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ABSTRACT:

This paper describes the analysis of the propagation of positional uncertainty in 3D city models to the uncertainty in the computation
of their volumes. Current work related to error propagation in GIS is limited to 2D data and 2D GIS operations, especially of rasters.
In this research we have (1) developed two engines, one that generates random 3D buildings in CityGML in multiple LODs, and one
that simulates acquisition errors to the geometry; (2) performed an error propagation analysis on volume computation based on the
Monte Carlo method; and (3) worked towards establishing a framework for investigating error propagation in 3D GIS. The results of
the experiments show that a comparatively small error in the geometry of a 3D city model may cause significant discrepancies in the
computation of its volume. This has consequences for several applications, such as in estimation of energy demand and property taxes.
The contribution of this work is twofold: this is the first error propagation analysis in 3D city modelling, and the novel approach and
the engines that we have created can be used for analysing most of 3D GIS operations, supporting related research efforts in the future.

1 INTRODUCTION

Error propagation in GIS is both an unavoidable fact when pro-
cessing and utilising datasets, and a field of research. When maps
that are stored in a GIS database are used as input to a GIS op-
eration, then the errors in the input will propagate to the output
of the operation (Lemmens, 2011). An error in the input dataset
propagates differently depending on the used operation, and it is
virtually never equal between applications. Therefore the main
research question of error propagation is: given the errors in the
input to a GIS operation, how large are the errors in its output
(Heuvelink, 2005).

Two prominent methods that are used to determine the propa-
gation of errors in GIS operations are the Taylor series method,
and the Monte Carlo method. The first method is analytical and
it involves establishing mathematical functions that describe the
process, while the latter is used with more complex processes, as
a numerical brute force method to translate randomly generated
uncertainty in inputs to uncertainty in outputs.

This paper investigates how a Monte Carlo simulation can be used
to obtain insight into error propagation in 3D city modelling. As
we explain in Section 2, generalising this problem from 2D to
3D is more complex than one may expect, which motivated us to
research this topic in 3D. In this paper we present an error prop-
agation simulation that we have performed with 3D city models
on the operation of volume calculation, which is one of the key
operations in 3D GIS, and it is used in a number of use-cases.

Hereby we introduce an engine that creates randomly generated
3D data of buildings. Simulation of input data is not typical for
error propagation analyses, however, we motivate our approach
by achieving diversity of the input data, and to have better un-
derstanding of the complete process. We have implemented a
software prototype that creates CityGML models (Open Geospa-
tial Consortium, 2012) in multiple levels of detail (LODs) that are
intentionally impaired with normally distributed positional errors

simulated according to 20 accuracy classes (values of standard
deviations). For each building, its volume is computed in each
LOD and each accuracy class. The erroneous volumes are com-
pared to the ground truth, determined from the error-free syn-
thetic dataset within the corresponding LOD. Afterwards, the root
mean square error is computed for each accuracy class and each
LOD, along with the relative error in percent. This directly re-
sults in determining the relationship between the input and out-
put uncertainty, meeting the main research question of each error
propagation analysis.

The results of this work, and the conclusion may serve as a po-
sitional accuracy recommendation for use-cases that involve the
operation of the volume computation, and for related research
efforts in the future. We show that a comparatively small error
in the geometry of a 3D city model may cause significant dis-
crepancies in the computation of its volume, and that the relation
between input and output uncertainty is linear.

2 BACKGROUND AND RELATED WORK

The subject of error propagation is researched in a number of dis-
ciplines, such as physics (Taylor, 1997), and has a strong mathe-
matical and experimental foundation that can be applied to other
disciplines. It is related to GIS: geographical observations de-
scribe phenomena with spatial, temporal, and thematic compo-
nents that are all acquired with uncertainty (Veregin, 2005). Be-
side measurement errors, uncertainty may be caused by process-
ing, generalisation and several other factors (Fisher, 2005). Hence,
understanding the propagation of errors in GIS is important. For
instance, it is important to set expectations when obtaining and
utilising datasets for a specific application. One may define a
maximum acceptable error of the result of an operation, and by
performing the analysis of the propagation of errors within the
operation may determine the maximum allowed error in the input
data. An example is the usage of 3D city models in estimating the
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visibility (line of sight) between two points in space. This tech-
nique is used by radio engineers and telecom companies to esti-
mate the radio propagation (Wagen and Rizk, 2003), and for se-
curity purposes as in determining the optimal closed-circuit tele-
vision (CCTV) camera placement (Ying et al., 2002). While the
first one may be successfully accomplished with a rough and not
overly accurate 3D city model, the latter is focused on street-scale
data where a comparatively small error may result in significant
errors in the output.

The topic has been researched and documented in a number of
publications. Heuvelink et al. (1989) performed a quantitative
analysis of gridded 2D data in a raster geographical information
systems with two use-cases, Arbia et al. (1998) modelled the er-
ror propagation of overlay operations in raster GIS, and Van Oort
et al. (2005) researched the propagation of positional uncertainty
of vertexes in polygons to the computation of its area. Further,
Heuvelink and Burrough (1993) investigated error propagation
in cartographic modelling using Boolean logic and continuous
classification. The documented analyses include the propagation
of spatial errors and attribute errors, with the latter being more
represented. For instance, Veregin (1995) investigated the prop-
agation of thematic error. Dimension-wise, to the extent of our
knowledge there is no work in 3D.

Propagated errors are defined as the discrepancies that exist after
performing identical operations on one or more layers of ground
truth and the corresponding observed data layers. Error propa-
gation modelling is the formal process of representing the trans-
formations in data quality that occur through GIS operations on
data layers (Arbia et al., 1998). The error propagation problem
can be formulated mathematically as follows (Heuvelink, 2005).
Let U(.) be the output of a GIS operation g(.) on the m input
attributes Ai(.):

U(.) = g(A1(.), . . . , Am(.)) (1)

The operation g(.) may represent virtually any GIS operation,
for instance, area or slope calculation. The objective of the error
propagation analysis is to determine the error in the output U(.),
given the operation g(.) and the errors in the input attributesA(.).
An error is therefore a quantitative attribute can be defined as the
difference between reality and our representation of reality, and
it is usually expressed with the variance of U(.).

The two methods to assess the error propagation in GIS are the
Taylor series method, and the Monte Carlo method. The ratio-
nale of the Taylor method is to approximate the operation with
a truncated Taylor series. However, this method is not suited for
complex operations, such as the ones used in computational fluid
dynamics, since they are difficult to compute analytically.

A Monte Carlo method involves deliberate use of random num-
bers in a calculation that has the structure of a stochastic process,
that is, a sequence of states whose evolution is determined by
random events (Kalos and Whitlock, 2008). It is made to work
by running the assessment model repeatedly with random distur-
bances introduced into a selected input factor prior to each run.
When used in error propagation, it is used to find the relationship
between the distribution of input errors and the model’s outputs
in order to determine whether input error amplifies or suppresses
output error (Emmi and Horton, 1995). Following the notations,
the reasoning of the Monte Carlo method is to compute the result
of g(A1, . . . , Am) repeatedly, with input values Ai that are ran-
domly sampled from their joint distribution (Heuvelink, 2005).

Examples of the Monte Carlo method employed in the analysis
of error propagation in GIS include an application in flood man-

agement (Qi et al., 2013), a GIS-based assessment of seismic risk
(Emmi and Horton, 1995), spatial probabilistic modelling for po-
tential slope failures (Zhou et al., 2003), and an evaluation of the
accuracy of agricultural land valuation using land use and the soil
information (Fisher, 1991). While error propagation is a mature
and studied subject in GIS, state of the art is limited to 2D data.
Further, it is focused towards raster data, and research on uncer-
tainty in vector data is seldom. The foundation of the subject is
valid also for 3D data and 3D GIS operations, however, such anal-
ysis requires further attention. Not only an additional geometric
dimension prone to errors is available, but (1) the applications,
operations and acquisition methods are different; (2) additional
measurements are required and additional geometry is present;
and (3) the concept of level of detail becomes significantly more
exposed. We elaborate each point in the continuation.

(1) 3D city models are nowadays used for more than a few
dozens applications not possible with 2D data, such as es-
timation of solar potential of roofs (Hofierka and Zlocha,
2012), and in applications that are considerably different
than when used with 2D data, such as estimating noise pol-
lution (Stoter et al., 2008). In contrast with 2D data, they are
usually collected with a combinations of acquisition tech-
niques, such as photogrammetry (Hammoudi and Dornaika,
2011), LiDAR (Vosselman and Dijkman, 2001), extrusion
from 2D data (Ledoux and Meijers, 2011), and as a gener-
alised conversion from Building Information Models (BIM)
(Isikdag and Zlatanova, 2009). As is the case with 2D data,
each of the techniques produces spatial data burdened with
positional errors, however, a model may be constructed from
two techniques that have different accuracy levels, resulting
in different positional accuracy for x, y on the one hand, and
z on the other hand.

(2) The construction of 3D city models generally involves more
measurements than the 2D acquisition of the same real-world
feature (e.g. height of the eaves of a roof, and position of a
window on a wall). Further, 3D city models may contain
geometries such as solids and other concepts that are not
available in 2D.

(3) The models may be derived in multiple forms distinguished
by levels of detail (LODs), different degrees of the complex-
ity of the spatio-semantic representation that are adapted to
multi-scale applications (Stadler et al., 2009; Biljecki et al.,
2014b). The LOD concept usually does not cover the spatial
accuracy, and when it does impose the requirements, this is
frequently overlooked (Biljecki et al., 2013). An arising re-
search question is how error propagation should be analysed
for each LOD.

These facts motivated us for this research, and to select the Monte
Carlo method to obtain more insight in how errors propagate in
a 3D GIS environment. We concentrate on the uncertainties of
the geometry of the model, and research how positional accuracy
influences the quality of 3D data analysis. Positional accuracy is
a prominent data quality element, and a principal descriptor in the
metadata of a geo-dataset. In virtually all applications it affects
the outcome of a GIS operation, hence we find it relevant for this
research.

3 METHODOLOGY

In this section we describe the method of this research, along with
the implementation in a software prototype, and show examples
with data. The methodological process is depicted in Figure 1.
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Figure 1: The diagram of the presented methodology. The GIS
operation is shown in grey, and the ground truth elements are out-
lined with thicker strokes. The terms and notations are explained
throughout the Section 3.

First we randomly generate properties of synthetic buildings with
a novel system that we have designed and implemented (Sec-
tion 3.1). It is possible to use real-world data, however, the mo-
tivation for the development of such a system is to have control
over the properties of the buildings in order to generate a high
number of dissimilar scenarios in a random way for removing the
statistical bias, to avoid geometric construction errors, and to cre-
ate multi-scale models, which is explained later. This is why we
simulated a 3D city model instead of using a real-world data set.

Afterwards, positional noise is added to the geometrical proper-
ties of each building, as a simulation of acquisition errors (Sec-
tion 3.2). As a third step, Section 3.3 describes the realisation of
the buildings as 3D city models in the CityGML format in mul-
tiple LODs. The process is run iteratively to simulate a number
of different accuracy classes (Section 3.4), extending the research
for more accuracy ranges.

The fourth step is an operation that uses a 3D city model as input,
and outputs a result. We have used the operation of the computa-
tion of volumes of buildings.

Note that these steps can be applied to a number of other 3D
GIS operations, essentially resulting in this methodology to be
considered as a framework with a general application.

The tools used to implement this method are Python, and the Fea-
ture Manipulation Engine (FME) of Safe Software Inc.

3.1 ENGINE TO GENERATE RANDOM BUILDINGS

In order to understand how positional uncertainty propagates thro-
ugh a 3D GIS operation in a realistic setting, experiments should
be done on more than one building. It is essential and a statistical
requisite to recreate as many as possible buildings that represent a
realistic setting, with different properties. For instance, an equal
error at one point in two models of different size, differently af-
fects the operation and causes a different output uncertainty. This
is particularly the case in geometry-related operations such as the
computation of area and volume.

For this purpose we have designed Random3Dcity, an engine that
randomises a number of values for a variety of parameters pj that
define a building Bj :

Bj = {pj1, pj2, . . . pjn} (2)

The parameters include (a) attribute ones such roof type, number
of windows, and (b) geometrical parameters such as the dimen-
sions of the body of the building, size of windows, their position,
etc. We support the four most used types of roofs: gabled, hipped,
shed, and flat (Kada, 2007).

The engine mimics the reality by sampling random values from
a uniformly distributed probability function. While to the best
of our knowledge no research investigated the ranges and distri-
butions of several building properties in the real-world (such as
building height or type of roof), for the purpose of this paper we
follow the assumption that in general the building properties are
uniformly distributed. We have created certain ranges in order
to mimic the reality of a residential setting, such as the building
width being in between 3 and 10 m. Therefore the values for each
building are sampled from the generated probabilistic distribution
variable.

With the range of values that we use, it is possible to generate
3.05 × 1052 unique combinations of buildings. This magnitude
was determined by calculating the permutations of possible val-
ues in the stochastic system.

The values of the parameters were generated as randomly as pos-
sible in order to create a set of diverse buildings, however, smaller
interventions in the engine in form of constraints have been done.
For instance, every building has to have one entrance door, and
its height should be at least 2.5 m. These are chosen to make the
model as realistic as possible, and to remove unlikely and invalid
cases, for instance, building of height of 30 cm, windows bigger
than the wall itself, and doors that are 2 m tall but 2 cm wide.
This intervention does not affect the result and it rather makes the
engine robust conforming to the reality.

After the building properties have been generated, they are writ-
ten in an XML file containing m buildings, B1 . . . Bm. We ex-
emplify this with one building:

<building ID="38b83460 -753c-48a8 -
8c09 -52 d50131ea0b">

<origin >173469.0 526427.0 0.0</origin >
<xSize>4.6</xSize >
<ySize>4.23</ySize>
<zSize>3.54</zSize>
<roof>

<roofType >Gabled </roofType >
<h>2.68</h>
<overhangs >

<xlength >0.35</xlength >
<ylength >0.31</ylength >

</overhangs >
<dormers >

<dormer >
<side>1</side>
<size>

<width>1.09</width>
<height >1.05</height >

</size>
<origin >

<x>1.57</x>
<y>0.14</y>
...

<windows >
<window >

<wall>1</wall>
<size>

<width>1.42</width>
<height >0.91</height >
...

3.2 DETERMINATION OF THE ERROR MODEL AND
ADDING NOISE TO THE GEOMETRY

The above described dataset is considered as the reality. In or-
der to simulate the error-prone acquisition of the geometry of the
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buildings and to create an instance of the dataset that contains
errors, we have simulated noise to each parameter pjk ∈ Bj in
an iterative process. In geomatics, each of the dimensions is af-
fected to discrepancies that are normally distributed (Goodchild,
1991; Caspary and Scheuring, 1993). Hence, for each parameter
pjk, a degraded parameter p̂jk has been derived by simulating the
acquisition error by sampling values from a normal probability
distribution function with the standard deviation σ:

p̂jk = N (pjk, σ
2) (3)

Hence, we can define εjk, the simulated error for pjk as the differ-
ence between the reality and the (simulated) measurement:

εjk = p̂jk − pjk (4)

The parameters p̂j comprise the properties of the erroneous ver-
sion B̂σj of the building Bj , that are degraded with values sam-
pled from the normal probability distribution function with the
standard deviation σ.

Continuing the previous example of the building, new instances
of the values of the parameters stored in the XML file have been
created. The below excerpt of the XML are the erroneous param-
eters with the simulated noise of σ = 0.1 m for each parameter.

<xSize>4.69</xSize>
<ySize>4.19</ySize>
<zSize>3.42</zSize>

The motivation for deriving the geometric properties mostly in
the form of distances (e.g. height of the roof), rather than posi-
tions of points (e.g. coordinates of the southern tip of the roof)
is practical, and here the benefits of this approach are exposed.
Most software packages nowadays facilitate modelling of build-
ings by measuring the distances of edges at right angles (Loch-
Dehbi and Plümer, 2011), especially in automatic workflows (Fis-
cher et al., 1998). As the noise is added to the lengths of the
edges, the right angles in the geometry are preserved. This is in
contrast to separately adding noise at vertices as it would break
right angles, it could potentially disrupt geometric constructions
such as solids, and make the consequent process unnecessary
more complex.

3.3 CITYGML MODEL REALISATION

In this step we generate the 3D city model of each building Bj
and its erroneous instance B̂σj based on the properties pj and
p̂j . We have decided to generate the models in the international
standard CityGML published by the OpenGeospatial Consortium
(OGC) because it is one of the relevant standards in 3D city mod-
elling, gradually being adopted by the community, and it enables
the storage of models comprising complex semantics along with
a structured geometry (Gröger and Plümer, 2012; Stadler and
Kolbe, 2007). The standard defines five LODs that roughly re-
flect the model’s complexity. Buildings may be represented in
LOD0 by footprint and/or roof edge polygons. LOD1 is a block
model comprising prismatic buildings with flat roof structures.
In contrast, a building in LOD2 has differentiated roof structures.
LOD3 denotes architectural models with detailed wall and roof
structures potentially including doors and windows. LOD4 com-
pletes a LOD3 model by adding interior structures for buildings
(Kolbe et al., 2009; Open Geospatial Consortium, 2012).

Because of the GIS operation that we use in this paper (volume
computation), we find LOD0 and LOD4 not applicable, so we
focus on the LODs 1, 2 and 3.

We have implemented a software prototype that generates four
LOD CityGML representations for each building based on the pa-
rameters presented in Section 3.1. The four representations are as
follows: (1) LOD1 solid, a block model, where the height of the
top represents the half of the height of the roof. This is in line with
current modelling practices (Ordnance Survey, 2014); (2) LOD2
solid, a model with a basic roof shape; (3) LOD3 solid, an en-
hanced model including superstructures such as dormers. Chim-
neys, antennas, and other building elements that do not contribute
towards the volume of the building are not used in the generation
of the solid; and (4) another LOD3, as a semantic “full model”,
which is represented by a set of surfaces. This representation is
not essential since the volume computation is not performed on
it, but it is generated for a more detailed inspection of the build-
ings generated in the stochastic process, and for operations left
for future work.

The four generated datasets of a building are shown in Figure 2
as an example. This example is in harmony with the previous
examples: it shows the generated models of the building whose
XML specifications are given in the Section 3.1.

Figure 2: The example of the realisation of multiple LODs in
CityGML of one building, from the parameters randomly gener-
ated by Random3Dcity. This is the building in the XML file that
is shown as the example through Sections 3.1 and 3.2.

For notational purposes, the CityGML representation of the build-
ing B̂σj in LOD x is denoted with Ax,σj .

For this research, a dataset containing 40 000 buildings has been
generated, and its fragment is shown in Figure 3, with a close-up
in Figure 4.

3.4 MULTIPLE ACCURACY CLASSES

Section 3.2 described the simulation of errors by sampling a nor-
mally distributed probability function with a value of σ.

In error propagation, one of the relevant research questions is how
much different grades of accuracy affect the output of an opera-
tion (cf. Section 2). This also helps in determining the required
accuracy of the acquisition of the data in order to achieve accept-
able results in a GIS workflow.

Therefore, we have considered multiple accuracy classes, and
generated noise according to the properties of each. We have
defined 20 accuracy classes i with varying standard deviations
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Figure 3: The CityGML realisation of the XML dataset of the
randomly generated buildings. The dataset contains 40 000 build-
ings (in a grid 200×200).

Figure 4: Visualisation of a small spatial extent of the LOD3
dataset that is a semantically enriched boundary representation.
The colours represent the different semantic classes.

σi, ranging from σ1 = 0.05 m to σ20 = 1.00 m in increments of
0.05 m. In an iterative process, for each accuracy class, each pa-
rameter pjk is added a simulated acquisition error, resulting in 20
erroneous parameters p̂j,ik .

After the simulation of noise, the models were realised with the
CityGML generator yielding four datasets for each accuracy class
(LOD1i, LOD2i, and two instances of LOD3i), and additional
four for the error-free (ground truth, i = 0) specifications (LOD10,
LOD20, and two LOD30). Therefore, each building version Bij
is represented with four models Ax,ij , where x is the LOD.

Due to finer detail, for LOD3 the accuracy classes are limited to
0.3 m. This results in 56 datasets (2.2M representations of 40k
buildings). An example of two LOD2 datasets, the ground truth
and one where i = 8 (σ = 0.4 m) are shown overlapped in Fig. 5.

3.5 COMPUTING AND COMPARING VOLUMES

The important part of every error propagation analysis is the con-
sidered GIS operation g or set of operations g1, g2, . . . gn. For a
proper error propagation analysis, the pre-requisite of an opera-
tion is that its results are measurable quantitative attributes, i.e.
that it yields values that are on a rational scale. For instance, the
outcome of using 3D city models in applications such as naviga-
tion and urbanism can hardly be quantified in such a way. On the
other hand, estimating solar potential of a rooftop yields a quanti-
tative value, i.e. the annual global solar radiation (kWh/y) (Catita
et al., 2014).

Figure 5: Visualisation of the LOD2 of the ground truth (green),
and the LOD2 impaired by normally distributed positional errors
with σ = 0.4 m (red model). Equal spatial extent as in Fig. 4.

We discuss the operation of volume computation of buildings,
which is essential in use-cases such as energy demand estima-
tion (Perez et al., 2013), determination of property taxes (Boeters,
2013), and volumetric visibility analysis of urban environments
(Fisher-Gewirtzman et al., 2013). Our motivation for the selec-
tion of this operation, is that it is one of the fundamental 3D oper-
ations, and it is practically simple to implement. Further, from the
implementation perspective we are also restricted by the limited
number of operations that enable us to automatically load, com-
pute and analyse a vast amount of data, which is not the case in
the computation of volumes. From now on, we annotate this op-
eration with g, which as an input takes a model Aj , and performs
the volume computation generating an output Uj . Since this is
made for multiple LODs x and in a series of accuracy classes i,
the full relation is:

Ux,ij = g(Ax,ij ) (5)

The results of the computations from FME automated with Python
are stored in XML files, which are consequently automatically
analysed by our software prototype.

After the volume has been computed for each representation, the
error εx,ij is calculated as the difference between the computed
volume and the ground truth (model where i = 0), which is the
volume of the model in the LOD x and σ = 0:

εx,ij = Ûx,ij − Ux,0j (6)

Further, for each representation, the relative error µx,ij , which is
the division of the volumetric error with the ground truth volume,
has been calculated:

µx,ij =
εx,ij

Ux,0j

(7)

This measure may be expressed in percent. Considering the rela-
tive error is important in order to remove the bias from the volume
of the building, as an equal error in the input generally causes a
different error in the output depending on the properties (i.e. size)
of the model.
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Finally, in each LOD x and in each accuracy class i, the root
mean square error (RMSE) of the operation was derived in order
to assess the propagated uncertainty of the operation:

RMSE(εx,i) =

√∑m
j=1(ε

x,i
j )2

m
(8)

This is also done for the relative dimension-less errors:

RMSE(µx,i) =

√∑m
j=1(µ

x,i
j )2

m
(9)

The association between the input uncertainty i (σi) and the re-
sulting RMSE values (absolute and relative) is the main product
of this error propagation analysis. It enables us to determine how
much the input error affects the error in the output of the operation
of the building volume computation, and to find their relationship.

4 RESULTS OF THE ERROR PROPAGATION
ANALYSIS

In this section we present and interpret the results of the method
on a sample of 40 000 buildings, and derive conclusions. As
a form of validation, we have run the software prototype mul-
tiple times, with multiple values of m, and we have obtained
comparable results with negligible deviations. The value m =
40 000 proved high enough to produce minimal deviations when
ran multiple times. The building randomiser generated diverse
buildings, with their volume ranging from 28.62 to 1185.75 m3,
ensuring a wide range of values, as is the case in reality.

The main outcome of this analysis, the relationship between the
input and the output uncertainty in the computations of building
volumes, is shown in the Tables 1 and 2. The first table shows
the RMSE of the error εx,i, and it is expressed in cubic metres.
The latter shows the RMSE of the relative output errors µx,i, as
defined in Section 3.5, and it is expressed in percent. Due to lim-
ited space, we give the data in the tables for 10 accuracy classes,
without odd i values (in σ = 0.1 m increments). This is also
shown graphically in Figure 6, however, the graph contains all
the accuracy classes. From the results we conclude that the rela-
tion is linear in both of the RMSE values, i.e. that the increase of
the positional uncertainty in the input propagates linearly to the
uncertainty in the output. Depending on the intended use of the
operation, this relation may be found as significant. It is shown
that a comparatively small error in the input data may cause a
relatively significant error in the output.

The second relevant finding is the distribution of errors εx,i within
the same LOD and accuracy class. Figures 7-9 show the distribu-
tion of output errors for each LOD separately, and for two accu-
racy classes. First of all, the output errors are not normally dis-
tributed, as one might have anticipated from the errors in the in-
put data which are sampled from the normal probability distribu-
tion function. This was concluded by fitting a normal distribution
function based on the computed values, which was not achieved
(Fig. 8). It was also disproved by a normality test developed by
D’Agostino (1971) that combines skew and kurtosis to produce
an omnibus test of normality. After tests, we have realised that
the Student’s t-distribution fits the distribution of the errors, hence
we can conclude that the output errors are distributed according
to it. An example of the distribution of relative errors µx,i is not
included because it is congruent with these examples.

Input uncertainty Output uncertainty
(RMSE [m3])

Class i σ [m] LOD1 LOD2 LOD3
0 0.0 0.00 0.00 0.00
2 0.1 9.23 9.18 9.15
4 0.2 18.18 18.22 18.31
6 0.3 27.52 27.39 27.24
8 0.4 36.32 36.46

10 0.5 45.83 45.67
12 0.6 55.13 55.04
14 0.7 64.26 64.10
16 0.8 74.15 72.46
18 0.9 82.18 82.72
20 1.0 91.98 91.83

Table 1: The RMSE(εx,i) for each accuracy class and LOD. The
values are computed also for the ground truth models (i = 0)
for self-validation purposes. The simulations in LOD3 were per-
formed up to and including σ = 0.3 m due to the fine LOD.

Input uncertainty Output uncertainty
(RMSE [%])

Class i σ [m] LOD1 LOD2 LOD3
0 0.0 0.00 0.00 0.00
2 0.1 3.10 3.13 3.14
4 0.2 6.19 6.25 6.23
6 0.3 9.33 9.14 9.40
8 0.4 12.36 12.48

10 0.5 15.54 15.56
12 0.6 18.75 18.85
14 0.7 21.87 21.93
16 0.8 24.96 25.02
18 0.9 28.15 28.32
20 1.0 31.40 31.70

Table 2: The RMSE(µx,i), expressed in percent, for each accu-
racy class and LOD.
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Figure 6: Root mean squared error values of the volume for
LOD2 (m = 40 000). The plot shows that the relation between
the input and output uncertainty is linear in both RMSE values.

The non-normal distribution could be explained by the distribu-
tion of the ground truth volumes. We have realised that they are
not uniformly distributed, despite the uniform distribution of the
geometric parameters that the buildings are comprised of. We
plan to investigate this in future work by expanding the analysis
by creating volume brackets, i.e. running the analysis on classes
with different buildings of an approximately equal volume.

The third important result is the independence between the output
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uncertainty and the LOD. The RMSE values for each are, neglect-
ing smaller deviations, equal, which makes the error propagation
in this operation independent of the LOD.
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Figure 7: Distribution of volume errors in the accuracy classes
with σ = 0.2 and 0.7 for LOD1.
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Figure 8: Distribution of volume errors in the accuracy classes
σ = 0.2 and 0.7 for LOD2, with the attempts of fitting two prob-
ability distribution functions.
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Figure 9: Distribution of volume errors in the accuracy classes
σ = 0.1 and 0.2 for LOD3. Note that here the selection of the
classes is different, since in LOD3 they have been limited.

5 CONCLUSIONS AND FUTURE WORK

In this research we have performed an error propagation analysis
involving 3D city models and volume computation of buildings.
The input values are drawn from the assumed uniformly proba-
bility distributions of the geometric and other properties of the
buildings. The important findings are the distribution of the re-
sulting volume errors, and that the root mean square error linearly
increases as the uncertainty in the input increases. We have com-
puted the RMSE for each of the 20 simulated accuracy classes
and 3 LODs, establishing the relation between the input and out-
put uncertainty. Further, we have discovered that in this operation
each LOD is equally affected by positional errors.

The results of this work may be used by practitioners that rely on
3D city models for computing the volumes of buildings. For in-
stance, the procedure for determining the property taxes based on
the volume of the building may have a regulation that the highest
allowed uncertainty of the calculated volume is 3%. By using our
work, practitioners could determine that the allowed uncertainty
of the positions in the input data should be no more than 0.1 m.

The principal contributions are the design and implementation
of a robust building randomiser, its CityGML model realisation,
and an error propagation analysis in 3D GIS performed with the
Monte Carlo method on vector data. The framework and the en-
gine that we have created can be used for future work in this field
for a number of other use-cases, and it is not limited to positional
uncertainty—it can include also attributes and temporal aspects.

Since multi-LOD datasets are seldom in practice (Biljecki et al.,
2014a), additional strengths of using the developed engine are
the unaffectedness from such shortcoming, and the availability of
these datasets for purposes beyond error propagation analyses.

For future work we plan to extend this research by involving mul-
tiple chained operations forming complete use-cases, and to cre-
ate distinct accuracy classes depending on the features. For in-
stance, roof and wall features are usually acquired with different
acquisition techniques that have different accuracy capabilities.
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