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ABSTRACT:

A basic problem of image classification in remote sensing is to select suitable image features. However, modern classifiers such as
AdaBoost allow for feature selection driven by the training data. This capability brings up the question whether hand-crafted features
are required or whether it would not be enough to extract the same quasi-exhaustive feature set for different classification problems
and let the classifier choose a suitable subset for the specific image statistics of the given problem. To be able to efficiently extract
a large quasi-exhaustive set of multi-scale texture and intensity features we suggest to approximate standard derivative filters via
integral images. We compare our quasi-exhaustive features to several standard feature sets on four very high-resolution (VHR) aerial
and satellite datasets of urban areas. We show that in combination with a boosting classifier the proposed quasi-exhaustive features

outperform standard baselines.

1 INTRODUCTION

Automated classification of remotely sensed images is one of the
fundamental challenges in remote sensing research. Here, the
emphasis is put on urban areas because they are quickly evolving
environments and changes are costly to monitor both in terms of
monetary resources and time. What makes this task challenging
is the complex scene structure where different object categories
occur in complicated spatial layouts. Moreover, due to the nadir
perspective one can hardly make simplifying assumptions about
typical scene layouts such as “’the sky is at the top” or "trees stand
upright”, like commonly done for ground-level computer vision
applications. Additionally, fine texture details become visible at
the small ground sampling distance (GSD) of VHR sensors, thus
increasing the within-class variability, while the between-class
variability is relatively low.

Supervised classification involves three major steps: (i) feature
extraction from raw image observations, (ii) training of a classi-
fier using labeled ground truth and (iii) classification of test data
with the trained classifier. While systematic efforts have gone
into the latter two steps by adopting Machine Learning methods,
for example, SVMs (Waske and Benediktsson, 2007) and fuzzy
approaches (Bovolo et al., 2010) or ensemble methods such as
Boosting (Briem et al., 2002) and Random Forests (Pal, 2005;
Gislason et al., 2006), less attention has been paid to the design
of suitable features for remote sensing. Thus, the choice of fea-
tures still remains somehow based on educated guessing.

Which combinations of the raw intensity values contain the in-
formation to separate the target classes is in general not explicitly
known. It is thus still common to directly use the radiometric
pixel values of all bands. Often these raw values are augmented
with features computed via Principal Component Analysis (PCA)
or the Normalized Difference Vegetation Index (NDVI).

For the older task of large-area land cover classification in low-
and medium-resolution imagery texture features were not as cru-
cial, because the pixel-footprint was too large to resolve texture
patterns (e.g., crop rows in agricultural fields, road markings etc.).
Nowadays, airborne and spaceborne sensors are capable of map-
ping even small objects like cars, narrow roads, and single trees
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with several pixels, thereby vastly increasing the spectral intra-
class variability. On the other hand, fine-grained height infor-
mation from high-resolution stereo matching is often available as
additional source of information.

One straightforward approach for exploiting texture instead of
only per-pixel intensities is to use pre-defined filters in multi-
ple scales and directions, as proposed for example by Leung and
Malik (2001) and Schmid (2001). These filter banks typically
contain variants of multi-scale first and second derivative filters,
but the number of filter responses (i.e., feature dimensions) usu-
ally remains limited, both to maintain computational efficiency
and because traditional classifiers (e.g., Gaussian maximum like-
lihood) could not handle high-dimensional feature spaces.

Here, we propose to let a discriminative classifier do feature se-
lection directly from a comprehensive set of candidate features,
consisting of intensity values and within-channel as well as across-
channel differences computed at various scales and orientations.
In spite of its high dimension such a candidate set can be ex-
tracted efficiently, by approximating averaging and derivative fil-
ters with integral images, as proposed by (Bay et al., 2008) for
SURF. Our hypothesis is that such a feature set could serve as an
almost universal solution for a rather large range of classification
tasks. Note that the full high-dimensional feature set only needs
to be extracted for the (typically small) training areas, whereas
only the small subset selected during training is needed for test-
ing. In order to evaluate the potential of such quasi-exhaustive
features, we conduct a comparative study: standard feature sets
and the proposed quasi-exhaustive features are extracted, fed into
a boosting classifier and results are evaluated with manually la-
beled ground truth of four test scenes.

1.1 Related work

While there is a vast body of literature on feature design for com-
puter vision applications, feature design and selection has been
less of a topic in the context of VHR optical remote sensing data.
In general, it has been acknowledged that one can no longer rely
only on single-pixel values, but has to consider a certain local
neighborhood (Gamba et al., 2011).

One technique for describing patterns is recording their responses
to specific texture filters. Various texture filters have already been
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tested in remote sensing studies. Shao and Foerstner (1994) eval-
uate the potential of Gabor filters for aerial imagery, whereas
Galun et al. (2003) perform landscape image segmentation with
edge-based texture filters. Martin et al. (2004) have used a subset
of the root filter sets (RFS) for the segmentation and Lazaridis and
Petrou (2006) derive the texture features from the Walsh trans-
form. That smooth filter banks can be approximated by differ-
ences of box filters has been exploited for example by Bay et
al. (2008), who use box filters to approximate the responses of
Hessian filters. They also utilize integral images for rapid com-
putation of the filter responses. Drauschke and Mayer (2010)
compare and assess the performance of several of the previously
mentioned texture filters using images of building facades. They
outline the needs for a more universal approach encompassing
desired properties of all tested filter banks, because each single
filter bank gives optimal results only for a specific dataset.

Other works propose to extract vast amounts of features and ap-
ply either genetic algorithms (van Coillie et al., 2007; Rezaei et
al., 2012) or partial least squares for feature dimensionality re-
duction (Schwartz et al., 2009; Hussain and Triggs, 2010) prior
to classifier training. In computer vision the closest related work
to ours is probably the integral channel features method (Dollar
et al., 2009). For object detection, they randomly sample a large
number of box filter responses over the detection window and
use AdaBoost to select the most discriminative features, also us-
ing integral images. They show improvement over methods that
stick to hand-crafted feature layouts.

Deep belief networks (DBN) follow a similar line of thought in
that they try to learn (non-linear) feature extractors as part of un-
supervised pre-training (Hinton and Salakhutdinov, 2006; Ran-
zato et al., 2007). First steps have also been made to adapt them to
feature learning and patch-based classification of high-resolution
remote sensing data by Mnih and Hinton (2010, 2012). However,
in a recent evaluation of Tokarczyk et al. (2012) DBNs as feature
extractors did not improve the classification results compared to
standard linear filter banks for VHR remote sensing data.

An alternative strategy is to model local object patterns via prior
distributions with generative Markov Random Fields (MRF) or
discriminative Conditional Random Fields (CRF). Usually, such
methods are used to encode smoothness priors over local neigh-
borhoods (Schindler, 2012), but some works exist that instead of
applying smoothness constraints directly encode texture through
the prior term (Gimel’farb, 1996; Zhu et al., 1997). Helmholz
et al. (2012) apply the approach of (Gimel farb, 1996) to aerial
and satellite images as one of several feature extractors inside a
semi-automatic quality control tool for topographic datasets.

2 METHODS

In line with recent machine learning literature, we pose feature
extraction and classification as a joint problem. Instead of pre-
selecting certain features that seem appropriate for describing a
particular scene and classifying them in a subsequent step, feature
selection is completely left to the classifier, such that those fea-
tures are selected which best solve the classification problem for a
given dataset. In the following we first describe hand-crafted fea-
tures commonly used in remote sensing, which serve as our base-
line, before turning to details about the proposed quasi-exhaustive
features. Thereafter, the boosting algorithm for training (i.e., fea-
ture selection and weighting) and testing is explained.

2.1 Baseline features

We start by describing the baselines for our comparison, namely
hand-crafted features commonly used for classifying aerial and
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satellite images. With hand-crafted we mean that a human ex-
pert makes an “educated guess” on what kind of features seem
appropriate for classification of the data at hand. Note that this
procedure runs the risk of losing important information, if an in-
formative feature is not anticipated. We propose to circumvent
manual pre-selection by computing a large number of intensity
values and intensity differences over a range of scales, both per
channel and between channels. The relevant subset is then auto-
matically selected during classifier training.

2.1.1 15x15 pixel neighborhood State-of-the-art airborne
data is captured with a GSD < 0.2 m while space borne imagery
can be acquired with a resolution of <0.5 m. In such very high
spatial resolution imagery even small objects like single trees
consist of several pixels, and on larger objects like building roofs
sub-structures, like chimneys, dormers and tile patterns emerge.
To cope with the resulting high intra-class variability of the ra-
diometric signature, and to exploit class-specific texture patterns,
one should thus consider also the intensities in a pixels’ neighbor-
hood. Hence, for each pixel also the intensities of its neighbors
within a square window are added to the feature vector. Typi-
cal window sizes range from 3x3 to 21 x21 depending on image
resolution and object size. We have tested various different win-
dow sizes and found 15x 15 patches to be sufficient, leading to a
feature vector with 225 dimensions per channel. Thus we obtain
a 675 dimensional feature space for our test images with three
channels. Note, since the classifier is free to base its decision on
the intensities of the central pixel, the method includes the case of
not using any neighborhood. Note also, due to the strongly over-
lapping content of adjacent windows using the neighborhood can
be expected to smooth the classification results.

2.1.2 Augmented 15x15 pixel neighborhood This feature
set represents a standard “educated guess” in the optical remote
sensing domain. In addition to the local neighborhood of each
single pixel, we add the NDVI channel, as well as linear combi-
nations of the raw data found by PCA. Given IV input channels,
all N principal components are added to the feature vectors, be-
cause a-priori dimensionality reduction is not the goal here, while
the classification stage performs feature selection anyway. PCA
and NDVT are treated like additional channels, thus for each pixel
we again put all values inside the 15X 15 nieghborhood into the
feature vector, thereby adding another 225 dimensions per chan-
nel. For input images with three channels plus three PCA chan-
nels and one NDVI channel we obtain a 1575-dimensional feature
space.

2.1.3 Texture filters Here we use a filter bank wide-spread
in semantic segmentation in the computer vision domain. Im-
ages are first converted to an opponent Gaussian color model
(OGCM) in order to account for intensity changes due to light-
ing fluctuations or viewpoints (we have also tested several other
color spaces, but OGCM yielded most stable responses). Nor-
malized color channels are convolved with a set of filters adopted
from (Winn et al., 2005) being a subset of the RFS filters. It
contains three Gaussians, four first-order Gaussian derivatives,
and four Laplacian-of-Gaussians (LoG). Three Gaussian kernels
at scales {o, 20, 40} are applied. The first-order Gaussian deriva-
tives are computed separately in x- and y-direction at scales
{20,407} thus yielding four responses and the four LoGs have
scales {0, 20,40,80}. In total, 11 features are computed per
channel leading to a 33-dimensional feature space for our test
images with three channels. We tested multiple choices of ¢ and
found o = 0.7 to deliver best results. Note that by convolution
of the channels with such filters each pixel’s neigborhood is im-
plicitly considered.
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Figure 1: Multi-scale patches: Pixels are displayed grey, 2X2 and
4x4 patches red, 3X3, 5x5, and 7X7 black.

2.2 Quasi-exhaustive features

The main idea of the proposed quasi-exhaustive features is to
avoid data-specific feature engineering altogether, by offering a
redundant, comprehensive feature set. We do not attempt to learn
a compact but complicated feature set, as for example deep learn-
ing (Hinton and Salakhutdinov, 2006; Ranzato et al., 2007) or
generative texture priors (Gimel’farb, 1996; Zhu et al., 1997).
Rather we propose to brute-force the feature extraction by com-
puting a large, redundant set of simple features and selecting a
small subset of those automatically during training. The data-
specific selection allows one to adapt to specific sensor charac-
teristics, lighting conditions and scene content, while the fixed,
simple set of feature candidates makes it possible to extract them
efficiently. The hope is that in this way one can mitigate the limi-
tations of smaller filter banks, whose performance tends to vary a
lot depending on data and scene content (Drauschke and Mayer,
2010). Our quasi-exhaustive feature bank includes (see Fig. 1):

e raw pixel intensities within a 15x 15 neighborhood in three
different scales: (i) individual pixel intensities, (i) intensi-
ties averaged over 3 x 3 blocks, and (iii) intensities averaged
over 5x5 blocks,

e pixel-wise intensity differences within each channel. These
are only computed within a 9x9 neighborhood; using the
full 15x 15 neighborhood would only marginally increase
the information relevant for the central pixel, but dramati-
cally increase the amount of features to 25200 per channel,
significantly increasing computation time.

e mean intensity differences between patches of size 2x2,
3x%3,4x4,5x5, 7x7 inside the 15X 15 neighborhood, both
within and across channels. The patches are chosen to be
(i) non-overlapping, (ii) symmetric with respect to the full
window, to approximate gradient/texture filters for the cen-
tral pixel (Fig. 1).

This feature set ensures that a large range of scales and texture
frequencies will be covered and is a reasonable approximation of
proper (e.g., Gaussian) derivative filters. Furthermore, the infor-
mation based on the differences between the spectral channels of
an image is exploited. The feature computation is done highly
efficient by using integral images (Viola and Jones, 2001). Note
that the dimension of the feature space compared to the baseline
methods is large, for example, 14553 for our test images with
three channels.

2.3 Boosting classifier

As a classification algorithm we choose a variant of discrete Ad-
aBoost (Freund and Schapire, 1997) since it can perform feature
selection and thus the computational effort of the testing phase
can be reduced. Generally speaking, boosting is a method to im-
prove the accuracy of predictions of learning algorithms. It works
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Figure 2: Classification accuracy versus training iterations of the
boosting classifier for test scene VAIHINGEN (without nDSM).

by combining many classification rules (called weak learners)
that are inaccurate by themselves into an accurate (strong) clas-
sifier. As often done in image processing our weak learners are
simple decision stumps (i.e., thresholds on single feature dimen-
sions). AdaBoost selects the weak learners (and thus the features)
in a greedy fashion.

As mentioned before, AdaBoost is an ensemble method. It com-
bines many weak classifiers hy into a strong classifier H by linear
combination. The final classifier for a feature vector x is there-

fore built as:
H(x) =) arhy(x) (1)
k

The sign of H is the predicted class (+1 or —1), its magnitude
can be used as a confidence measure. The weak learners are
added incrementally to the strong classifier. In each iteration Ad-
aBoost tries to find the best weak learner to add to the strong
classifier, by looking at the weighted error rate €. The best weak
learner is the one that maximizes |e — 0.5|. The weak classifier
is assigned a weight v according to the relation:

1—e€

=)
This ensures that the classifier gets a higher weight when it op-
erates farther away from chance. Then, the weight w; of each
instance is multiplied by exp (—ay;h(x;)). This means that sam-
ples that were classified correctly (where y; = h(x;)) decrease
in weight, while samples that were classified incorrectly increase
in weight. The weights are then normalized to sum to 1 and
the boosting procedure is repeated until the desired number of
weak classifier is reached, or until no weak classifiers that im-
prove the error rate are found. The re-weighting ensures that the
algorithm focuses on hard samples that are misclassified by many
weak classifiers.

1
a:§log< 2)

AdaBoost is a binary classifier, meaning that it learns to dis-
tinguish a “positive” (label y = +1) from a “negative” (label
y = —1) class. Since in this paper we have more than two classes
(as is often the case in remote sensing), we employ AdaBoost. MH
(Schapire and Singer, 1999), which is a multi-class extension
to AdaBoost.! AdaBoost.MH effectively applies the one-vs-all
strategy to create a set of binary problems from the multi-class
problem (Friedman et al., 2000). In the case of K classes, H
and h are vector-valued functions with K" components. The label

1n the experiments, the software of Benbouzid et al. (2012) was used.
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for a sample with class & is also a vector that has +1 in its kth
component and —1 otherwise. Weak classifiers are of the form

h(x) =1-7(x), 3)

where 1 is also a vector with K components with +1 or —1 in
each component and 7 is a binary classifier. The components of
1 signal if the binary classifier n has a positive or negative cor-
relation with the respective class label. In the multi-class case,
each instance has one weight per classifier component. The weak
classifier is selected by weighted averaging over the components
and the weights are updated analogous to binary AdaBoost.

3 EXPERIMENTS

We compare classification results for the different feature sets for
four classes: buildings, high vegetation (trees, bushes etc.), low
vegetation (grassland, small bushes etc.), and streets. All ground
truth was annotated manually. The ratio of training (25%) and
testing pixels (75%) is kept constant across all four datasets. For
training sample selection we simply take a strip on one side of
the image, having in mind that each class should be represented
with a reasonable amount of pixels.

We use 100 weak learners for training the MultiBoost classi-
fier. The feature selection capability of boosting algorithms al-
lows one to extract only the selected features during testing. This
greatly reduces the computation time for testing the classifier.

3.1 Datasets

We evaluate the proposed method on four different VHR datasets
(Fig. 3), three aerial photos and one satellite image.

Image KLOTEN (Switzerland) was acquired with an analogue
aerial camera Wild RC30 and scanned. It depicts a part of Kloten
airport in the vicinity of Zurich, Switzerland. The image has three
spectral bands: red, green, and near infrared. For evaluation we
only take a small subset of the scene of 1266x789 pixels at 8
cm GSD. Only a single image is available, thus neither DTM nor
DSM can be computed.

Test image GRAZ (Austria) is a subset of a RGB aerial image
of a large block acquired with a Microsoft Vexcel Ultracam D.
Its size is 800x 800 pixels at a GSD of 25 cm. A digital surface
model (DSM) was computed via dense matching. Instead of gen-
erating a true orthophoto from the aerial image, the DSM was
transformed to the geometry of the aerial image because man-
ually labeled ground truth had been acquired in this geometry.
Finally, a normalized DSM (nDSM) was computed via standard
filtering techniques. Since only RGB channels exist for GRAZ
a pseudo-NDVI was computed where the green channel replaces
the near infrared channel.

VAIHINGEN (Germany) is a 1000 1000 pixels subset of a true
orthophoto mosaic generated from an Intergraph DMC block with
8 cm GSD with red, green, and near infrared channels taken from
publicly available benchmark data for urban object classification
and 3D building reconstruction (Cramer, 2010; Rottensteiner et
al., 2012). A nDSM was obtained by dense matching and subse-
quent filtering.

The satellite test image is a 1000x 1000 pixels part of a stereo-
scene of WORLDVIEW-2 acquired over Zurich (Switzerland). A
pan-sharpened image of 50 cm GSD with three channels red,
green, and near infrared was generated. The stereo configura-
tion of the imagery allowed extraction of the DSM from the pan-
sharpened channels and the DSM was upsampled to the resolu-
tion of the image. It should nonetheless be noted that the DSM
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quality is much lower than for aerial images (GRAZ and VAIHIN-
GEN) because of the lower resolution.

3.2 Results and discussion

We present direct pixel-wise results of the boosting classifier

based on the different feature sets (Fig. 4, Tab. 1) without any

prior segmentation into superpixels, posterior smoothing via graph
cuts or morphological cleaning, to compare only the effect of the

features, without potential biases due to pre- or post-processing.

Classification results have been evaluated using two measures:
the overall classification accuracy and the kappa index. By mea-
suring the improvement over a chance agreement, as opposed to
the one over a 100% wrong result that is measured by the over-
all accuracy, x compensates frequency biases>. Table 1 summa-
rizes results for all hand-crafted features and the proposed quasi-
exhaustive features.

In order to quantify how much improvement is due to the nDSM,
we compute two separate runs. The first considers all channels
except the nDSM for evaluation of all four datasets. Secondly,
evaluation is repeated with all channels plus nDSM for the three
datasets VAIHINGEN, GRAZ, and WORLDVIEW-2. Recall that
no height information was available for KLOTEN. In general,
datasets augmented with relative height information achieve clas-
sification accuracies up to 10 percent points better (Tab. 1).

The proposed quasi-exhaustive features outperform almost all base-
lines in all tests. However, results are close to those of the ”Aug-
mented 15X 15 pixels neighborhood” and in the case of the "GRAZ
without nDSM” are worse. A closer inspection of this particular
result reveals that it is due to over-fitting causing confusion of
street and roofs with the same color as can be seen in the center
of the images displayed in the second row of Fig. 4.

Regarding the WORLDVIEW-2 dataset, our method performs on
the same level as the augmented features which is most proba-
bly due to less distinctive textural patterns in the pan-sharpened
image, as well as the poor quality of the DSM.

We plot the classification accuracy versus the number of boosting
training iterations in Fig. 2 for test scene VAIHINGEN (without
nDSM). The red curve of the "Augmented 15x 15 pixels neigh-
borhood” shows the steepest accuracy increase for the first five re-
spective ten iterations because it immediately captures the NDVI
and, less dominantly, the PCA. For example, for this particular
run shown as red curve in Fig. 1 NDVI features ranked 1st, 2nd,
7th, and 9th while PCA features ranked 6th and 10th. Quasi-
exhaustive features show a less rapid increase, but outperform all
baselines after the 20th training iteration.

4 CONCLUSIONS AND OUTLOOK

We have investigated the need for feature engineering when clas-
sifying  VHR remote sensing images from different
sources and showing different scenes. We have demonstrated the
power of a simple strategy: rather than trying to determine/guess
the best feature set for a given classification problem, supply a
quasi-exhaustive feature set capturing image intensity and tex-
ture at multiple scales over all channels, and let the classifier pick

N 27 CiiiZi(Zj Cij'z_j cji)
N2_Zi(zj CU'ZJ cji)
are the entries of the confusion matrix and IV is the number of pixels.
Consider an image with 10% pixels of class A and 90% pixels of class
B. A classifier which always returns B will have 90% overall accuracy,

but k = 0%.

2Formally, x = , where the c;;
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VAIHINGEN

WORLDVIEW-2

Figure 3: Original optical images used for evaluation

Dataset 15x15 Augmented WINN Quasi-exhaustive
Ov K Ov K Ov K Ov K
With nDSM
GRAZ 774% 0.66 | 78.7% 0.68 | 77.4% 0.65 | 80.0% 0.69
VAIHINGEN 823% 0.76 | 83.4% 0.77 | 82.9% 0.76 | 83.6% 0.77
WORLDVIEW-2 | 77.2% 0.69 | 787% 0.71 | 76.1% 0.68 | 78.7% 0.71
Without nDSM

KLOTEN 76.7% 0.67 | 82.5% 0.75 | 789% 0.70 | 82.9% 0.76
GRAZ 723% 0.57 | 74.6% 0.60 | 70.2% 0.53 | 70.9% 0.55
VAIHINGEN 729% 0.63 | 75.0% 0.65 | 742% 0.64 | 76.2% 0.67
WORLDVIEW-2 | 73.5% 0.64 | 75.0% 0.66 | 71.0% 0.61 | 75.3% 0.67

Table 1: Overall classification accuracies and kappa index for all four datasets and four feature sets

a suitable subset based on the statistics of the training data. To
efficiently compute such a large comprehensive texture feature
set we propose to resort to integral images, which allow one to
evaluate block filters of arbitrary size in constant time, and in this
way approximate smoothing and derivative filters.

In future work we plan to investigate in depth which features from
our huge candidate set are actually picked by the classifier for
different data sets. Moreover, the sizes of the box filters are cur-
rently pre-defined and their layout is fixed to a regular grid prior
to extracting the quasi-exhaustive features. It would be interest-
ing to test whether the performance can be further improved by
randomly choosing patterns and box sizes, as is often done for
object detection tasks, e.g. (Dollar et al., 2009).
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