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ABSTRACT: 

 

Electric vehicles (EVs) will certainly play an important role in addressing the energy and environmental challenges at current 

situation. However, location problem of EV charging stations was realized as one of the key issues of EVs launching strategy. While 

for the case of locating EV charging stations, more influence factors and constraints need to be considered since the EVs have some 

special attributes. The minimum requested charging time for EVs is usually more than 30minutes, therefore the possible delay time 

due to waiting or looking for an available station is one of the most important influence factors. In addition, the intention to purchase 

and use of EVs that also affects the location of EV charging stations is distributed unevenly among regions and should be considered 

when modelling. Unfortunately, these kinds of time-spatial constraints were always ignored in previous models. Based on the related 

research of refuelling behaviours and refuelling demands, this paper developed a new concept with dual objectives of minimum 

waiting time and maximum service accessibility for locating EV charging stations，named as Time-Spatial Location Model (TSLM). 

The proposed model and the traditional flow-capturing location model are applied on an example network respectively and the 

results are compared. Results demonstrate that time constraint has great effects on the location of EV charging stations. The 

proposed model has some obvious advantages and will help energy providers to make a viable plan for the network of EV charging 

stations.  
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1. INTRODUCTION  

With increasing concerns about global warming and 

the anxiousness about the shortage of non-renewable energies, 

alternative-fuel vehicles, especially the electric vehicles (EVs) 

are attracting more and more attentions. EVs will certainly play 

an important role in addressing the challenges of energy 

security and the problems of climate change and urban air 

pollution. A lack of the charging infrastructure, however, has 

inhibited the purchase and usage of EVs, and many existing 

studies have emphasized the refueling stations as one of the 

most formidable barriers to the promotion of EVs (Schwoon, 

2007; Upchurch, 2010).  

 

The problem is that consumers will be reluctant to purchase 

EVs until a sufficient number of charging stations are available 

for daily usage, while on the other hand fuel providers have no 

intentions to invest in such kinds of charging infrastructures 

unless there exist sufficient demands. Therefore, Schwoon 

(2007) stated that an initial network of charging stations should 

be constructed firstly by the government or the society to attract 

consumers.  

 

Given the high costs of building new charging stations and the 

limited budgets, it is especially important to discuss the location 

problem, that is, how to locate effectively a limited number of 

EV charging stations in a transportation network to maximize 

the potential adoption of EVs. The conventional and popular 

models for locating alternative-fuel stations achieved to 

minimize total demand-weighted travel distance, or to solve the 

maximum covering problem, as well as to satisfy multiple 

objectives, from the viewpoints of system optimization. While 

for the case of locating EV charging stations, the relative longer 

charging time make the issue of capacity constraints more 

significantly, therefore the possible delay time of waiting for 

charging or searching next station due to the requested 

minimum charging time should be considered and optimized. 

 

The service capacity constraints of EVs recharging stations 

differentiate the spatial distributions of recharging demands 

from that of the traditional refueling stations, which moreover 

lead to completed different recharging behaviors that are not 

system optimized. Unfortunately, these kinds of time-spatial 

constraints were always ignored in previous models.  

 

This paper introduces a new location model by considering 

EV’s special performance and the associated recharging 

behaviors. The proposed model has dual objectives of minimum 

waiting time and maximum service accessibility for locating EV 

charging stations, with the refueling demands are simulated by 

considering the dynamic refueling decision behaviors based on 

several rational hypothesis rather than system optimization.  

Analysis reveals how the requested minimum charging time 

affects the optimal locations of the charging stations. 

 

The remained parts are organized as follows. Sections 2 

summarized a literature review on the state-of-art of EV 

recharging stations’ location. Section 3 briefly depicts the 

proposed Time-Spatial Location Model (TSLM) for locating 

EVs’ recharging stations. Section 4 analyses a case study for 

comparing the proposed model and the widely used flow-

refueling location model (FRLM). The last section concludes 

our analysis.  
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2. LITERATURE REVIEW 

In recent years, a large number of approaches and models have 

been proposed to locate optimally the alternative-fuel-vehicle’s 

refueling stations, which can be mainly grouped into two 

categories: the node-based models and the path- or flow-based 

models. 

 

The node-based models normally assumed that refueling 

demand is produced on the nodes of a road network, and their 

objectives are to locate a given number of p facilities, and 

allocates demand nodes i to facilities j to minimize the total 

distance from demand nodes to their nearest open station 

(Upchurch, et al. 2010). The p-median model is one of the most 

widely used node-based models, which usually assumes that 

refueling demand nodes are residence or workplace, so it has 

the appeal of locating stations conveniently to where people live 

when was applied on the actual problems.  

 

The optimal objective of another type of models on path/flow 

demands basis is to locate p facilities to maximize the number 

of trips captured. The most popular model is the flow-capturing 

location model (FCLM) which is also called the flow-

intercepting location model (FILM) (Yang et al. 2006). FCLM 

provides a behaviorally realistic basis for locating refueling 

stations since it considers that consumers prefer to stop along 

their way to destinations rather than make a special-purpose trip 

solely to refuel their vehicles. However there are some major 

drawbacks of FCLM, but at the same time leaves vast space for 

further research. FCLM ignores the difference between 

capturing longer trips and shorter ones, for longer trips, a 

vehicle with a limited driving range may need more than one 

station along the path to complete the trip without running out 

of fuel. In order to ensure not to exceed the vehicle’s range, 

Kuby and Lim (2005) and Kuby et al. (2009) developed the 

flow-refueling location model (FRLM) through introducing 

vehicle range parameter by using combinations of open 

facilities. The FRLM can be better applied to real-world 

networks at both the metropolitan scale and state scale. Yet 

neither FCLM nor FRLM are essentially capable of addressing 

the EV charging stations location problems, since the 

assumption that any refueling station is sufficient to serve all 

flows passing through is far away from the realistic. Upchurch 

et al. (2009) extended the FRLM with limited capacities and 

obtained the capacitated flow refueling location model 

(CFRLM). The fact that drivers may be willing to make 

reasonable detours from the shortest paths for refueling vehicles 

is worth of noticing. To address this concern, Yang et al. (2006) 

proposed the Flow Capturing Location Model with Service 

Radius (SR-FCLM), which assumes that if the distance between 

a service station and at least one node in the intended path is 

within service radius, then the consumer would be willing to 

deviate from the original route and detour two radius to receive 

services and then back to the original route. 

 

In addition to the above two types of models, due to the fact 

that many location problem are inherently multi-objective in 

nature (Bapana et al. 2002), many multi-objective models have 

been developed. For example, the Maximum Covering/Shortest 

Path Problem (Bapna et al. 2002), the Minimum 

Cost/Maximum coverage model (wang et al. 2010), and the 

Maximum Capturing/Minimum Distance which combines the 

FCLM and the p-median model (Hodgson et al. 1992). Besides 

these static models, the Agent-Based Model is also employed in 

location problems, which provides a dynamic feedback idea: the 

more vehicles there are, the more likely a purchaser will choose 

one himself, and the more refueling stations will be invested. 

Stephan (2004) and Schwoon (2007) obtained certain results 

using this dynamic feedback idea. One significant contribution 

is that they raised the concept of “Worry Factor” which reflects 

people’s concern about the availability of service station when 

using alternative-fuel vehicles. 

 

3. MODEL FORMULATION 

One of the most notable influence factors for the case of 

locating EV charging stations is that the minimum requested 

charging time for EVs is usually more than 30 minutes. The 

possible delay time due to waiting or searching another 

available station should not be ignored. In addition, the 

intention to purchase and to use of EVs remains deeply 

uncertain in the current period. Unfortunately, these kinds of 

time-spatial constraints were always ignored in previous models. 

Therefore a new model is proposed to establish a convenient 

initial network of recharging stations for the promotion of EVs.  

 

From the users’ perspective, convenience means not just having 

to travel too far to obtain service but being able to obtain 

service without an overly long waiting time. So our research is 

aimed at strategically locating charging stations to minimum 

waiting time and maximum service accessibility, which we 

called Time-Spatial Location Model (TSLM) because it 

considers the impacts of time and space constraints on location 

simultaneously. 

 

3.1 Refueling Behaviors 

Recent studies have shown that refueling is frequently 

performed in commuting trips, single-purpose refueling is not 

uncommon but drivers are willing to detour certain distance off 

their intended route to refuel their vehicles (Upchurch, 2010). 

For the users of EVs, they also have to care about the 

accessibility of charging stations around their travel routes and 

the waiting times at a certain station for charging. It is generally 

accepted that one rational person should choose such station 

that minimizes the sum of the waiting time at a certain station 

and the subsequent travel time to reach destination as long as 

the remaining power can support the searching process, and one 

always along the shortest path when traveling between two 

nodes. 

 

The EV recharging logics can be described as: (a) Assuming 

that an EV at one node can arrive at another node, which means 

that the remaining battery power must sufficiently cover the 

distance between the two nodes. If this is insufficient, the 

vehicle must be recharged at the first node, where a station must 

be located. (b) The remained battery power is the difference 

between the state of charge (SOC) at the start node and the 

power consumption of travelled route that is a function of 

distance for simplicity.  

 

Drivers tend to refuel in areas where are detailed in their mental 

maps, e.g. in the vicinity of their homes and workplaces; drivers 

tend to interrupt their journey near the beginning or end for 

refueling, rather than in the middle; refueling is frequently 

performed in commuting trips, while it is linked with shopping 

with less-than-expected frequency. Single-purpose refueling is 

not uncommon, but drivers are willing to detour certain distance 

off their intended route to refuel their vehicles. Besides these 

general observed refueling behaviors, for the users of EVs, they 
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also have to care about the accessibility of charging stations and 

the charging waiting time. 

 

For an EV arrived at a charging station i with qi charge piles, 

there are three cases it will face. If the remaining power can’t 

support to arrive at the next station, then it must recharge at 

station i no matter how long the waiting time is; or else one can 

choose to receive service or not, which depends on the number 

of waiting vehicle at station i and the available number of 

charge piles. The drivers may leave according to his/her 

judgment on the queuing condition of the other available 

recharge stations.  

 

The waiting time at station i is governed by three factors. The 

number of waiting vehicles n, the number of charge piles qi and 

the charging time of each EV. The number of waiting vehicles n 

is a variable which dues to the temporal and spatial distributions 

of charging demand and the initial remaining power. The 

number of charge piles qi is not only influenced by the charging 

demand, but also restricted by physical conditions of a given 

location. The charging time of each EV is up to the remaining 

power, the system of charge mode and the type of EV. 

Generally there are two charge modes: quickly recharging for 

30 minutes with nearly 80% of the full storage and about 6 to 8 

hours for slow recharging with full charge. 

 

3.2 Model Assumptions 

As we all know, the charging behaviors are very complex that 

are affected by a variety of factors. In order to conveniently 

describe the problems, we make the following assumptions: 

1) For all the users, the charging stations are detailed in 

their mental maps and the queuing of other stations are 

completely transparent so that one can always make the 

best decision on whether charging or not at a certain site if 

the remaining power can arrive at another station.  

2) This paper assumes that the initial remaining power for 

each EV is randomly drawn from a normal distribution 

with the range of 60-100 km, while all EVs can travel 100 

kilometers after receiving recharging service. 

3) The number of charge piles st each station is fixed 

although the variable quantity of charge piles is perfected 

and realistic.  

4) The charging time of each EV is 30 minutes as long as 

one decides to receive service at a charging station no 

matter how much power left and what type of the vehicle is.  

5) All the roads have similar traffic condition and each EV 

travels at the same speed, and the consumed electric energy 

has the linear relationship with the distance.  

6) The departure time of each EV is taken to be random 

variable subject to uniform distribution. 

7) This paper considers only the charging at peak hours so 

the capacity of each station can be defined as incapacitated. 

 

3.3 Model Formulation 

As mentioned earlier, the objective of TSLM is to minimize 

waiting time and maximize service accessibility. Considering 

maximizing service accessibility means minimizing the 

searching time for the other station caused by queuing. 

Meanwhile according to the rational person’s choose behaviors, 

the TSLM model is in fact equivalent to minimize the total 

travel time from the origin to destination. The following 

variables are defined: 

 

p: Total number of charging station, p=1,2,…; 

i: Nodes or stations; 

m: EVs; 

Mi: Vehicle set of node i; 

Xi: Decision variable, equals 1, if a station is located at 

node i, and 0, otherwise; 

qj: Number of charge pile of station j; 

dm
i,j: Shortest path distance between node i and node j for 

the mth EV; 

VMTim: Remaining mileage of EV m at node i; 

vm: the average speed of EV m, here vm=40km/h, m=1,2,… 

Sim: State indicator variable, equals 1, if EV m chooses to 

charge at node i, and 0, otherwise; 

τ: Requested charging time, which equals to 30 minutes 

for any EV; 

gim: The moment EV m leaves node i; 

rim: The moment EV m arrives at node i; 

Nim: Number of EV at node i when the EV m arrives; 

Tm
ij: Travel time of EV m at the link between node i and j. 

Wim: Waiting time of the arriving EV m at station i, minutes; 

Ui: Number of vehicles failed to recharge at node i, which 

can be used as an evaluation index of network service levels; 

 

For Sim=1, assuming that the last EV leaving station i before the 

mth EV arrives is labelled as L, then Nim=m-L-1 

 

1, 1,

m

im i m i i mr g d v   ;                                      (1) 

0 im i

im

im im im i

N q
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g r N q
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;                                 (2) 

im im i
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r N q
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r W N q





 
 
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;                          (3) 

 

While for Sim=0, Wim=0, gim=rim+τ. 

 

Here we will describe the charging process of a certain EV m 

starting from the origin: 

1) First initialize the charging station set j={i│Xi=1} and 

calculate the shortest path distance dij for each j (i≠j). Also all 

the Ui are initialized as 0; 

2) Then record every EV’s departure time from the origin 

and generate randomly the remaining mileages VMTim of each 

vehicle. 

3) For a certain origin i with Xi=0, if VMTim<min{dij}, 

update Ui=Ui+1, else travel toward station j which ensures that 

the sum of waiting time at station j and the subsequent travel 

time to destination is the shortest. For Xi=1, if VMTim<min{dij}, 

then Sim=1, by this time the waiting time Wim should be 

calculated according to the queuing and the leave time gim 

should be updated; else if the sum of Wim and the subsequent 

travel time to destination is longer than some of other stations, 

then Sim=0, EV m will driving toward station j at which the sum 

is smallest along the shortest path. 

4) When a certain EV m arriving at any station j except the 

origins, if VMTjm is shorter than the shortest distance between 

the right station j and the other stations, then Sjm=1, and the 

waiting time Wjm should be calculated and the leave time gjm 

should be updated; else EV m will judge whether the sum of 

Wjm and the subsequent travel time to destination is longer than 

the sum of other stations, if that is the case, then Sjm=0, EV m 

should update the leave time gjm=rjm and travel toward the 

station at which the sum is smallest. 

 

The TSLM is effectively a dynamic model by fully considering 

the time factor according to the above description of charging 
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process which makes the model more realistic and more 

complex. In addition, the TSLM also has another significant 

difference from most of the existing models on the shortest path. 

TSLM doesn’t restrict all the vehicles always travelling along 

the shortest path even for searching an available recharging 

station, which makes it more realistic. 

 

4. CASE STUDY 

4.1 Example Network and Charging Demand 

To validate the effectiveness of the TSLM model, a 25-node 

example network which is provided by Berman and Simchi-

Levi (1988) is selected as the study area (Fig. 1). Unlike the 

initial network, the length of each link is doubled in order to 

ensure that a certain amount of EVs have the charging demand 

during their journey, while the node weights that reflect the 

population were multiplied by one thousand.  

 

 
 

Fig.1 A 25-node Example Network 

 

The O-D flow is generated by using Hodgson’s formula 

(Hodgson, 1990): ODij=WiWj/dij**1.5, where the Wi is the 

weight of the origin node, the Wj is the weight of the destination 

node, and the dij is the shortest path distance between node i and 

node j. Among the calculated total travel demands of 12240 

trips, there are 1970 demands for charging during their round-

trip travel by generating randomly the initial remaining power 

according to the stated assumptions. Besides, considering the 

charging at peak hours is the most important, the remained 

eventual charging demands for this study are 101 trips. The 

departure times are according to a uniform distribution. 

 

4.2 Results 

The TSLM aims to reflect authentic charging behavior as 

described in the charging process which makes its solution 

process more complex. The complexity increases with the 

expansion of network and the number of charging stations. As a 

preliminary validation study, it is assumed that the number of 

charging stations is 2 and each station has 25 charge piles 

according to the budgets. The results of TSLM on the example 

network are shown in Fig. 2.  

 

 
 

Fig.2 Location Results of TSLM 

 

The optimal locations of the two stations are node 14 and node 

24 with satisfying the charging demands of all the 101 EVs and 

their total time for travelling and waiting is 7380 minutes, 

which doesn’t include the service times since the requested 

charging time is the same for every EV. Here the waiting time is 

calculated by the single-line and multi-server queuing model. 

 

In order to confirm the validity of TSLM, this article also apply 

the widely used model FCLM to the same network with the 

charging demands are identical, and the results obtained by 

greedy algorithm can be seen in Fig. 3. There are two optimal 

layouts for the two stations, namely 14&13 (above), and 14&19 

(below). The serviced EVs are 97 and their total travelling times 

along the shortest path are 6321 minutes for both cases. 

However, there is no other information can be used to judge 

which one is better. 
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Fig.3 Location Results of FCLM 

 
The comparative results demonstrate that for the TSLM, all the 

EVs have received services, while there are 4 vehicles cannot 

complete their travels by FCLM rules. However, the total time 

of TSLM is longer than that of FCLM. So it is not easy to 

compare the merits and demerits of the two models given that 

TSLM allows vehicles to detour from their shortest path to 

complete the charging and therefore the serviced EVs and their 

total times are greater than that of FCLM. 

 

In view of this and seeing the difference between TSLM and 

FCLM, we impose restriction of shortest path on the TSLM 

while keeping other conditions being the same. The final 

locations and served numbers of EVs are the same as FCLM, 

but the waiting times of the two cases are 1274 minutes and 

1131 minutes, respectively, with their total times are 7595 

minutes and 7452 minutes, which are larger than 7380 minutes 

by TSLM (Table 1). It can be inferred that the TSLM is superior 

to FCLM with greater serviced EVs and shorter times which 

mainly due to the assumption of detour behavior. 

 

In addition, the TSLM also defines the rules of whether 

charging or not at a certain station when facing with multiple 

choices. The waiting times of 14&13 and 14&19 obtained by 

applying the TSLM without detouring and judgment rules on 

the example network are 1449 minutes and 1314 minutes, 

which obviously larger than that of TSLM with shortest path 

only. 

 

Model Locations 
Serviced 

vehicles 

Waiting Time/Total 

Time* (minutes) 

TSLM 14&24 101 654/7380 

TSLM 

(shortest path) 
14&19 97 

14&19:1131/7452 

(14&13:1274/7595) 

TSLM 

(shortest path, 

without rules) 

14&19 97 
14&19:1314/7635 

(14&13:1449/7770) 

* Total time doesn’t include the service time of every EV. 

 

Table 1.Results of Different Models 

 

Furthermore, the above results also provides important basis for 

judging that the combination of 14 and 19 is better than 14 and 

13, which is impossible for FCLM. 

 

 

5. CONCLUTION AND FURTHER WORK 

This paper proposes a TSLM model for locating EV charging 

stations based on some assumptions of actual travel behavior 

and recharging decision making process, and conducts a 

comparative study by applying the FCLM, TSLM and its 

modifications on an example network respectively. The 

comparative results demonstrated that TSLM is better than 

FCLM because of the assumptions of allowing detour travel 

behavior and judgment rules.  

 

Further researches are needed for relaxing the assumptions, for 

example the number of charging piles of each station, the 

charging time of each EV, and the relationship between energy 

consumed and distance travelled under different road conditions, 

for these assumptions the variable magnitudes are more realistic 

than fixed values.  
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