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ABSTRACT: 

 

An image-aided inertial navigation implies that the errors of an inertial navigator are estimated via the Kalman filter using the aiding 

measurements derived from images. The standard Kalman filter runs under the assumption that the process noise vector and 

measurement noise vector are white, i.e. independent and normally distributed with zero means. However, this does not hold in the 

image-aided inertial navigation. In the image-aided inertial integrated navigation, the relative positions from optic-flow egomotion 

estimation or visual odometry are pairwise correlated in terms of time. It is well-known that the solution of the standard Kalman 

filter becomes suboptimal if the measurements are colored or time-correlated. Usually, a shaping filter is used to model time-

correlated errors.  However, the commonly used shaping filter assume that the measurement noise vector at epoch k  is not only 

correlated with the one from epoch 1k  but also with the ones before epoch 1k . The shaping filter presented in this paper uses 

Cholesky factors under the assumption that the measurement noise vector is pairwise time-correlated i.e. the measurement noise are 

only correlated with the ones from previous epoch. Simulation results show that the new algorithm performs better than the existing 

algorithms and is optimal.   

 

 

1. INTRODUCTION 

The high demand for direct-georeferencing technique with low-

cost multisensor integrated kinematic positioning and 

navigation systems in mobile mapping is continuously driving 

more research and development activities. The effective and 

sufficient utilization of images is among the most recent 

scientific and high-tech research tasks. In this particular field of 

mapping and imaging, we are engaging in the study of the 

image-aided inertial integrated navigation as the natural 

continuation of its past research in the multisensor integrated 

kinematic positioning and navigation (Kun et al, 2012). 

Inertial Navigation Systems (INS) are widely used in direct 

georeferencing systems and become the core component for the 

automation of the geospatial data acquisition. The solution 

accuracy of an INS alone deteriorates with time because the 

accelerometer and gyroscope measurements are contaminated 

with noise, biases, scaling errors and non-orthogonality errors. 

As a result, the errors on the INS position, velocity and attitude 

increase without bounds in free inertial mode. To inhibit or 

reduce the INS errors, supplementary sensors can be added to 

the system, for example  Global Navigation Satellite Systems 

(GNSS) receivers, cameras, barometers and odometers to name 

a few (Aggarwal et al, 2010).  

Cameras are inherently high-bandwidth and therefore have the 

potential for precise angular resolution. They are readily 

available and easy to be interfaced with (Miller et al, 2011). 

Furthermore it is more economic than the other self-contained 

electro-optical sensors such as laser ranging (LIDAR) (Shen et 

al., 2005).  The basic idea with image sensors in navigation is to 

extract the coordinates of image features or landmarks from a 

single or multiple cameras and to obtain the position and 

orientation changes between two image frames. This 

information can then be used as measurements to aid the INS. 

There are two methods to derive the camera position and 

orientation changes: namely optic flow-based and visual 

odometry. The former typically uses the flow fields (Gilad, 

1985) while the later uses the matched features between image 

frames (Nister et al, 2006, William et al., 2010). One of the 

problems with these two types of methods is that the estimates 

of the consecutive position and attitude changes are correlated 

in terms of time. The incremental position and orientation 

change at epoch k is derived from the landmarks acquired in the 

images at epoch k and epoch  k-1. The same landmarks in the 

images at epoch k-1 are also used to derive the relative position 

and attitude change from epochs k-2 to k-1. Hence, they are the 

pairwise time-correlated measurements. 

The fusion of the inertial measurements and the measurements 

from other aiding sensors is usually achieved through Kalman 

filtering under the assumption that the process noise vector and 

the measurement noise vector are white noise with zero means.  

However, this assumption is not satisfied with the vision-aided 

inertial integrated navigation. If the measurement noises from 

the aiding sensors are colored or time-correlated, then the 

solution of the standard Kalman filter will become suboptimal. 

The neglect of significant time-correlation can degrade the 

performance of a filter.   

The time-correlated measurements can be modelled by a 

shaping filter driven by Gaussian noise with zero mean (Gelb, 

1974, Grewal and Andrews, 2001). There are two ways to deal 

with the time-correlated measurements in a Kalman filter, 

namely the state vector augmentation (Bryson and Henrikson, 

1968, Gelb, 1974) and the measurement differencing (Bryson 

and Henrikson, 1968). The generic shaping filter in (Bryson and 
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Henrikson, 1968, Gelb, 1974) assumes that the measurements 

are not only correlated with the ones from the previous epoch 

1k , but also with the ones before the epoch 1k . However, 

the measurement vectors from visual odometry are pairwise 

correlated between two successive epochs. The shaping filter 

from (Bryson and Henrikson, 1986, Gelb, 1974) does not model 

pairwise time correlated noise correctly and therefore does not 

produce optimal results especially if the correlation is 

significantly large.  

Bierman  (1977) introduced a recursive method to decorrelate 

pairwise time-correlated measurements, which sequentially used 

Cholesky factors and did not require all of the measurements 

simultaneously available for computation. (Mourikis et al, 

2007) presented the Stochastic Cloning-Kalman Filtering 

estimation algorithm that handled pairwise correlated 

measurements. Their algorithm includes the feature 

observations in the augmented state vector and then they are 

used to estimate the camera displacement in the following 

epoch. However, the dimension of the state vector is increased 

with the number of measurements and the scale of the variance-

covariance matrix of the feature observations states obviously 

increases the computational complexity. 

This paper presents a method that uses Cholesky factors as 

coefficients in the shaping filter to model the measurement 

time-correlation between two successive epochs. The state 

vector is then augmented with the components of the time-

correlated measurements errors with the resulting model having 

the form of the standard Kalman filter. The paper begins with a 

brief review of the standard Kalman filtering and a discussion 

on the standard shaping filter and its limitations. It is then 

followed by the derivation and discussion of the Kalman filter 

algorithm that processes pairwise time correlated measurement 

noise. And finally the results from Monte Carlo simulations 

involving the standard Kalman filter, the Kalman filter with the 

shaping filter as in (Bryson and Henrikson, 1986) and the 

Kalman filter with the proposed shaping filter using a simplistic 

IA-INS model are then shown. 

 

2. OVERVIEW OF THE KALMAN FILTER 

A linear or linearized discrete system is considered over a 

discrete time series } , , ..., , ,{ 10 Nk tttt  , often simplified to 

} ,..., ,,1 ,0{ Nk . Without loss of generality, the deterministic 

system input is also intentionally omitted here. Straightforward, 

the system can be described at instant k  as follows: 
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wherein kx  is the 1n  state vector; kz  is the 1m  

observation vector; 1kw  is the 1p  process noise vector, kv  

is the 1m  measurement noise vector; 1k  is the nn  

transition matrix; 1k  is the pn  coefficient matrix of 1kw  

and kH is the  mn  output matrix. The random vectors 1kw  

and kv  are generally assumed to be normal distributed: 

),0(~ 11  kk QNw  and ),0(~ kk RNv  with zero-means and the 

positive definite variance matrices 1kQ  and kR , respectively. 

Further, OwwCov ji ),( , OvvCov ji ),(  and OvwCov ji ),(  

for ji   are assumed. Commonly, one also assumes to have the 

initial state vector 0x  and its variance-covariance matrix 0P  

available and their independence of any w  and v . Under the 

given assumptions, the optimal estimation of the state vector kx  

can be derived in the sense of minimum variance. The time 

update predicts the state vector and the associated covariance 

matrix (Gelb, 1974): 
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Then, the measurement update delivers the optimally-estimated 

state vector along with its covariance matrix 
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where minus (-) and plus (+) superscripts indicate the time-

update and measurement update estimates respectively and kK  

is the Kalman gain matrix. 

 

3. KALMAN FILTER WITH THE TIME CORRELATED 

MEASUREMENTS 

Now assume to have the time-correlated measurements. Their 

random errors are modelled by a shaping filter driven by 

Gaussian noise with zero mean (Gelb, 1974, Grewal and 

Andrews, 2001). The system and measurement equations in (1) 

are extended to: 
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where 1k is the transition matrix of the time-correlated errors 

from epoch k-1 to epoch k, 1k is the Gaussian noise with zero 

mean and 
1k

R  is the corresponding positive definite variance 

matrix. There are two main approaches to deal with the time-

correlated measurements, namely the state vector augmentation 

(Bryson and Henrikson, 1968, Gelb, 1974) and the 

measurement differencing (Bryson and Henrikson, 1968).  The 

formulation of the measurement noise model 

( 111   kkkk vv  ) assumes that the measurement noise 

vector kv  at epoch k is not only correlated with the 

measurement noise vector 1kv  at epoch k-1 but also with the 

measurement noise vectors before the epoch k-1. For example  
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where 21  kk  is the correlation coefficient matrix between 

the measurement noise vectors 2kv  and kv . If the shaping 
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filter in equation (4) is used, then the solution for the pairwise 

time correlated measurements is not optimal. Furthermore, this 

model can degrade the filter’s performance. 

 

3.1 Kalman Filter with Time-Correlated Measurements  

The following section derives a shaping filter to deal with the 

pairwise time correlated measurement vectors.  The goal is to 

render the KF solution to be optimal and make the filter run 

sequentially in practice. The derivation starts with the 

measurement model 

 

),0(~, kkkkkk RNvvxHz    (6) 

If kR  matrix is positive definite and is not diagonal, then it can 

be factored using the Cholesky factorization algorithm: 
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wherein kC  is a lower triangular matrix. The Cholesky 

factorization can be found in literature (Bierman, 1977; Grewal 

and Andrews, 2001; etc.). Let kkk vCv   the measurement 

model becomes 

 

kkkkk vCxHz '     (8) 

The covariance matrix kR  of kv'  is then given by 
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Thus, ),0(~ INvk
 . Now put all of the epochwise measurement 

noise vector together as v  and its variance-covariance matrix 

R  for the time correlated measurements: 
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The original global measurement noise vector v  is related to 

the de-correlated global measurement noise vector 'v  through 

the Cholesky factorization as follows 
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In short form the measurement noise vector can be written as  
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The Cholesky factors 1, kkC and kkC ,  can be obtained 

sequentially with  

 

}

)(

}

)(

){1(

{...1

0

1,1,,,

,1
1

1,11,

0,1

T
kkkkkkkk

T
kkkkkk

CCRcholC

RCC

kif

Nkfor

C


















 

 

wherein (.)chol  is the lower triangle Cholesky operator. Thus, 

the new measurement model can be written as 
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Using the state augmentation approach, the augmented system 

and measurement models become: 
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wherein 1k  is the Gaussian noise with zero mean and unit 

variance. In short form, the augmented system can be written as  
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where the ~  denotes the augmented vectors and matrices. The 

above formulation is equivalent to the standard Kalman filter 

equations with Ik  1

~
 and zero measurement noise i.e. 

0
~

kR . Theoretically, the Kalman filter algorithm can run with 

zero measurement noise (Simon, 2006). The algorithm only 

requires the system innovation variance-covariance matrix 
T
kkk HPH

~~~   to be non-singular.   

 

3.2 Correlation Matrix in Visual Odometry 

This section derives the correlation matrix between the two 

consecutive pose estimates using the 3D-to-3D visual odometry 

(VO) algorithm. The VO from 3-D-to-3-D algorithm is given by 

(Scaramuzza et al, 2011): 

 Capture two stereo image pairs 1,1, ,  krightkleft II and 

krightkleft II ,, ,  

 Extract and match features between 1, kleftI and kleftI ,  

 Triangulate matched features for each stereo pair to 

obtain 3D features 1kX and kX  
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 Compute pose change ),( 11,
k
k

k
kkpose Tx     from 

3D features 1kX and kX , wherein k
kT 1  is the 

position change and k
k 1 is the orientation change.  

The measurement equation between a pair of 3D features 

between the current frame k and previous frame k-1 is given by: 
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wherein k
kC 1 is the direction cosine matrix (DCM). The pose 

change can be estimated using the implicit non-linear least-

squares method:  
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Where
kposexP

,
ˆ , zH , xH , 

1, kk XX
R )0(

1
k

kT  and )0(
1

k
k  are the 

variance-covariance matrix for the estimated parameters, the 

coefficient matrix of the 3D features, the coefficient vector of 

parameters, the variance-covariance matrix of the 3D features, 

the initial approximation of for the position and orientation 

change, respectively. Consider two consecutive estimates at 

epoch 1k and k   
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Obviously, the 3D features 1kX  are used at both of the epochs. 

The correlation matrix between kposex ,
ˆ and 1,

ˆ
 kposex  is given 

by 
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4. SIMULATION TESTS AND RESULTS 

A series of simulations were conducted in order to illustrate the 

performance of the proposed Kalman filter vs. the standard 

Kalman filter (KF) and the Kalman filter with the shaping filter 

(KF-ST) as in (Bryson and Henrikson, 1968). A 2D scenario 

shown in figure 1 was used to demonstrate the performance of 

the proposed Kalman filter algorithm with the imaging and IMU 

measurements. The vehicle position, velocity and heading states 

in the navigation frame are  

 
Tn

z
n
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n
x

nn
k vvyxx )(     (22) 

 Figure 1 shows an overview of the vehicle’s trajectory. Figure 

2 and figure 3 show the vehicle’s velocity and heading profiles, 

respectively.  

 

 
Figure 1. The top view of the vehicle trajectory 

 
Figure 2. The velocity profile   

                                              

 
Figure 3. The heading profile 

 

In this example two accelerometers and one gyroscope were 

available at the data rate of 100Hz. The standard deviations of 

the used process noises of the accelerometers and gyroscope 

were 1.0 m/s/√hr and 4.5 deg/√hr, respectively. The standard 

deviation of the feature positions (equation 18) was set to 

0.10m. The 2D visual odometry measurements were computed 

at 10Hz. Figure 4 shows the visual odometry standard 

deviations and number of the used features.  
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Figure 4 2D VO measurement noise and number of features 

 

Monte Carlo (MC) simulations were used to compare the 

performance of the three implemented Kalman filters. Each 

algorithm was run 100 times. The true position and heading 

errors were computed for each run. Then the root-mean-square 

(RMS) errors across the 100 runs were computed at every 

epoch.  The resulting error bounds were then compared with the 

estimated standard deviations.  The figures 5 shows the true 

pose RMS errors computed in (a) KF (b) KF-ST and (c) the 

proposed KF-PT.  Clearly the true KF-PT errors are smaller 

than the ones from KF and KF-ST.   

 
Figure 5. True Position and Heading RMS error 

 

Tables 1 and 2 show the average and maximum absolute errors 

respectively.  The absolute errors in the estimates computed by 

KF-PT were on the average smaller compared to both KF and 

KF-ST. 

 

Average KF KF-ST KF-PT 

North(m) 0.451 0.404 0.349 

East(m) 0.494 0.455 0.381 

Heading(deg) 0.512 0.490 0.422 

Table 1. Average Absolute Position and Heading Errors 

 

Maximum KF KF-ST KF-PT 

North(m) 0.851 0.793 0.690 

East(m) 0.880 0.845 0.782 

Heading(deg) 0.845 0.805 0.667 

Table 2. Maximum Absolute Position and Heading Errors 

 

 Average Maximum 

 

KF-PT 

w.r.t  

KF 

KF-PT 

w.r.t  

KF-ST 

KF-PT 

w.r.t  

KF 

KF-PT 

w.r.t  

KF-ST 

North(%) 22.6 13.8 19.0 13.0 

East(%) 22.9 16.1 11.0 7.4 

Heading(%) 17.7 13.9 21.1 17.1 

Table 3. Position and Heading Improvement Compared to KF 

and KF-ST 

 

Table 3 shows the percentage improvement in the average and 

maximum error estimates of KF-PT with respect to KF and KF-

ST. Clearly the estimates were improved with KF-PT in all 

components. The figure 6 shows the corresponding standard 

deviation ( 1 ) estimated from the three filters. Again KF-PT 

standard deviations are smaller than the ones from KF and KF-

ST.   

 

 
Figure 6. Estimated Position and Heading Standard Deviation 

Figure 7 shows the ratio of the RMS errors to estimated 

standard deviation. The ratios of KF-PT positions are close to 1 

while KF and KF-ST ratios are less than 1. This implies that 

KF-PT errors closely match the estimated standard deviation 

while the KF and KF-ST output pessimistic estimates.  

Therefore the KF-PT models the pairwise-time correlated 

measurement correctly.  
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Figure 7. Ratio of RMS errors to estimated standard deviation  

   

5. CONCLUSIONS 

This paper presented a novel Kalman filtering model that can 

deal with pairwise time-correlated measurements. The method 

utilized a shaping filter that consists of Cholesky factors based 

on the measurement variance-covariance matrices. The 

augmentation was used to estimate the state vector and its 

associated variance-covariance matrix. The simulation results 

showed that the proposed Kalman filter with the time-correlated 

measurement noise performs better than the standard Kalman 

filter and the Kalman filter with the shaping filter by (Bryson 

and Henrikson, 1968). In the example presented the average 

solution of proposed Kalman filter improved by 13.8%, 16.1% 

and 13.9% in the North, East and heading respectively when 

compared to (Bryson and Henrikson, 1968). Furthermore, the 

Monte Carlo simulation results show that the estimated standard 

deviation of the solution closely matches the actual errors. 
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