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ABSTRACT: 

 

This paper presents a sequential rooftop modelling method to refine initial rooftop models derived from airborne LiDAR data by 

integrating it with linear cues retrieved from single imagery. A cue integration between two datasets is facilitated by creating new 

topological features connecting between the initial model and image lines, with which new model hypotheses (variances to the initial 

model) are produced. We adopt Minimum Description Length (MDL) principle for competing the model candidates and selecting the 

optimal model by considering the balanced trade-off between the model closeness and the model complexity. Our preliminary results,  

combined with the Vaihingen data provided by ISPRS WGIII/4 demonstrate the image-driven modelling cues can compensate the 

limitations posed by LiDAR data in rooftop modelling. 

 

 

1. INTRODUCTION 

As a virtual replica of real world, photorealistic rooftop models 

has been considered a critical element of urban space modelling 

to support various applications such as urban planning, 

construction, disaster management, navigation and urban space 

augmentation. Recently, emerging geospatial technologies like  

Google Earth and Mobile Augmented Reality (MAR) urgently 

demand advanced methods of rooftop modelling, producing 

more accurate, cost-effective, and large scale virtual city 

models. For the past two decades, much research efforts have 

been made in rooftop modelling. An excellent review on the 

recent rooftop modelling technology was reported by Haala and 

Kada (2010).  Recently, Rottensteiner et al. (2012) presented 

their preliminary results of inter-comparative experiments 

amongst the latest state-of-the art of rooftop modelling 

algorithms. However, developing a “universal” intelligent 

machine enabling the massive generation of highly accurate 

rooftop models in a fully-automated manner still remains as a 

challenging task. The task of rooftop modelling requires not 

only conducting complete classification and segmentation, but 

also accurate geometric and topological reconstruction. Its 

success is easily challenged when any of distinguishable 

features structuring a rooftop model is missed from given 

imagery. This well-known “missing data problem” is caused by 

various factors such as the object complexity, 

occlusions/shadows, sensor dependency, signal-to-noise ratio 

and so forth. One of promising approaches to address these 

problems is to combine the modelling cues detected from 

multiple sensors, with expectations that the limitations inherited 

from one sensor can be compensated by the others. In this 

regard, combining LiDAR point clouds and optical imagery for 

rooftop modelling have been exploited by many researchers 

(Haala and Kada, 2010). This is because the characteristics of 

the modelling cues obtained from two data are complementary. 

Compared to LiDAR point clouds, the optical imagery better 

provides semantically rich information and geometrically 

accurate step and eave edges, while it shows weakness in 

detecting roof edges and 3D information such as planar patches 

(if only single imagery is used). However, LiDAR has 

somewhat opposite characteristics against the optical imagery. 

There are two different ways to fuse LiDAR and optical 

imagery: parallel and sequential approach. The parallel fusion 

allows each modelling cues to be extracted from two datasets in 

parallel. Then, a rooftop model is generated through various 

mechanisms recovering its spatial topology (topological 

relations amongst lines and planes comprising key rooftop 

structure) using the extracted modelling cues. A common 

practice in the parallel fusion process is to enhance the quality 

of cue extraction by assigning different roles to each of two 

datasets. That is, line cues were extracted mainly using optical 

imagery, while LiDAR data was used as for validating them or 

assisting the generation of new lines (Chen et al., 2005; Sohn 

and Dowman, 2007). A similar approach can be also found in 

Habib et al. (2010) and Novacheva (2008). The topological 

relations amongst modelling cues extracted were reconstructed 

in an integrated manner, for instance by partitioning LiDAR 

space with extracted lines using a split-merge algorithm (Chen 

et al., 2005) or Binary Space Partitioning (Sohn and Dowman, 

2007). In contrast, the sequential fusion approach is to generate 

a rooftop model relying on single information source, which is 

later refined by the other data. For instance, Rottensteiner et al. 

(2002) produced rough rooftop models using LiDAR data and 

improved the initial model’s accuracy by fitting parametric 

model instances to the back-projected image of LiDAR-driven 

models. The sequential modelling fusion has not been studied 

much compared to the parallel fusion. However, we believe that 

the sequential fusion method will provide important roles to 

spatio-temporally update large-scale virtual city models where 

existing models can be effectively used as priors for improving 

its accuracy with newly acquired data. In this study, we propose 

a sequential rooftop modelling process, in which an initial 

model is improved by a hypothesis-test scheme based on 

Minimum Description Length (MDL). In this framework, we 

discuss separate roles of initial models (LiDAR-driven) and 

newly acquired lines (optical imagery-driven) with respect to a 

generative way of producing a model hypothesis space. In the 

next section, an overall workflow of proposed modelling 
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process is explained. In Section 3, our sequential fusion 

methods are described, followed by presenting experimental 

results and drawing our conclusions in Section 4 and 5.    

2. OVERALL METHODOLOGY 

We propose a sequential modelling algorithm to improve an 

existing model derived from LiDAR data (L-Model) by 

integrating it with lines detected from single optical imagery (I-

Lines). Figure 1 shows an overall workflow of proposed rooftop 

modelling system. An initial rooftop model is required as an 

input vector to the sequential modelling chain. A key of the 

proposed method is to create new topological features 

connecting between L-Model and I-Lines in an integrated 

manner. Newly generated lines are only allowed to change their 

orientations or being eliminated for producing model 

hypotheses. Global geometric properties (line orientation, 

symmetry and parallelism) of the integrated cues implicitly set 

the rules to generate model hypotheses. An optimal model 

hypothesis is determined through selective construction of 

model hypotheses using integrated modelling cues. The model 

selection criterion is designed using MDL principle, favouring 

more regular and simpler rooftop models as final output. 

 

 

Figure 1. The overall workflow of proposed sequential 

modelling algorithm.  

 
3. SEQUENTIAL ROOFTOP MODELLING 

3.1 Generation of LiDAR-driven rooftop model 

Our sequential modelling system requires existing rooftop 

models derived from Digital Surface Model (DSM) as input 

vectors to be improved. In current study, these initial rooftop 

models were generated using LiDAR point clouds by 

combining previous research works (Sohn et al., 2008; Sohn et 

al., 2012). The model processing pipeline comprises four steps: 

1) classification/segmentation; 2) modelling cue extraction; 3) 

topology reconstruction; and 4) vector regularization. After 

classifying LiDAR point clouds, individual building regions 

were detected, from each of which a set of planes were 

segmented using RANSAC algorithm. Then, two different types 

of line primitives, intersection and step line, were extracted over 

plane segments. A spatial topology amongst extracted cues 

(planes and lines) was constructed using Binary Space 

Partitioning (BSP) tree, which progressively partitions a 

building region into binary convex polygons (Sohn et al., 2008). 

BSP tree might cause topological errors, mainly due to errors 

introduced in line extraction. To resolve this problem, a 

regularization algorithm using MDL principles was adopted 

(Sohn et al., 2012). Given a local configuration sampled in 

BSP-based rooftop model, hypothetical models were produced, 

of which the most optimal (regularized and simplified) model 

was iteratively chosen using MDL criteria. Thus, the initial 

rooftop models from LiDAR data (L-Model) were generated.     

 

3.2 Extraction of optical line cues 

To improve existing rooftop models (L-Model), new line 

segments were detected from airborne imagery using Kovesi’s 

algorithm that relies on the calculation of phase congruency to 

localize and link edgels (Kovesi, 2011). Given exterior 

orientation information of optical sensor used, the well-known 

collinearity between image and object space was established. I-

Line is defined as a straight line corresponding to key rooftop 

structures. To detect I-Lines, L-Model and its associated laser 

points with attributes including labels (building, non-building) 

and plane segmentation ids were back-projected to the imagery. 

I-Lines were identified if a line extracted from the imagery is 

found within a searching space (minimum bounding box) 

generated from L-model edges. I-Lines’ coordinates in 3D 

object space were obtained by intersection 2D I-Lines with their 

corresponding planes in object space using the collinearity 

equation. In this study, a heuristic bounding condition for the 

line-plane intersection between the image and the object space 

was assumed.  

 

3.3 Model cue integration 

The integration of I-Lines and L-Model is conducted in object 

space, which leads to generating new integrated modelling cues. 

Suppose that I-Lines and L-Model are denoted as a set of image 

lines, {  
 }  and model lines, {  

 } . The first step of the cue 

integration is to identify a membership of    to     by 

investigating spatial relations such as proximity and intersection 

properties between two line sets. Note that one I-Line can 

belong to multiple model lines if it spans multiple model lines 

(1-N relation). Once the line memberships were identified, 

actual topological relations between two line sets were 

established by introducing new topological lines, {  
 } 

connecting    and   . As shown in Figure 2, a topological 

relation between   
  and   

  needs to be established. For this 

purpose,   
 ’s two guide lines,    

      and    
   , are generated 

as infinite lines of     
  and     

  (  
 ’s neighbouring lines). 

Then, {  
 } are generated by generating line segments in two 

ways connecting with the shortest distance; 1) between   
  and 

  
  (starting and ending vertices) and 2) between   

  and 

(   
      and    

   ).  
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Figure 2. Establishment of topological relations between I-Line 

and L-Model For hypothesis generation.  

3.4 Model hypothesis generation  

In the previous section, multiple topological relations 

integrating image lines with existing model lines were 

established. The model hypothesis generation is a process to 

generate possible models reflecting the contribution of image 

lines to the improvement of existing model (L-Model). Except 

  ,   and    were newly created, which needs to be not only 

validated, but also regularized as part of the refined rooftop 

model. To facilitate this task, we adopted a similar 

regularization method introduced by Sohn et al. (2012). In this 

scheme, we considered   
  and   

 as a floating line, which slope 

is changeable with pre-determined slopes (clustered in line 

slope spaces extracted from I-Lines and L-Model). Note that 

only one terminal line node (not intersected with any model 

line) is used as an anchor point to rotate the slope of floating 

line. While,   
 ’s slope is not changeable, but used as a guide 

line, with which floating lines are intersected. In this way, a 

hypothesis model (H-Model) is generated (see figure 3).   

 

Figure 3. Illustration of model hypothesis generation from a line 

   
    

   in figure 2: (a) example of hypothesis generation for 

floating line and (b) examples of hypotheses generated from (a). 

 

3.5 Optimal model selection 

In a discriminative modelling approach, specific model to be fit 

with given observation is usually not known a priori. Instead, a 

decision process, called model selection, is adopted for selecting 

the optimal model through stochastically competing model 

candidates. Rissanen (1978) introduced MDL (Minimum 

Description Length) for inductive inference that provides a 

generic solution to the model selection problem (Grünwald, 

2005). MDL provides a flexibility to encode a bias term, which 

allows us to protect against over-fitting of model of interest to 

limited observations. This bias is estimated by measuring the 

“model complexity”, which degree varies depending on the 

regularity (similar or repetitive patterns) hidden in observations. 

Weidner et al. (1995) posed building outline delineation as the 

model selection problem using MDL. Sohn et al. (2012) have 

extended it to rooftop models comprising multiple planes by 

implicitly generating model hypotheses. In this study, we 

adopted Sohn et al. (2012)’s MDL framework, which objective 

function is described below:  

 

     ( | )  (   ) ( )                    (1) 

 

Where, H and D indicate a building model hypothesis and its 

boundary associated laser points, respectively.   and      are 

weight values for balancing the model closeness and the model 

complexity. In Eq. (1), the closeness term represents bits 

encoding the goodness-of-fit between the hypothesis and its 

associated laser points, while the complexity term represents 

bits evaluating the hypothesized model’s complexity. The 

model selection process was conducted in the object space.  

 

3.5.1 Closeness term ( ( | )): Assuming that error model 

between data and hypothesis follows Gaussian distribution,  the 

closeness term in Eq. (1) can be rewritten as: 

 

 ( | )  
 

    
                                    (2) 

    

Where Ω is the sum of the squared residuals between a model 

(H) and a set of observations (D), that is [   ] [   ] . 

Instead of using Euclidean distance, we measured Ω using a 

geodetic-like distance in order to favour a model hypothesis that 

maximizes the planar homogeneity. We first divided laser 

boundary points into two groups: (1) boundary points belonging 

to the target plane (target points), and (2) belonging to the non-

target planes (non-target points). Ω  is measure as a shortest 

length between a point and its corresponding model line using 

Euclidean distance within homogeneous region (i.e., the target 

point’s distance measured within the target plane or the non-

target point’s distance measured within the non-target plane). In 

other cases, Ω is measured differently by adding a penalized 

distance (a minimum distance between the point and terminal 

nodes of its corresponding model line) to the point’s Euclidean 

distance to the model.  

   

3.5.2 Complexity term ( ( )): The complexity term in Eq. 

(1) is designed to estimate the degree of geometric regularity of 

the hypothesized model. We consider that the geometric 

regularity varies depending on 1) directional patterns (the 

number of different direction), 2) polyline simplicity (the 

number of vertices), and 3) orthogonality and presence of acute 

angles. Three geometric regularization factors are incorporated 

into the complexity term as:  

  

 ( )      

′
           

′
        

∠ 
 
∠ 

′
     ∠ 

  (3) 
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Where the subscript v, d, and ∠  indicate vertex, line direction, 

and inner angle; (       ∠ ) indicate the number of vertices, 

the number of identical line directions, and penalty value to 

inner angle. (       ∠ ) are estimated from the initial model 

determined at previous iteration; (  
′    

′   ∠ 
′ )  are computed 

from model hypotheses that are locally generated as described 

in Section 3.2; (       ∠ ) are weight values for each factor. 

Note that grouping the inner angle and thus estimating  
∠ 

 and 

 
∠ 

′
 was conducted using heuristically determined threshold.  

  

3.5.3 Global Optimization: Let                
denote a set of all possible hypotheses. The optimal model   is 

selected through the direct comparison of DLs for all model 

candidates in H, which has minimum DL.  

 
           (  )

       
                              (4) 

 

3.6 Parameter estimation 

In Eq. (1), the two terms, the model closeness and the model 

complexity, have an opposed role to one another in selecting the 

optimal model. If the former dominates over the latter, an over-

fitted model to laser boundary points is preferred to be selected, 

which leads to noisy rooftop models. For the opposite case, the 

selected rooftop model becomes over-simplified and thus shows 

its high deviation from laser boundary points. In either case, 

unfavourable models are generated in the regularization sense. 

To achieve an optimal balance between two terms, we adopted 

the Min-Max criterion which minimizes possible loss, while 

maximizes gain (Gennert and Yuille, 1988). In our study, the 

Min-Max principle is closely related to minimizing the cost 

value DL and maximizing the contribution from both of two 

terms, thereby finding the optimal    [   ]  in Eq. (1). For 

each term, this leads to avoid the best scenario that one of two 

terms dominates by having excessively low or high of  . To 

achieve this goal, the “Max” operator derives an optimal weight 

value    by selecting the worst scenario showing the maximum 

DL in Eq. (1). This can be calculated by taking the first-

derivative of Eq. (1) with respect to              
              , satisfying following condition:   

 
   ( )

  
|
    

  ( | )   ( )     (5) 

 

Where H in Eq. (5) was determined at specific   using Eq. (4). 

Considering the boundary conditions in Eq. (5), where  ( ) at 

    and  ( | )  at     corresponds to zero, we can 

compute biases in two terms. Thus,  ( | ) and  ( ) in Eq. (5) 

were normalized respectively with the bias quantities estimated. 

The “Min” operator is now applied for the selection of optimal 

hypothesis, H*, using Eq. (4). The above-mentioned Min-Max 

function is described as: 

 

  (  )   

          [             ( |  )  (   ) ( |  ) ](6) 

 

4. EXPERIMENTAL RESULTS 

 

We evaluated the performance of the proposed method using 

“Vaihingen” dataset provided by the ISPRS WGIII/4 

(Rottensteiner et al., 2012). The “Vaihingen” data was acquired 

by Leica ALS50 system with an average point density of 6.7 

points/m2 (i.e., ~0.4 m point spacing) at a mean flying height of 

500 m above ground level. The 3D positional accuracy shows 

approximately  10 cm. A high-resolution pan-sharpened colour 

imagery was also captured from the Intergraph Z/I imaging’s 

DMC (Digital Mapping Camera) with the ground sampling 

distance of 8 cm and the radiometric resolution of 8 bits. The 

interior and exterior parameters were estimated in the level of 1 

pixel georeferencing accuracy. Figure 4 shows an example how 

the proposed fusion approach can provide benefits against L-

Model. Due to its irregular point acquisition, LiDAR data shows 

some difficulties of modelling detailed rooftop shape, resulting 

in the shape distortion including over-simplification and area 

shrinkage (Figure 4(b)). However, as can be shown in Figure 

4(c), integrating image lines with L-Model demonstrates its 

contributions to the model improvements from Figure 4(b); 

enlarging the overall area and recovering the missed roof 

structures. Figure 5 shows another example, in which the 

orientation of a rooftop in L-Model is biased to LiDAR’s 

scanning direction. Figure 5(c) presents this problem can be 

resolved by adding I-Lines (lines from optical imagery), which 

are less affected by sensor’s specification used in data 

acquisition.   

 

 
Figure 4. Sequential rooftop modelling process from: (a) 

airborne image (left) and LiDAR data (right); (b) L-Model 

(initial LiDAR-driven model); and (c) improved rooftop model.   

 

 
Figure 5. Comparison of rooftop modelling results in building 

orientation;(a) L-Model, (b) sequential modelling results, (c) 

overlaid rooftop models, and (d) LiDAR data. 

 

Figure 6 illustrates the effects of selecting optimal   ; 

depending its value, different level-of-details (LoD) can be 

represented in rooftop models produced. As   closes to 1, the 
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degree of model complexity, showing the tendency of over-

fitted to laser boundary observations, increases, while 

decreasing   tends to produce much simpler (over-simplified) 

rooftop models. It is not a trivial task to explicitly determine    

as it is also application specific; for example, detail models are 

required for decision-making on construction (Scherer and 

Schapke 2011), but coarse models for an urban planning (Yu et 

al. 2010). However, in general, we concern determining   , 

which preserves all the detailed key structures in rooftop 

models, but makes the models being less sensitive to the 

missing data. In figure 6,     was evaluated its modelling 

performance over discrete   space as explained in Eq. (5), 

                     . Figure 7 presents a relation between 

DL values and its corresponding    before and after 

normalizing two regularization terms in Eq. (2). As a result,   

with the maximum DL was changed from 0.7 (before) to 0.4 

(after). Relying on our visual inspection, better model quality 

preserving its details and corresponding to real roof edges is 

shown at    of 0.4, rather than 0.7. It suggests a promising 

effect of   normalization. A sensitivity analysis of the 

modelling between L-Model and sequential modelling results 

has not been conducted yet in this study. However, figure 6 

indicates that the proposed method is able to recover most of the 

details close to exact solution (rooftop vector at   =0.4 in figure 

6(b)), even over-simplified L-Model was used as an initial 

model (green rooftop vector in figure 6 (a)).    

 

 
            (a)                                        (b) 

Figure 6. Development of rooftop polygon model with respect 

to  . 
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Figure 7. Optimal weight value ( ) before (a) and after (b) the 

normalization of two regularization terms.  

 

As our preliminary experiments using “Veihingen” data, total 

seven buildings were selected for evaluating the overall of the 

proposed algorithm. In figure 8, the green and red colours 

denote L-Models and sequential modelling results, respectively. 

Our visual investigation suggests that the sequential modelling 

demonstrated its ability of recovering some important, but 

detailed roof structure and also improved the models’ edge 

correspondences by enlarging its area and rectifying the 

rooftops’ orientations. A quantitative analysis of the algorithm’s 

performance has been conducted with respect to area, perimeter 

and numbers of vertices between L-Models and its rectified 

models. Figure 9 shows that sequential modelling increased the 

rates of the three performance factors, which were confirmed as 

better modelling results.  

 

 
Figure 8. Building models from LiDAR (green) and building 

models refined by image (red). 
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Figure 9. (a) Sum of area, perimeter, and the number of vertex 

of 7 test building models, respectively, (b) rate of increase of 7 

test building models. 

 

We also conducted a comparative measurement of vertices’ 

displacement between sequential modelling results and 

reference models. The reference models have been produced 

using the photogrammetric plotting. As shown in Table 1, the 

average differences in (X, Y, Z) between L-Models and 

reference models were reported as (0.06m, -0.04m, 0.03m) with 

the r.m.s.e. of (0.32m, 0.35m, 0.39m). While, the comparison of 

rectified models to the reference shows compatible differences 

of (0.06m, -0.01m, 0.08m) with lower r.m.s.e. of (0.23m, 0.31m, 

0.29m), respectively in (X,Y,Z). This indicates the sequential 

modelling shows a positive aspect of improving the modelling 

accuracy. A final rooftop models over test building samples is 

visualized in Figure 10. 

 

Table 1. Estimated accuracy of building models 

 

 LiDAR-driven initial 

models 

Rectified models 

X(m) Y(m) Z(m) X(m) Y(m) Z(m) 

BD1 
Ave. 0.09 0.07 0.36 0.07 0.07 0.37 

Std. 0.26 0.39 0.08 0.23 0.40 0.07 

BD2 
Ave. 0.09 -0.10 -0.17 0.09 0.05 -0.08 

Std. 0.49 0.32 0.24 0.27 0.24 0.35 

BD3 
Ave. 0.14 -0.14 -0.14 0.11 -0.01 0.03 

Std. 0.27 0.21 0.07 0.08 0.14 0.07 

BD4 
Ave. -0.05 0.00 -0.29 -0.03 -0.06 -0.24 

Std. 0.20 0.20 0.10 0.13 0.21 0.08 

BD5 
Ave. -0.05 -0.20 -0.29 -0.02 -0.14 -0.09 

Std. 0.42 0.39 0.70 0.32 0.26 0.20 

BD6 
Ave. 0.10 -0.07 -0.10 0.12 -0.10 -0.08 

Std. 0.24 0.32 0.12 0.22 0.19 0.14 

BD7 
Ave. -0.01 -0.12 -0.18 0.01 -0.14 -0.15 

Std. 0.28 0.18 0.13 0.14 0.17 0.13 

Total 
Ave. 0.06 -0.04 0.03 0.06 -0.01 0.08 

Std. 0.32 0.35 0.39 0.23 0.31 0.29 

 

 

 
Figure 10. 3D visualization of rooftop models produced by 

sequential modelling algorithm. 

 

5. CONCLUSIONS 

In this paper, we proposed a sequential modelling method to 

improve existing rooftop models driven from LiDAR data by 

incorporating lines extracted from optical imagery with the 

model. We suggested an implicit generation of local model 

hypotheses by combining lidar-driven models and image-driven 

lines. MDL was adopted to select optimal model by comparing 

competitive model candidates. A normalization of the Min-Max 

optimization process was introduced to improve the optimal 

trade-off between the model closeness and the model 

complexity in MDL. In this preliminary study, we confirmed 

that introducing image-driven lines is able to improve rooftop 

modelling quality, by compensating for the inherent limitations 

of LiDAR data, which leads to enhancing edge correspondence, 

improving level-of-details and rectifying biased model 

orientation. In our future works, we will focus on the 

improvement of controlling the level-of-detail in the modelling 

optimization, quantitative investigation of sensitivity of initial 

model’s quality and incorporating the probabilistic bounds in 

the modelling cue integration with more extensive datasets.   

 

ACKNOWLEDGEMENTS 

 

This research was funded by Discovery Grant from the Natural 

Sciences and Engineering Research Council of Canada. We 

thank ISPRS WGIII/IV committee and German Society for 

Photogrammetry, Remote Sensing and Geoinformation (DGPF) 

for their assistance in preparing the Vaihingen data.  

 

REFERENCE 

 

Chen, L., Teo, T., Rau, J., Liu, J., Hsu, W., 2005. Building 

reconstruction from LiDAR data and aerial imagery. In: 

Proceedings of the IEEE International Geoscience and Remote 

Sensing Symposium, vol. 4. pp. 2846–2849.  

Gennert, M. A., Yuille, A. Y., 1988. Determining the optimal 

weights in multiple objective function optimization. In Proc. 

Second Int. Conf. Computer Vision, pp. 87–89.  

Grünwald, P., 2005. A tutorial introduction to the minimum 

description length principle. In P. Grünwald, I. J. Myung, and 

M. Pitt, editors, Advances in Minimum Description Length: 

Theory and Applications, pages 3–81. MIT Press.  

Haala, N., and Kada, M., 2010. An update on automatic 3D 

building reconstruction. ISPRS Journal of Photogrammetry and 

Remote Sensing 65, 570-580. 

Habib, A.F., Zhai, R., Kim, C., 2010. Generation of complex 

polyhedral building models by integrating stereo-aerial imagery 

and LiDAR data. Photogrammetric Engineering & Remote 

Sensing 76(5), 609-623. 

Kovesi, P.D., 2011. MATLAB and Octave functions for 

computer vision and image processing. Centre for Exploration 

Targeting, School of Earth and Environment, The University of 

Western Australia.  

Novacheva, A., 2008. Buildingroof reconstruction from LiDAR 

data and aerial images through plane extraction and colour edge 

detection. The International Archives of the Photogrammetry, 

Remote Sensing and Spatial Information Sciences 37(Part B6b), 

53-57. 

Rissanen, J., 1978. Modeling by the shortest data description. 

Automatica 14, 465-471.  

Rottensteiner, F., and Jansa, J., Automatic Extraction of 

Building from LIDAR Data and Aerial Images, IAPRS, Vol.34, 

Part 4, pp. 295-301, 2002.  

Rottensteiner, F., Sohn, G., Jung, J., Gerke, M., Baillard, C., 

Benitex, S. and Breitkopf, U., 2012. The ISPRS benchmark on 

urban object classification and 3D building reconstruction. 

ISPRS Annals, 1(3), 293-298.  

Scherer, R.J., Schapke, S.E., 2011. A distributed multi-model-

based management information system for simulation and 

decision-making on construction projects. Advanced 

Engineering Information, 25(4), pp. 582-599. 

Sohn, G., and Dowman, I., 2007. Data fusion of high-resolution 

satellite imagery and lidar data for automatic building exraction. 

ISPRS Journal of Photogrametry and Remote Sensing, 62(1), 

43-63.  

Sohn, G., Huang, X., Tao, V., 2008. Using a binary space 

partitioning tree for reconstructing polyhedral building models 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W1, 2013
VCM 2013 - The ISPRS Workshop on 3D Virtual City Modeling, 28 May 2013, Regina, Canada

32



 

from airborne LiDAR data. Photogrammetric Engineering & 

Remote Sensing 74(11), 1425-1438. 

Sohn, G., Jwa, Y., Jung, J., Kim, H. B., 2012. An implicit 

regularization for 3D building rooftop modeling using airborne 

data, ISPRS Annals of the Photogrammetry, Remote Sensing 

and Spatial Information Sciences, Volume I-3, 2012 XXII 

ISPRS Congress, 25 August – 01 September 2012, Melbourne, 

Australia.  

Weidner, U., Förstner, W., 1995. Towards Automatic Building 

Extraction from High Resolution Digital Elevation Models. 

ISPRS Journal, 50(4), pp. 38-49. 

Yu, B., Liu, H., Wu, J., Hu, Y., Zhang, L., 2010. Automated 

derivation of urban building density information using airborne 

LiDAR data and object-based method. Landscape and Urban 

Planning, 98(3-4), pp. 210-219. 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W1, 2013
VCM 2013 - The ISPRS Workshop on 3D Virtual City Modeling, 28 May 2013, Regina, Canada

33


