
ACCURACY ASSESSMENT OF LIDAR-DERIVED DIGITAL TERRAIN MODEL (DTM) 

WITH DIFFERENT SLOPE AND CANOPY COVER IN TROPICAL FOREST REGION 
 
 

Mohd Radhie Mohd Salleh a,*, Zamri Ismail b, Muhammad Zulkarnain Abdul Rahman a 

 
a TropicalMAP RESEARCH GROUP 

b Photogrammetry & Laser Scanning RESEARCH GROUP, Department of Geoinformation, Faculty of Geoinformation and Real 

Estate, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia. 

*Corresponding author e-mail: mohdradhie.gis@gmail.com 

 
 

 

 

KEY WORDS: Airborne LiDAR, Accuracy, Vegetation, Slope, Tropical Forest 
 

 

ABSTRACT: 

 
Airborne Light Detection and Ranging (LiDAR) technology has been widely used recent years especially in generating high accuracy 

of Digital Terrain Model (DTM). High density and good quality of airborne LiDAR data promises a high quality of DTM. This study 

focussing on the analysing the error associated with the density of vegetation cover (canopy cover) and terrain slope in a LiDAR 

derived-DTM value in a tropical forest environment in Bentong, State of Pahang, Malaysia. Airborne LiDAR data were collected can 
be consider as low density captured by Reigl system mounted on an aircraft. The ground filtering procedure use adaptive triangulation 

irregular network (ATIN) algorithm technique in producing ground points. Next, the ground control points (GCPs) used in generating 

the reference DTM and these DTM was used for slope classification and the point clouds belong to non-ground are then used in 

determining the relative percentage of canopy cover. The results show that terrain slope has high correlation for both study area (0.993 
and 0.870) with the RMSE of the LiDAR-derived DTM. This is similar to canopy cover where high value of correlation (0.989 and 

0.924) obtained. This indicates that the accuracy of airborne LiDAR-derived DTM is significantly affected by terrain slope and canopy 

caver of study area. 

 
 

1. INTRODUCTION 

Light Detection and Ranging (LiDAR) is an active remote 

sensing technique that able to map various activities of the 
Earth’s surface and features such as vegetation and building, 

which also provides Digital Terrain Model (DTM) with up to 

sub-meter vertical accuracy (Bater, 2009) and increasingly being 

used to map forested terrain (Reutebuch et al., 2003).  It works 
by determine the distance between the sensors and ground objects 

by measuring the time of the transmitted pulse return to the 

LiDAR sensor from the objects or ground surface.  Nowadays, 

airborne LiDAR is one of the technology that widely used in 
surveying and industrial measurement applications (Cui, 2013). 

This technology acquire digital elevation data effectively and 

accurately as compared to conventional methods (Ismail et al., 
2015). Furthermore,  LiDAR with high resolution data can be 

used in generating the digital terrain models (DTMs) and digital 

surface models (DSMs) which is important to support wide range 

of applications such as specific research, education, management 
of public resources (Hodgson et al., 2005) engineering projects, 

hydrology and floodplain management, corridor mapping, etc. 

(Cui, 2013).  By applying suitable processing technique, a high 

quality of DTM can be generated from LiDAR data (Cui et al., 
2013). Hence, an effective of LiDAR data processing is 

important to all the applications (Axelsson, 1999). 

 

However, the classification of point cloud or LiDAR data 
filtering process which focusing on the ground and non-ground 

points separation are very crucial to most of the applications (Cui, 

2013).  Although, most of the research agree that the RMSE of 

LiDAR elevation data is ±15 cm but it is only for the limited area 
with flat terrain, less vegetation, and low altitude during data 

collection (Hodgson and Bresnahan, 2004). More studies should 

be conducted to determine the level of accuracy with various 

physical environment and also other external factors that will 

give an impact to the quality of DTM such as land cover type, 

land forms, etc. Besides that, the classification of LiDAR point 
clouds that represents as terrain is a fundamental problem in the 

production of high quality of DTMs (Pingel et al., 2013).  The 

filtering of LiDAR data become more challenging especially at 

high relief area or hybrid geographic features (Li, 2013). 
Although dozens of filtering algorithm have been developed in 

separation of ground points, the difficulties in this extraction still 

exist where most of the algorithm need specific condition to 

produce good results (Meng et al., 2010) such as flat and open 
areas, . Due to this scenario, more studies should be conducted in 

order to providing the understanding of the limitations of DTM 

accuracy relative to various intended end uses, and also may 
provide direction in improving the DTM development (Su and 

Bork, 2006) 

 

Many studies on the capability of airborne LiDAR system in 
producing DTM have been done in developed or temperate 

countries but still demanded in tropical area especially in 

Malaysia (Ismail et al., 2015). Terrain slope and land cover type 

become emerging factor in contributing the error to the LiDAR-
derived DTM (Goncalves et al., 2006; Hodgson and Bresnahan, 

2004; Raber et al., 2002; Su and Bork, 2006). An area with highly 

dense canopy facing difficulties for airborne LiDAR signal to 

penetrate and reach to the ground. This may lead to the density 
of ground point is lower than open space area. This situation 

contribute significantly to the error of DTM generated. In term of 

slope effects, Figure 1 shows the illustration on how terrain slope 

effect the LiDAR data.  
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Figure 1. The illustration for impact of slope towards the 
accuracy of LiDAR data (Lewis and Hancock, 2007). 

 

Based on the Figure 1, although sample (a) as tree return such as 

from tree crown, branches, etc. but the terrain slope causing the 
classification of sample (a) as ground points because sample (b) 

as ground return is at a higher altitude (Lewis and Hancock, 

2007). This situation is challenging in filtering the LiDAR data 

for major filtering algorithms. Besides that, horizontal error may 
introduce “apparent” error in the elevation value where any 100 

cm horizontal error on a 100 slope can be up to 18 cm of elevation 

error (Hodgson and Bresnahan, 2004). In addition, high density 
of vegetation also reduce the number of LiDAR ground points 

due to less signal can penetrate the canopy and reach to the 

ground along with the slope affects the generation of highly 

accurate DTM. 
 

 

2. STUDY AREA AND DATA 

2.1 Description of the data and study area 

In this study, two study area are chosen where located in the 

south-west of Bentong District, State of Pahang, Malaysia (see 

Figure 2 (a) and (b)). The first study area is mainly covered by 

rubber trees while the next study area covered with mixed forest. 
Both of these two study areas can be considered as tropical forest 

area where they covered by high canopy density and undulating 

terrain. The slope gradient range between 00 and 150 and the 

canopy density more than 60 percent (%). The sample of photos 
taken over study areas as shown in the Figure 3 (a),(b), and (c). 

 

 
(a) 

 

 
(b) 

 

Figure 2. Map of study area covered with (a) rubber trees 

vegetation; (b) mixed forest.  

 
 

 

  
                   (a)                                               (b) 

  

 
 

 
(c) 

 

Figure 3. Photographs taken over study area covered with rubber 

trees (a) and (b) with understorey vegetation (c) mixed forest 
 

Airborne LiDAR data (Figure 4 and Figure 5) were collected by 

survey firm company on January 2009 using REIGL laser 

scanner which is mounted on a British Nomad aircraft. The data 
were delivered in LAS format and the average point density is 

about 1.3 points per meter square (rubber trees) and 3.2 points 

per meter square (mixed forest). The airborne LiDAR data were 

processed using an automated methods in classifying ground 
returns and using manual interpretation. This process known as 
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ground filtering that further discussed in airborne LiDAR 

filtering section. 
 

 
 

Figure 4. Raw airborne LiDAR data for rubber trees vegetation 

 

  

 
 

Figure 5. Raw airborne LiDAR data for mixed forest vegetation 

 

In order to perform validation or assessment for DTM generated, 
several Ground Control Points (GCPs) used for that purpose. 

Slope map also generated from these field collected data and it is 

collected by carried out ground survey technique by using Nikon 

Total Station with an optical levelling capability. The total 
number of GCPs collected for rubber trees area and mixed forest 

areas is 126 points and 69 points are respectively. Field crews 

visited the study area and characterised the land cover type of the 

study area. Most of the GCPs collected were under forested 
canopy and slope area. This is important in order to investigate 

the effect of tropical forest characteristics towards the accuracy 

of LiDAR-derived DTM. 

 
 

3. METHODOLOGY 

As mentioned in the introduction, airborne LiDAR data is 

commonly used in generating the DTMs. However, the 
environmental factor especially for tropical forest area introduce 

an error to the DTM generated. Hence, this study focusing on the 

investigating the factor of slope and canopy cover towards the 

accuracy of LiDAR-derived DTM. The process include four 
parts: 

 

i. Airborne LiDAR filtering. 

ii. DTM generation. 
iii. Slope and canopy cover classification. 

iv. Accuracy assessment. 

 

3.1 Airborne LiDAR filtering 

Airborne LiDAR filtering (also known as ground filtering) is a 
critical process before implementing it in any applications. Good 

filtering process give an impact towards the accuracy of DTM. In 

this study, ground filtering is performed using the adaptive 

Triangulated Irregular Network (ATIN) densification algorithm. 
ATIN filter works by employing the distance of point on the 

surface of a TIN in order to separate the ground points from 

airborne LiDAR dataset. Basically, four parameters need to be 

specified for each study area in order to extract ground points as 
follows: 

 

i. maximum building size, 

ii. iteration angle, 
iii. terrain angle, and 

iv. iteration distance. 

 

Since there is no building in the chosen study area, the maximum 
building size is set to the 5 m which is the minimum size of 

standard building. This filter starts with the generating the initial 

TIN from seed points where the lowest points in each raster grid. 

This TIN surface adapts to the points and more ground points are 
added if they meet the threshold. The threshold is determined 

from other parameters also (iteration angle, terrain angle, and 

iteration distance). Iteration angle is the maximum angle of the 

point clouds and the TIN facets. Iteration distance is used to 
ensure the iteration does not make big jump upwards when 

triangle are large. This capability helps in removing any buildings 

measurement in the dataset.  

 

3.2 DTM generation 

At this stage, GCPs which collects in the field are interpolated by 

using Kriging method with 1.0 m spatial resolution. Kriging is a 

geostatistical method for point interpolation where the statistical 
surface as a regionalised variable, with a certain degree of 

continuity (Caruso and Quarta, 1998). Figure 6 and Figure 7 

below shows the DTM generated from GCPs for each study area. 

 

 
 

Figure 6. DTM generated from GCPs for rubber trees area 

 
 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-2/W2, 2015 
Joint International Geoinformation Conference 2015, 28–30 October 2015, Kuala Lumpur, Malaysia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-II-2-W2-183-2015

 
185



 

 
 

Figure 7. DTM generated from GCPs for mixed forest area 
 

Both of the DTM generated are further used in producing the 

slope map in order to obtain an accurate of slope map. LiDAR 

ground points also have been interpolated using Kriging method 
for DTM generation with 1.0 m spatial resolution for assessment 

purpose. 

 

3.3 Slope and canopy cover classification 

The slope map is generated from DTM of field collected data 

(Figure 8 (a) and (b)). The slope map is then classified into three 

classes i.e. class 1 (00 – 50), class 2 (60 – 100), and class 3 (110 – 
150) as shown in Table 1. 

 

Class Slope range (Degrees) 

1 0 - 5 
2 6 – 10 

3 11 – 15 

 

Table 1. The slope classification over study area 

 
 

 
(a) 

 

 
(b) 

Figure 8. Slope map for (a) rubber trees area, and (b) mixed forest 

area. 

The canopy cover is calculated based on relatively of non-ground 

airborne LiDAR data over all LiDAR returns. It is define by 
dividing the number of non-ground points and the total number 

of points from airborne LiDAR data over a specific area (1).  

 

Canopy cover =
Non-ground points

Total points
 x 100                                  (1) 

 
where Canopy cover is in percent unit of canopy density, non-

ground points is the laser points classified as non-ground and 

total points is the total points in a specific area. In this study, 5 m 

spatial resolution used in identifying the canopy cover for both 
study area. The value of 5 m resolution used because it need to 

be at least four times the average point spacing. Table 2 shows 

the classification of canopy density of the study area and Figure 

9 (a) and (b) shows these maps. 
 

Class Canopy Density (%) 

1 70 – 80 
2 81 – 90 

3 90 – 100 

 

Table 2. The canopy density classification over study area 

 

 

 
(a) 

 

 
(b) 

 
Figure 9. Canopy density map for (a) rubber trees area, and (b) 

mixed forest area. 

 

3.4 Accuracy assessment  

The accuracy assessment step is carried out by comparing the 

elevation values obtained from the LiDAR-derived DTM with 

the field collected elevation data. The comparison will be based 
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on the value of Root Mean Squared Error (RMSE), Mean 

Absolute Error (MAE) and Mean Bias Error (MBE) presented in 
equation (2) to (4).   

                                                                                               

RMSE =  √
   ∑ (ZLiDARi

-ZGCPi
)²n

i=1

n
                                         (2) 

MAE =  
∑ |ZLiDAR𝑖

− ZGCP𝑖
|n

i=1

𝑛
                                                  (3) 

MBE = 
∑ (ZLiDARi

-ZGCPi
)n

i=1

n
                                                       (4) 

where n is the number of samples, ZLiDAR is the terrain elevation 

obtained from the LiDAR-derived DTM,  ZGCP  is terrain 

elevation value obtained from the field GCP. 

4. RESULTS AND DISCUSSION 

4.1 The effect of terrain slope on airborne LiDAR-derived 

DTM 

Based on fundamental research in topographic mapping study, 

the elevation error would increase as terrain slopes increases 

(Maling, 1988). Most of previous research also found that the 

error of LiDAR-derived DTM is highly contributed by terrain 
slope (Hodgson and Bresnahan, 2004; Hodgson et al., 2003; 

Spaete et al., 2011). Table 3 (a and b) and Figure 10 (a and b) 

shows the error of LiDAR-derived DTM associated with terrain 

slope in this study. 

Slope Degree  RMSE (m) MAE (m) MBE (m) 

0 – 5 (Class 1) 0.613 0.364 0.020 

6 – 10 (Class 2) 0.723 0.410 0.002 

11 – 15 (Class 3) 0.890 0.619 0.017 

(a) 

Slope Degree RMSE (m) MAE (m) MBE (m) 

0 – 5 (Class 1) 0.379 0.153 0.010 

6 – 10 (Class 2) 0.589 0.012 -0.024 

11 – 15 (Class 3) 0.590 0.425 0.054 

(b) 

Table 3. Error of LiDAR-derived DTM associated with terrain 
slope over (a) rubber trees area, and (b) mixed-forest area 

(a) 

(b) 

Figure 10. Graph for error of LiDAR-derived DTM associated 

with terrain slope over (a) rubber trees area, and (b) mixed-forest 
area 

According to the result obtained, the accuracy of DTM generated 

is varied with the terrain slope for both study areas. This findings 
was expected where slope class 3 has recorded a largest error for 

both study area which are 0.890 m (rubber trees) and 0.590 m 

(mixed forest). The correlation coefficient of this relationship 

also high for these two study area where 0.993 (rubber trees) and 
0.870 (mixed-forest). This indicates the factor of terrain slope is 

significantly contribute an error to the LiDAR-derived DTM. 

Most of the slope class shows the positive bias means 

underestimate exists in DTM generated at high terrain.  

4.2 The effect of canopy cover on airborne LiDAR-derived 

DTM 

Most of the previous study shows that high density of vegetation 

area give an impact towards the accuracy of DTM generated from 

airborne LiDAR data. In this paper, the evaluation of DTM 

generated from LiDAR data based on the canopy cover is 
classified into three (3) classes as shown in the Table 4 (a and b) 

while Figure 11 (a and b) shows the graph plotting from that 

result. 

y = 0.1385x + 0.4649
Correlation coefficient: 0.993

0.000
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y = 0.1056x + 0.3082
Correlation Coefficient: 0.870
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Canopy Density 

(%) RMSE (m) MAE (m) MBE (m) 

70 - 80 (Class 1) 0.230 0.035 0.011 

81 - 90 (Class 2) 0.437 0.255 0.008 

91 - 100 (Class 3) 0.789 0.495 0.002 

(a) 

Canopy Density 

(%) 

RMSE 

(m) MAE (m) MBE (m) 

70 – 80 (Class 1) 0.333 0.333 0.162 

81 – 90 (Class 2) 0.367 0.179 0.075 

91 – 100 (Class 3) 0.576 0.076 0.019 

(b) 

Table 4. Error of LiDAR-derived DTM associated with canopy 

cover over (a) rubber trees area, and (b) mixed-forest area 

(a) 

(b) 

Figure 11. Graph for error of LiDAR-derived DTM associated 
with canopy cover over (a) rubber trees area, and (b) mixed-forest 

area 

As previously discussed, the canopy cover is defined relatively 

by dividing the number of LiDAR non-ground points over total 

number of LiDAR points at specific area. This clearly shows that 

the area with high dense of canopy have less number of LiDAR 
ground points and this situation will probably produce an error to 

the DTM generated. Based on the result, it was expected where 

the error of LiDAR-derived DTM increases through high canopy 

density. Canopy class 3 recorded the highest error for both of 
study area which are 0.789 m (rubber trees) and 0.576 m (mixed-

forest). The correlation coefficient for both cases also positively 

correlated with value of 0.989 (rubber trees) and 0,924 (mixed-

forest).  This indicates the significant effect canopy density 

towards the accuracy of LiDAR-derived DTM. 

5. CONCLUSIONS AND FUTURE WORK 

This study demonstrates the airborne LiDAR data in generating 
DTM over tropical forest area. The tropical characteristics such 

as steep area covered with dense vegetation absolutely produce 

different accuracy than other land cover (i.e. urban). The results 

of this study clearly show the variation in error of LiDAR-derived 
DTM by different slope gradient and canopy cover. Both of study 

area affected by terrain slope where the RMSE is higher by 

increasing the slope terrain. The vertical error of LiDAR-derived 

DTM is typically large and is expected to have this kind of result. 
This prove that slope have a significant impact on the accuracy 

of LiDAR-derived DTM in steeper terrain. This is similar to the 

canopy cover situation where RMSE value also higher at dense 

canopy. The error would be continuously increasing with 
combination of steeper terrain and dense canopy area. This study 

could be further used in identify relationship of many physical 

environmental factors towards the accuracy of LiDAR-derived 

DTM. 
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