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ABSTRACT: 
 
This study evaluates the capability of Earth Observing-1 (EO1) Advanced Land Imager (ALI) data for hydrothermal alteration 
mapping in the Meiduk and Sar Cheshmeh porphyry copper mining districts, SE Iran. Feature-oriented principal components 
selection, 4/2, 8/9, 5/4 band ratioing were applied to ALI data for enhancing the hydrothermally altered rocks associated with 
porphyry copper mineralization, lithological units and vegetation. Mixture-tuned matched-filtering (MTMF) was tested to 
discriminate the hydrothermal alteration areas of porphyry copper mineralization from surrounding environment using the shortwave 
infrared bands of ALI. Results indicate that the tested methods are able to yield spectral information for identifying vegetation, iron 
oxide/hydroxide and clay minerals, lithological units and the discrimination of hydrothermally altered rocks from unaltered rocks 
using ALI data. 
 
 

1. INTRODUCTION  

Economic geologists can conduct reconnaissance via remote 
sensing data for exploring porphyry copper, epithermal gold, 
massive sulfide and uranium mineralization. Multispectral and 
hyperspectral remote sensing images have been used in 
geological applications, ranging from a few spectral bands and 
more than 100 contiguous bands, covering the visible to 
shortwave infrared regions of the electromagnetic spectrum 
(Pour and Hashim, 2011, 2013; Pour et al., 2013).  

 As one of the geological applications of remote sensing, 
recognizing hydrothermally altered rocks is a common practice 
in the exploration of epithermal gold, porphyry copper, massive 
sulfide and uranium deposits (Pour et al., 2014; Kruse et al 
2003). The Earth Observing-1 (EO-1) satellite was launched on 
21 November of 2000 as part of NASA’s New Millennuim 
Program (NMP) technology path-finding activities to enable 
more effective (and less costly) hardware and strategies for 
meeting earth science mission needs in the 21st century. The 
EO-1 platform includes three the most advanced remote sensing 
instruments (i) The Advanced Land Imager (ALI); (ii) 
Hyperion; and (iii) The Linear Etalon Imaging Spectral Array 
(LEISA) Atmospheric Corrector (LAC). These sensors can be 
used in a variety of scientific disciplines (Ungar et al., 2003). 

The Advanced Land Imager (ALI) sensor was built as archetype 
for the next production Landsat satellites while the multispectral 
characteristics were maintained to Enhanced Thematic Mapper 
Plus (ETM+) sensor on Landsat-7 with a spatial resolution of 
30 m and a swath width of 37 km. ALI has 10 channels 
spanning the visible and near infrared (VNIR) to shortwave 
infrared (SWIR) from 0.4 to 2.35 μm (one panchromatic band: 
0.480-0.690 μm; six bands in VNIR (b1: 0.433-0.453 μm, b2:  
0.450-0.515 μm, b3: 0.525-0.605 μm, b4: 0.633-0.690 μm, b5: 

0.775-0.805 μm, b6: 0.845-0.890 μm); and three bands in 
SWIR (b7: 1.200-1.300 μm, b8: 1.550-1.750 μm, b9: 2.080-
2.350 μm)). In the field of geology, VNIR bands (0.4 to 1.0 μm) 
are especially useful for discriminating among ferric-iron 
bearing minerals. SWIR bands (1.20 to 2.35 μm) are sensitive 
to hydroxyl (OH) minerals that can be found in the alteration 
zones associated with hydrothermal ore deposits (Ungar et al., 
2003). 

Porphyry copper deposits are generated by hydrothermal fluid 
processes that alter the mineralogy and chemical composition of 
the country rocks. Alteration produces distinctive mineral 
assemblages with diagnostic spectral absorption features in the 
visible and near infrared (VNIR) through the shortwave infrared 
(SWIR) (0.4–2.5 μm) and/or the thermal infrared (TIR) (8.0–
14.0 μm) wavelength regions (Pour and Hashim, 2011). 
Hydrothermal alteration minerals with diagnostic spectral 
absorption properties in the visible and near infrared through 
the shortwave length infrared regions can be identified by 
multispectral and hyperspectral remote sensing data as a tool for 
the initial stages of porphyry copper and epithermal gold 
exploration (Di Tommaso and Rubinstein, 2007; Gabr et al., 
2010; Kruse et al., 2003; Pour and Hashim, 2014, 2015).  

In this study, feature-oriented principal components selection 
(FPCS), different band ratios and spectral mapping methods 
were tested on ALI data for mapping lithology, hydrothermal 
alteration area and vegetation at regional scale. Our image 
analyses focuses on the Meiduk and Sar Cheshmeh porphyry 
copper deposits, which are located in the southeastern part of 
the Urumieh-Dokhtar volcanic belt, SE Iran (Figure 1), where 
Cu and Mo are actively being mined. The main objectives of 
this research are: (i) to evaluate ALI spectral bands for 
hydrothermal alteration mapping, (ii) to discriminate 
lithologically different rock units in study area and (iii) to 
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evaluate abilities of the applied image processing methods for 
exploration of potential zones of porphyry copper 
mineralization. The achievements of this investigation should 
have considerable implications for geologists to utilize ALI data 
for geological purposes.  

 

2. MATERIALS AND METHODS 

2.1 Geology of the study area 

Figure 1 shows a simplified geology map of the southeastern 
segment of the Urumieh–Dokhtar Volcanic Belt. Porphyry 
copper deposits in this belt are associated with Miocene 
adakite-like orogenic granitoids which intrude the Eocene 
volcanic rocks (Pour and Hashim, 2015). In this area, yearly 
precipitation averages 25 centimeters or less, thus the deposit’s 
exposure is well due to sparse or no vegetation cover. 

 

Fig.1. Simplified geology map of southeastern segment of the 
Urumieh–Dokhtar volcanic Belt (Pour and Hashim, 2015). 
Study areas are located in rectangles. 

 

2.1 Satellite remote sensing data and image processing 
methods 
 
Two cloud-free level 1B ALI images were obtained through the 
U.S. Geological Survey Earth Resources Observation System 
(EROS) Data Center (EDC). The images were pre-
georeferenced to UTM zone 40 North projection using the 
WGS-84 datum. 
The datasets used in this study were processed using the ENVI 
(Environment for Visualizing Images) version 4.8 software 
package. To correct the atmospheric effects, the Atmospheric 
CORrection Now (ACORN) software was used to retrieve the 
surface reflectance. During the atmospheric correction, raw 
radiance data from imaging spectrometer is re-scaled to 
reflectance data. Therefore, all spectra are shifted to nearly the 
same albedo. The resultant spectra can be compared with the 
reflectance spectra of the laboratory or filed spectra, directly. To 
evaluate the ALI data the feature-oriented principal components 

selection (FPCS – Singh and Harrison, 1985), different band 
ratioing and Mixture Tuned Matched Filtering (MTMF) 
methods were tested for enhancing the hydrothermally altered 
rocks associated with porphyry copper mineralization, 
lithological units and vegetation at regional scale. The principal 
component analysis (PCA) is a multivariate statistical technique 
that selects uncorrelated linear combinations (Eigenvector 
loadings) of variables in such a way that each component 
successively extracted linear combination and has a smaller 
variance (Singh and Harrison, 1985). Mixture Tuned Matched 
Filtering (MTMF) method is a combination of the best parts of 
the linear spectral mixing model and the statistical matched 
filter model while avoiding the drawbacks of each parent 
method (Boardman, 1998; Kruse et al 2003). 
 
 
 

3. RESULTS AND DISCUSSION 

3.1 Principal component analysis (PCA) 

 
Feature-oriented principal components selection (FPCS) 
method was tested to ALI data for selecting particular principal 
components images that characterize the unique absorption 
features or minerals based on observation of the eigenvector 
matrix of a multispectral image dataset. Two combinations of 
the ALI bands are selected for this purpose. Bands 1, 2, 4 and 5 
are used for enhancing iron oxide minerals and bands 1, 7, 8 
and 9 to identify clay minerals. Iron oxide/hydroxide minerals 
exhibit spectral absorption features in the visible to middle 
infrared from 0.4 to 1.1 μm of the electromagnetic spectrum 
(Hunt and Ashley 1979). Landsat bands 1 (the equivalent to 
ALI band 2) and 3 (the equivalent to ALI band 4) have been 
used to map limonite-rich rocks containing limo¬nite, goethite 
and hematite, which are a potential indicator of supergene 
deposits. Hence, bands 2 (0.450-0.515 μm) and 4 (0. 633-0.690 
μm) of ALI contain typical features that can be used to map iron 
oxide/hydroxide minerals. Clay minerals have absorption 
features from 2.1 to 2.4 μm (band 9 of ALI) and reflectance 
from 1.55 to 1.75 μm (band 8 of ALI ) that correspond with 
bands 7 and 5 of ETM+, respectively. It is evident that bands 2, 
4, 8 and 9 of ALI can be used for hydrothermal alteration 
mapping. Statistical factors are calculated for each dataset, and 
covariance eigenvector values are examined. Tables 1, 2, 3 and 
4 show the transformation of the PCs for Meiduk and Sar 
Cheshmeh scenes. 
 
Table 1: Covariance eigenvector values of the principal 
components (PCs) of the first dataset (1, 2, 4 and 5 bands of 
ALI) for iron oxide minerals and vegetation, Meiduk scene. 
 
 Input bands        Band 1      Band 2      Band 4      Band 5            
  PC1                 0.492         0.499         0.506         0.520 
  PC2                 0.593         0.382        -0.333        -0.581 
  PC3                 0.343        -0.750        -0.710         0.625 
  PC4                 0.536        -0.202         0.358        -0.140 
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 Table 2: Covariance eigenvector values of the principal 
components (PCs) of the first dataset (1, 2, 4 and 5 bands of 
ALI) for iron oxide minerals and vegetation, Sar Cheshmeh 
scene. 
Input bands        Band 1      Band 2      Band 4      Band 5            
  PC1                 0.492          0.497          0.506         0.505 
  PC2                 0.584          0.392          -0.321       -0.579 
  PC3                 0.300         -0.763          -0.748    0.633 
  PC4                 0.572          -0.124          0.285        -0.091 
 
Table 3: Covariance eigenvector values of the principal 
components (PCs) of the second dataset (1, 7, 8 and 9 bands of 
ALI) for hydroxyl minerals, Meiduk scene. 
   Input bands        Band 1         Band 7      Band 8    Band 9            
        PC1                0.470         0.509         0.12           0.507 
        PC2                0.870        -0.132       -0.305        -0.363 
        PC3                0.147        -0.725       -0.023         0.444 
        PC4                0.035        -0.397        0.802        -0.642 
 
Table 4: Covariance eigenvector values of the principal 
components (PCs) of the second dataset (1, 7, 8 and 9 bands of 
ALI) for hydroxyl minerals, Sar Cheshmeh scene. 
 Input bands        Band 1        Band 7      Band 8        Band 9            
  PC1                     0.475         0.505         0.510          0.509 
  PC2                     0.870       - 0.151        -0.314        -0.579 
  PC3                     0.120        -0.740        -0.036         0.430 
  PC4                     0.044        -0.415         0.800        -0.660 
 
After analysing the magnitude and sign of the covariance 
eigenvector values of the PCs for the first dataset (Bands 1, 2, 4 
and 5), it has been observed that iron oxides can be 
distinguished as dark pixels in PC3 of both Meiduk and Sar 
Cheshmeh images because of the negative contribution from 
band 4 (reflective band) (-0.710) and (-0.748) and negative 
weighting of band 2 (absorption band) (-0.750) and (-0.763) for 
the Meiduk and Sar Cheshmeh images, respectively (Tables 1 
and 2). If the eigenvector loadings are positive in the reflective 
band of a mineral the image tone will be bright, and if they are 
negative, the image tone will be dark for the enhanced target 
mineral. So, the PC3 image shows iron oxide minerals as dark 
pixels that appear around the known and mined porphyry 
copper deposits in the study areas Figure 2 shows iron oxide 
minerals associated with known copper deposits in Sar 
Cheshnmeh mining district. It seems that bands 4 (0.633-0.69 
μm) and 5 (0.775-0.805 μm) of ALI have distinctive 
characteristics that can be utilized to discriminate iron 
oxide/hydroxide minerals from vegetation. Therefore, 
vegetation manifests as bright pixels in PC3 image (Figure 2) 
due to the positive contribution from band 5 (0.625) and 
(0.633) for the Meiduk and Sar Cheshmeh images, respectively 
(Tables 1 and 2). 
Considering the magnitude and sign of the eigenvector loadings 
of the PCs for the second dataset (Bands 1, 7, 8 and 9), it is 
evident that the PC4 image manifests desired information 
related to Al (OH)-bearing (clay) minerals as bright pixels. 
Eigenvector loadings of PC4 in band 8 (reflective band) are 
(0.802) and (0.800), while in band 9 (absorption band) are       
(-0.642) and (-0.660) for the Meiduk and Sar Cheshmeh 
images, respectively (Tables 3 and 4). Thus, clay minerals 
(hydrothermally altered rocks) around the known and mined 
porphyry copper deposits appear as bright pixels in PC4 image 
in ALI scenes. Using geology maps as the reference, it seems 
that a few bright pixel areas are associated with sedimentary 
rocks in the north (Cretaceous flysch and Palegene flysch) and 
west (Palegene flysch) of the Meiduk image (Figure 3). 
Sedimentary rocks such as mudstone, shale, claystone and 

litharenite sandstones contain large amounts of detrital clays 
such as montmorillonite, illite and kaolinite. 

  
Fig. 2. PC3 image shows iron oxide minerals as dark pixels that 
appear around the known and mined porphyry copper deposits 
in the Sar Cheshmeh ALI scene. 
 
 

  
Fig. 3. PC4 image shows clay minerals (hydrothermally altered 
rocks) around the known and mined porphyry copper deposits 
as bright pixels in the Meiduk ALI scene. 
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3.2 Band ratioing  

As the first step towards the identification of hydrothermal 
alteration minerals using ALI data, band ratios were created 
based on laboratory spectra of the minerals related with 
hydrothermal alteration. Mapping iron oxides is carried out 
using bands 2 and 4 of ALI because iron oxide/hydroxide 
minerals such as hematite, jarosite and limonite have high 
reflectance in the spectral region 0.63 to 0.69 μm (the 
equivalent to ETM+ band 3) and high absorption in the spectral 
region 0.45 to 0.52 μm. The identification of minerals needs 
bands 8 and 9 of ALI because of their high reflectance in the 
range of 1.55 to 1.75 μm and high absorption in 2.08 to 2.35 
μm. Based on the FPCS results, bands 4 and 5 of ALI can be 
used to identify vegetation. Accordingly, a false colour 
composite of band ratios (4/2, 8/9, 5/4 in RGB) was developed. 
This band ratio composite allows for the identification of 
altered rocks, lithological units and vegetation. The alteration 
minerals (hydrothermally altered rocks) are outlined in the 
images where they appear as yellow color around known and 
mined porphyry copper deposits (Figure 4, Meiduk region). The 
locations of the known and mined copper deposits and 
identified prospects are highlighted. Vegetation is shown in 
blue, and lithological units are identifiable in terms of a variety 
of colours in ALI scenes. 

  
Fig. 4. ALI band ratio image of 4/2, 8/9, 5/4 in RGB shows 
hydrothermally altered rocks as yellow color around known and 
mined porphyry copper deposits. 
 
 3.3 Mixture Tuned Matched Filtering (MTMF) 
            
Spectral mapping methods were tested with two selected spatial 
subset of ALI scenes covering both the Meiduk and Sar 
Cheshmeh mining districts for regional scale mapping. 
Automated spectral Hourglass was applied to the SWIR bands 
of ALI to extract reference spectra directly from the image. 
Mixture-tuned matched-filtering (MTMF) was performed to 
discriminate hydrothermally altered rocks from unaltered rocks 
at regional scale. Hydrothermally altered rocks associated with 
the known and mined porphyry copper deposits and identified 
prospects are well recognized from surrounding areas at 

regional scale. In this study, MTMF visual results are shown in 
Figure 5 (a-b). Bright pixels show hydrothermally altered rocks 
associated with the known and mined copper deposits and 
identified prospects in the ALI images. 
 
 

 

 
Fig.5. MTMF visual results derived from SWIR bands of ALI 
subscene. (a): Meiduk ALI sub-scene and (b): Sar Cheshmeh 
ALI sub-scene. 
 
 
 
 

4. CONCLUSIONS 

This study evaluates ALI data to extract geologic information 
for hydrothermal alteration and lithological mapping using 
some selected image processing methods. Two porphyry copper 
mining districts in southeastern segment of the Urumieh-
Dokhtar Volcanic Belt, SE Iran, namely the Meiduk and Sar 
Cheshmeh have been selected as case studies. FPCS and band 
ratio methods have yielded spectral information for identifying 
iron oxide/hydroxide, clay minerals and lithological units using 
ALI data at regional scale. MTMF is useful in the 
differentiation of hydrothermally altered rocks associated with 
the known and mined porphyry copper deposits from unaltered 
rocks using the SWIR bands of ALI. It is concluded that the 
extraction spectral information from ALI data can be used for 
lithological mapping and the detection of hydrothermal 
alteration minerals associated with porphyry copper and 
epithermal gold mineralization at regional scale.       
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