peano’s Curve.

When David Hilbert discovered a variation of Peano’s Curve, he
divided each side of unit square into two parts equally. This yields
the square into four smaller squares. From the divided squares,
each of them is divided into another four smaller squares, and
so on. For each part of this division, a curve will traverse all
the squares. The Hilbert’s Curve normally starts at the lower left
division and ends at the lower right division. According to its
movement and process, the Hilbert’s curve could be expressed in
base 2.

The Hilbert space-filling curve could be described as an under-
lying grid, a N × N array of cells where N = 2n. Hilbert’s

enumeration of the squares is shown in Figure 6 for n = 1, 2, 3.
Note that the first square is always at the lower left corner and the
last square is always in the lower right corner.

From the divided square, we assume that the N ×N cells coordi-
nates start at (0, 0) in the lower left corner. From the assumptions,
Hilbert’s curve has corners at integers ranging from 0 to 2n − 1
in both x and y and we take a positive direction along the curve
from (x, y) = (0, 0) to (x, y) = (2n − 1, 0).

4.1 Mapping Points Using Hilbert’s curve

Figure 7 shows a set of points that will be used to demonstrate
the 2D Hilbert’s space-filling curve.

Figure 7: Scattered points (Kevin, 2008)

The following constructions mapped the unit interval to a unit
square of the Hilbert’s curve method.
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Figure 5: First four iterations of Peano’s curve

Figure 6: The first three stages in generating Hilbert’s curve

• Each unit interval and unit square is divided into four inter-
vals as shown in Figure 8. Every unit interval is assigned to
one square. Figure 8 (a-c) shows the first three steps of this
construction. At the limit (when the number of elements
goes towards infinity), this produces a subjective, continu-
ous map from the unit interval to the unit square.

• Figure 8 (d) shows the resulting order of scattered points in
Figure 7. Since the Hilbert’s curve starts in the lower left
corner and ends in the lower right corner, the last edge of
the round-trip (shown in Figure 8 (d) as dashed lines) from
the last corner back to the first corner is much longer than
its Euclidean distance.

Figure 9: Possible approach of 3D Hilbert order where n = 2
(Haverkort and Walderveen, 2008)

In this research, we adopt space-filling curves for the ordering in
3D city models. In mathematical analysis, a space-filling curve is
a curve whose range contains the entire 2-dimensional unit square
(or more generally a n-dimensional hypercube). This space-filling
curve visits every point in a square grid with a size of n2. Space-
filling curves in this research were used to compress the three-
dimensional models to a one-dimensional ordering. Based on
previous research in implementing 3D Hilbert’s curve for spatial

structures, there are 1536 diverse methods of 3D Hilbert’s curve
implementation (Haverkort and Walderveen, 2008). Meanwhile,
Figure 9 shows the 3D Hilbert’s curve implemented in this re-
search with the same size 2n and the rationalization of the test
data based on simple 3D city buildings. We believe that this 3D
Hilbert curve will benefit transportation and air pollution applica-
tions, where most of the important spatial adjacencies happen in
a single horizontal layer. Results from the implementation of 3D
Hilbert’s curve for 3D city model will be discussed in the next
section while showing the advantages of smaller data retrieval
time and processing.

Figure 10: 3D Hilbert Order

5 ANALYSIS AND RESULTS

In critical applications, information retrieval time is important.
Without a proper arrangement of 3D spatial data, a single query
iteration needs to be executed through each object and it will re-
duce time efficiency for processing and information retrieval. The
search routine should be optimized and there is no reason to sac-
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Figure 8: Hilbert’s curve and Order (taken from (Kevin, 2008))

rifice the computational performance instead of using it for more
intricate procedures.

Since indexing improves the data retrieval capabilities, two types
of search analyses were performed. Those analyses are single ob-
ject search and nearest object from target search. The single ob-
ject search usually is implemented in cases where the user wants
to identify a single object from the 3D city model data. For an
example, search based on building names or ID. Meanwhile the
nearest object from target search is meant for queries like find-
ing the adjacent buildings or pinpointing nearest facilities from
the current location. In comparison, two analyses were prepared
for different data sets of buildings (10, 50, 100, 200, 400, 600,
800 and 1000 buildings). Data retrieval times were measured in
milliseconds and it was tested in a system using a single Intel
Core i7 running at 2.2GHz with 8GB of Random Access Mem-
ory (RAM).

The graph shown in Figure 11 shows two types of 3D spatial data
sets used in the single object search: CityGML data and 3D spa-
tial data with space-filling curve implementation. The ordering
for space-filling curve is based on our 3D Hilbert’s curve imple-
mentation. Eight data sets were prepared for each type respec-
tively. From the figure shown, it indicates that for single object
search, there is not much difference in time measured between
both types of sets. This is due to the single object search routine
is based on line tags list searching. Times measured in Figure 11
included times for displaying tags that had been traversed before
getting to the target object.

On the other hand, the advantage of space-filling curve operations
can be seen in the consistency between neighboring pixels. In
this case, the adjacencies between spatial objects were conserved
and retrievable. The example shown in Figure 12 identifies ob-
jects (buildings) that are located “closed to” the building of inter-
est. Since the Hilbert’s curve is organized into a one-dimensional
structure, finding the nearest building to a specific building (n) is
done by first finding the nearest arc length to n and then checking
whether this corresponds indeed to the closest neighbor. Indeed,
the ordering induced by the difference (Δ) of arc length does not
correspond to the ordering of the distance between the projection
of the object onto the Hilbert’s curve and building n.

Another experiment conducted in this research is to test the per-
formance in data retrieval time for finding the nearest building
from the target building. Figure 13 illustrates flowcharts in both
implementations for comparison assessment. For this experiment,
displaying the traversed tags is excluded and only finding the
nearest building is the sole objective. Table 2 and Figure 14 show

Figure 13: Flowcharts for finding the nearest building for
CityGML data (a) and with 3D Hilbert’s curve implementation
(b)

the running times for queries performed and measured for finding
the nearest building to the target building.

Since CityGML data are based on XML structured ordering, search-
ing the target objects is based on tags list and calculations are
performed as in Figure 13 (a). Results shown in Table 2 can be
interpreted as buildings located farthest (i.e., building ID 1 is the
closest meanwhile building ID 1000 is the farthest in XML struc-
ture) require more time for data retrieval procedure. Contrari-
wise, the highlight should be given at the time elapsed between
3D city model with and without space-filling curve implementa-
tion. On average, the space-filling curve implementation boost up
more than 90% faster compared to CityGML data. It shows that
3D Hilbert’s curve in 3D city model is capable of organizing data
in a more efficient way. Hence, space-filling curve implementa-
tion in large data sets will optimize the data retrieval time while
preserving the nearest neighbor information which is significant
in geospatial analysis.
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Figure 11: Data retrieval time for single object from target search

Figure 12: The nearest arc lengths (Δ) from building A are B, C and D respectively
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Figure 14: Data retrieval time for nearest object from target search

Target Nearest CityGML space-filling Elapsed
Building Building (ms) curve (%)
ID ID (ms)
46 56 22 1 95.5
440 540 24 1 95.8
445 545 25 1 96.0
498 598 25 1 96.0
571 539 28 1 96.4
704 800 27 2 92.6
799 753 29 2 93.1
816 817 32 2 93.8
883 884 30 2 93.3
900 804 32 3 90.6
928 963 31 2 93.5
952 951 34 2 94.1

Table 2: Data retrieval time for nearest object from target search

6 CONCLUSIONS

In spatial applications, to load the entire 3D city model into a
viewer will consume computational processing time, and in some
applications it might not be necessary at all. Researchers are
facing problems in finding which visualization technique is best
suited for displaying 3D city data (Métral, C. et al., 2012). As an
example, in an indoor environment, a room is bounded by doors,
windows, walls, corridors, and floors. To make the whole 3D
city model reachable at one single processing time is not feasible
nor necessary. Practically, by using space-filling curves imple-
mentation, knowing which objects are within view of sight will
improve the visualization and optimize the memory. Meanwhile,
for mobile applications, displaying all 3D objects in a single dis-
play consumes a lot of processing-memory allocation and will
decrease the device performance. By knowing which 3D objects
have their projection on the 3D Hilbert curve within some arc-
length from the current location’s projection would be a great idea

for mobile display.

We have proposed a new 3D Hilbert’s curve as a space-filling
curve technique, that could be seen as an alternative to CityGML
for optimizing query performance. We also demonstrated the
query performance comparison of 3D building data set with and
without 3D Hilbert’s curve implementation. From the test, we
could see that the implementation of space-filling curve method
shows advantages in fast acquiring and information retrieval for
3D city model data. The advantages of space-filling curve in
preserving neighboring information can be exploited for 3D city
model application. However, further studies need to be conducted.
This research only focused on buildings as the 3D city object.
Since 3D city objects are becoming more sophisticated, other cat-
egories of city objects and their relationships are needed. Exper-
iments on street furniture and any other objects included in the
CityGML standard should be implemented.
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