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ABSTRACT:

In this paper we present a robust orientation approach for an imaging sensor flown on a micro-UAV based on image triplets. Our aim
is to have the orientation available online, i.e. during image acquisition. The resulting point cloud and sensor orientations can then
for instance be evaluated for navigation purposes of the UAV or to analyse the completeness of the point cloud. We use low quality
imagery extracted from the downlink of an onboard PAL-camera. Trilinear constraints and cross-checked matches allow for a high
robustness of the sensor orientation and the sparse 3D point cloud. In order to reach the goal of on-line processing given the large
number of observations and unknowns, we make use of an incremental bundle adjustment. Estimated parameters are incrementally
improved without explicitly considering previous observations.
Our approach combines linear projective geometry for obtaining initial values using the trifocal tensor with non-linear perspective
geometry for the estimation of the unknowns. This combination allows for a high precision of the estimation, while eliminating the need
for initial values. We evaluate the performance of our approach by means of imagery we acquired of the facade of the Welfenschloss in
Hannover, collected with a Microdrones md4-200 micro-UAV. The results are the orientation parameters of the images and a sparse 3D
point cloud representing the object. They are compared to those from a commercial bundle adjustment software and analysed in terms
of geometric precision.

1 INTRODUCTION

Unmanned Aerial Vehicles (UAV) provide a flexible instrument
for many tasks in photogrammetry. Especially vertical take-off
and landing (VTOL) devices are able to capture images of com-
plex three dimensional objects such as buildings. The use of the
resulting 3D-models and their level of detail are diverse. Gen-
eralised models are interesting for planning and visualisation,
whereas for cultural heritage and architectural purposes a more
detailed model is usually required. Sometimes, the structure and
the complexity of the object of interest are not known in advance.
As an example, a building may be composed of courtyards or ter-
races, which may be unknown prior to data acquisition. If in such
cases the initial flight path is not adequately refined on-the-fly
once the additional detail becomes apparent during data acquisi-
tion, the result will be incomplete. In order not to miss relevant
information about the object, an on-line adaptation of the flight
path is required.

In this paper we present an approach that offers the possibility to
evaluate the collected data on-line in terms of its usability for 3D
modelling following the idea presented in (Hoppe et al., 2012).
Based on low-resolution imagery which is transmitted from an
on-board PAL-camera on the UAV, the sensor orientation, i.e.
the camera position in space and its viewing direction, and a
sparse point cloud are estimated by incremental bundle adjust-
ment. Overlapping image triplets are used for robust keypoint
matching and for determining initial values for the unknowns.
The initial values of the unknown orientations for the first im-
age triplet are obtained from the trifocal tensor, determined from
triples of homologous points. Subsequent images are then ap-
pended to the oriented images via spatial resection.

The remainder of the paper is structured as follows. After sum-
marising related work in section 2, we describe the hardware
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and the way images are acquired in section 3. In section 4, our
methodology is presented. Based on the implementation of the
presented methods, we show results for a UAV-based dataset in
section 5. Section 6 concludes this paper and gives a short out-
look of our future work.

2 RELATED WORK

A comprehensive overview of projective geometry and the trifo-
cal tensor is given in (Hartley and Zisserman, 2000). In (Ressl,
2000), the trifocal tensor is analysed more specifically in terms of
its usability in photogrammetry. Strategies as well as fundamen-
tal theorems of bundle adjustment are extensively summarised in
(Triggs et al., 2000). A detailed derivation of the incremental
bundle adjustment is given in (Beder and Steffen, 2008). An-
other example of incremental orientation of monocular image
sequences is given in (Meidow, 2012). The focus in that work
lies on loop closure which has a significant positive effect on
the estimation of the model parameters. The functional model in
(Meidow, 2012) is based on homographies instead of collinearity
equations and aims at stitching aerial images.

The idea of using image triplets in image sequences can be found
in (Nistér, 2000). In contrast to our approach a hierarchy of triplet
combinations represented by trifocal tensors over the whole se-
quence of images is used. Triplets for the orientation of large im-
age datasets are also employed in (Bartelsen et al., 2012). How-
ever, instead of using the trifocal tensor, the relative orientation is
represented by three combinations of image pairs. Also, the im-
ages of these datasets are unordered and come with a long base-
line, which leads to a more complex orientation problem. Other
implementations of on-line orientation, e.g. (Klein and Murray,
2009), and on-line dense reconstruction, e.g. (Wendel et al., 2012),
are based on projective geometry alone and work with a combi-
nation of a local bundle adjustment with a global one. The local
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bundle adjustment is basically required to keep track of the orien-
tation parameters between key frames for which the global adjust-
ment is carried out to obtain a more stable overall solution. No
incremental adjustment in the sense of (Beder and Steffen, 2008)
is carried out. Incremental bundle adjustment taking into account
points at infinity is carried out in (Schneider et al., 2013). They
use it for the orientation of UAV-based fisheye cameras, using the
software presented in (Kaess et al., 2008) for optimisation.

We combine linear projective geometry for obtaining initial val-
ues with a functional model based on the collinearity equations
for incremental bundle adjustment. In doing so, we avoid the ef-
fects of over-parametrisation, and we are able to integrate infor-
mation about the interior orientation of the camera in a straight-
forward way. We use image triplets in order to improve the ro-
bustness of matching by only accepting pairwise keypoint matches
that are consistent within all pairs that can be formed from the im-
ages of a triplet.

3 HARDWARE AND DATA HANDLING

As a platform we use a Microdrones md4-200 micro-UAV1, a
VTOL-quadrocopter with a maximum payload of 300 grams. The
potential flight duration is up to 25 minutes with one battery de-
pending on the take-off-weight. The sensor we use for our inves-
tigations is a PAL camera with a resolution of 720 by 576 pix-
els. The UAV can transmit the analogue video signal on-line to a
ground station unit in interlaced mode. In a frame grabber in the
ground station the analogue signal is converted to digital images.
The quality of the transmitted imagery is highly affected by the
motion of the UAV and by disturbances during data transmission.
The platform movement manifests itself in blurred images, which
are automatically excluded from further computations based on a
certain minimum number of image matches (see below). Images
with disturbances caused by transmission errors are not yet ex-
cluded automatically.

4 METHOD

In this section we describe the mathematical approach to deter-
mine the orientation parameters and 3D structure information from
the images. We assume the interior orientation parameters of
the camera, including parameters related to lens distortion, to be
known. The images are processed in the order in which they are
acquired by the sensor. For the sake of robustness we use image
triplets (Bartelsen et al., 2012), (Nistér, 2000) for matching and
orientation.

We start the computation as soon as three images are available.
SIFT features (Lowe, 2004) are extracted from each of these im-
ages, and consistent three-way correspondences between features
from the three images are determined. For the first image triplet,
we compute the trifocal tensor to obtain initial values for relative
orientation (Hartley and Zisserman, 2000), (Ressl, 2000), which
we use as an input for non-linear bundle adjustment to obtain
the optimal estimate of the orientation parameters and the object
coordinates of the tie points. The procedure applied for the ori-
entation of the first image triplet is explained in section 4.1.

Starting from the fourth image in the sequence, we use a different
procedure, because at this stage, object coordinates of tie points
are already known from the images oriented previously. When-
ever a new image is received, we extract SIFT features and form
a triple consisting of the new image and the two images that were

1http://www.microdrones.com/

most recently oriented. Three-way correspondences are again
used to obtain consistent feature matches over three views. Fea-
tures in the new image assigned to features for which object co-
ordinates were already determined in the course of orienting the
previous images in the sequence are used as quasi-control points
to compute initial values of the exterior orientation parameters of
the new image by spatial resection. After that, initial values for
the object coordinates of tie points only available in the current
image triple are determined by spatial intersection. Finally, an
incremental bundle adjustment is carried out to improve the ori-
entation parameters and the object coordinates. This procedure,
including incremental bundle adjustment, is described in detail in
section 4.2.

4.1 Image Triplets and Trifocal Tensor

The first image pair is used to define the object coordinate system
of the entire block. The origin of the object coordinate system
is located in the projection centre of the first image. Its X and
Y axes are parallel to the axes of the image coordinate system,
whereas the Z axis is defined to coincide with the negative view-
ing direction. The scale of the coordinate system is fixed by the
base length between the first and the second images, which is set
equal to one.

Matching image triplets allows for an effective cross-check of the
matching points. We first carry out a pair-wise matching of key-
points based on SIFT-descriptors and then check for consistency
of the pair-wise matches over three views. If point pI in image
II matches point pII in the second and point pIII in the third
image, pII and pIII must also be a pair-wise match for the triple
[pI , pII , pIII ] to fulfil the cross-check constraint. Especially for
repetitive structures, which often arise in facade modeling, this
constraint reduces the number of wrong matches. Then, we es-
timate the trifocal tensor based on three-point correspondences
[pI , pII , pIII ], using the following constraints (Hartley and Zis-
serman, 2000, Chapter 15):

pI,i
(
pII,jεjpr

)(
pIII,kεkqs

)
T pq

i = 0rs. (1)

In Eq. 1, the indices i, j and k refer to the homologous points
triple in homogeneous coordinates, thus i, j, k = 1, . . . , 3, whereas
p, q = 1, . . . , 3 are the indices of the elements of the three matri-
ces Ti of which the trifocal tensor is composed. εjpr is a tensor
whose entries are either 0, +1 or −1 and which is closely con-
nected to the cross-product of two vectors; cf. (Hartley and Zis-
serman, 2000, Appendix 1.1) for details. The values for r and s
are restricted to be 1 or 2, because for each three-point correspon-
dence only four of the arising equations are linearly independent.
The trifocal tensor can be uniquely determined based on the con-
straints in Eq. 1 if seven three-point correspondences are known.
In order to cope with outliers in the three-point correspondences,
we apply RANSAC (Fischler and Bolles, 1981) for estimating the
trifocal tensor. For each RANSAC iteration, we randomly select
seven point correspondences and use them to estimate the trifocal
tensor. For the validation of each tensor estimate we perform a
point transfer to the third image using the fundamental matrix of
the first two images F21 retrieved from the tensor (Hartley and
Zisserman, 2000, Chapter 15):

p̂III,k = pI,igII
j T jk

i (2)

with gII ⊥ gII
e = F21p

II .

In Eq. 2, gII
j denotes the jth element of line gII passing through

pII and being perpendicular to the epipolar line gII
e , and p̂III is
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the point corresponding to pI and pII in the third view. Whether
or not a triple [pI , pII , pIII ] is an inlier given the current estimate
for the trifocal tensor is decided on the basis of the Euclidean
distance between the estimated and the measured points, p̂III and
pIII . This distance must be below a certain threshold for the
triple to be accepted as an inlier.

Once a valid trifocal tensor is found, we compute initial values
for a relative orientation of the first image triplet on the basis of
the fundamental matrices derived from the trifocal tensor (Hart-
ley and Zisserman, 2000) and the camera calibration data. Then,
we perform a robust bundle adjustment based on the nonlinear
collinearity equations formulated in a Gauss-Markov model. Ob-
servations are weighted depending on their residuals, allowing
outliers to be detected and excluded from the estimation (Kraus,
1997). The results of the initial bundle adjustment form the ba-
sis on which subsequent images are oriented in the incremental
bundle adjustment.

4.2 Incremental Bundle Adjustment

The trifocal tensor is only applied to the first image triplet to ini-
tialize the block. Subsequent images are appended to the existing
block via resection and incremental bundle adjustment. In the
remainder of this section we will refer to images whose orienta-
tion parameters have already been estimated as oriented images,
and the tie points determined in this process will be called exist-
ing points, as opposed to the new image for which no orientation
parameters are known and to new points for which we do not
yet know object coordinates. Again, we form an image triplet,
using the new image and the two oriented images added to the
block most recently. We extract SIFT features from the new im-
age. Then we search for consistent point triples [pI , pII , pIII ]
for which the correspondence [pI , pII ] was already validated in a
previous stage (i.e., part of a three-way correspondence using the
previous image triple) and, thus, corresponds to an existing point
for which object coordinates are already known. The existing
points can be used as quasi-ground control for spatial resection
in order to obtain initial values for the orientation parameters of
the new image. Again, we apply RANSAC, this time based on
the four-point algorithm for spatial resection described in (Kraus,
1997), which does not require any initial values.

Having obtained initial values for the orientation parameters of
the new image in the way just described, we search for new points
to stabilise the estimation of the orientation parameters of the new
image. In order to do so, we again perform three-way matching
in the way described in section 4.1, but discarding any SIFT fea-
tures in any of the three images that already has been validated
to correspond to an existing point. In this case, because initial
values for the orientation parameters are known for all images of
the triple, the matches are not verified on the basis of the trifocal
tensor, but by pairwise reprojection. First, initial values for the
object coordinates of each new point are estimated for each pair
of images [II , III ], [II , IIII ] and [III , IIII ] via spatial intersec-
tion. In a second step the mean of these three estimates is pro-
jected into each image. The match is classified as an inlier if the
Euclidean distance between the reprojection of the mean object
points and the observed points is below a user-defined threshold
in all three images.

If the number of triple correspondences is lower than a user-
defined threshold, the new image is rejected and the orientation
procedure moves on to the next image in the sequence. In this
way images that are affected by extreme movement of the UAV
or are deficient in image quality, are excluded from the processing
chain automatically.

If a sufficient number of correspondences is found, we carry out
an incremental bundle adjustment. For that purpose, the vector of
unknowns is split into two components. The first component is a
vector x1 containing the unknown exterior orientation parameters
of the images that have already been included into bundle adjust-
ment and the object coordinates of the existing points, whereas
the second component is a vector x2 that contains the orientation
parameters of the new image and the object coordinates of the
new points, the latter ones expanding the point cloud determined
by bundle adjustment. For the first group of unknowns we do
have the results of the previous bundle adjustment which can be
used as initial values, whereas for the second group of unknowns,
the initial values have been derived in the way just described.
Similarly, we split the vector of observations into a component l1
containing all the observations that were already used in previous
adjustments and a component l2 that contains the new observa-
tions that were derived in the matching procedure for the current
image triple. There are three different groups of new observations
in l2:

1. image points observed in the oriented images that corre-
spond to new object points (in x2) but are also related to
the orientation parameters in x1

2. image points observed in the new image that correspond to
existing object points (in x1), but are related to the orienta-
tion parameters of the new image in x2

3. image points observed in the new image that correspond to
new object points (in x2) that are also related to the orienta-
tion parameters of the new image in x2.

After linearisation, we formulate an extended Gauss-Markov model:(
l1 + v1
l2 + v2

)
=

(
A11 0
A21 A22

)(
x1

x2

)
. (3)

The first line of Eq. 3 represents the standard Gauss-Markov model
for an adjustment solely based on l1 for determining x1. As
pointed out above, the new observations l2 depend on the un-
known parameters both in x1 and in x2. The relation between
l2 and the parameters x1 and x2 is described by the second line
in Eq. 3. The design matrix A21 contains the derivatives of the
collinearity equations with respect to the parameters x1, whereas
A22 contains the derivatives of the collinearity equations with re-
spect to the new parameters x2. It is the goal of incremental bun-
dle adjustment to solve Eq. 3 for the unknown parameters x2 us-
ing the inverted normal equation matrix of the previous iteration.
Following (Beder and Steffen, 2008), we want to use the new ob-
servations to improve the old parameters x1 and update them to
a new parameter vector x̂1,+. The estimation of both groups of
parameters reads as:(

x̂1,+

x̂2

)
= N−1

+

(
AT

11P11l1 +AT
21P22l2

AT
22P22l2

)
, (4)

where P11 and P22 are the weight matrices derived from the in-
verse covariance matrices of l1 and l2, respectively. The normal
equation matrix N+ for the incremental bundle adjustment can
be decomposed into three submatrices B, C and D:

N+ =

(
B C
CT D

)
(5)
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with

B = AT
11P11A11 +AT

21P22A21 (6)

C = AT
21P22A22 (7)

D = AT
22P22A22. (8)

The inversion of N+ can be performed as

N−1
+ =

(
B C
CT D

)−1

=

(
K L
LT M

)
(9)

with

M =
(
D − CTB−1C

)−1

(10)

LT = −MCTB−1 (11)

K =
(
I +B−1CMCT

)
B−1. (12)

As one part ofB is the normal equation matrixN of the previous
bundle adjustment (Eq. 6), which has been inverted before the
new image was added, the inversion of B can be computed as

B−1 = FN−1 (13)

F = I −N−1AT
21GA21 (14)

G =
(
P−1

22 +A21N
−1AT

21

)−1

. (15)

Substituting Eq. 9 into Eq. 4 and applying the matrix-vector prod-
ucts yields:

x̂1,+ = K
(
AT

11P11l1 +AT
21P22l2

)
+ LAT

22P22l2 (16)

x̂2 = LT
(
AT

11P11l1 +AT
21P22l2

)
+MAT

22P22l2. (17)

Substituting K from Eq. 12 and LT from Eq. 11 into Eqs. 16 and
17 and considering the fact that the parameters estimated in the
previous adjustment are

x̂1 = N−1AT
11P11l1 (18)

results in an update equation for the old parameters (x̂1,+) and an
estimate for the new parameters (x̂2) that no longer depends on
the old observation vector l1, but only on the previously estimated
parameters x̂1 and the new observations l2:

x̂1,+ =
(
I +B−1CMCT

)
F
(
x̂1 +N−1AT

21P22l2
)

(19)

−B−1CMAT
22P22l2

x̂2 =−MCTF
(
x̂1 −N−1AT

21P22l2
)

+MAT
22P22l2.

(20)

The estimation of the parameters (Eqs. 5-20) is iterated until con-
vergence. To assure robustness of the adjustment the observations
are weighted as described in section 4.1. The main advantage
of incremental bundle adjustment is a reduction of computation
time. There is no need to invert the normal equation matrix N+

in Eq. 4, which becomes larger whenever a new image is added
to the block. Instead, only the matrices M and G have to be in-
verted (Eqs. 10 and 15), whose size is equal to the number of
the new unknowns x2 (u2 × u2) and the number of new obser-
vations l2 (n2 × n2), respectively. Assuming the number of new
points added with each new image and, consequently, u2 and n2

to be approximately constant, so are the sizes of M and G. Fur-
thermore, neither the design matrix A11 nor the observations l1

and the corresponding weight matrices P11 of the previous iter-
ation are needed for the estimation. Once the incremental bun-
dle adjustment is terminated for the current image triplet, the in-
verse N−1

+ becomes N−1 when the next image is added to the
sequence, whereas x̂1,+ and x̂2 are combined to parameter vec-
tor x̂1.

Although the size of the matrices M and G, which have to be
inverted, remains constant, N−1 and x̂1 become larger with ev-
ery newly added image, which still slows down the adjustment.
After a certain number of oriented image triplets, older ones are
excluded from the incremental adjustment in favour of new in-
coming images.

5 RESULTS

In this section we present the results of our algorithm obtained for
the orientation of an image sequence showing the facade of the
Welfenschloss in Hannover. As described in section 3, the quality
of the imagery in terms of resolution and sharpness is relatively
poor. Before the flight we stored images of a calibration pattern
for the estimation of an accurate interior orientation. The cam-
era was calibrated based on the calibration tool of the OpenCV
library2 using a distortion model with three parameters for the ra-
dial and two parameters for the tangential distortion (Laganière,
2011). We assumed the geometry of the camera and, thus, the
calibrated values of the interior orientation and the distortion pa-
rameters, to be constant during the flight and thus assigned these
parameter values to all the collected images. Altogether, we col-
lected about 100 images of the facade. Most of them were re-
jected because they were affected by disturbances due to trans-
mission errors. Finally, we applied our algorithm to a sequence
consisting of 20 images. The minimum number of matches for
an image to be accepted for incremental bundle adjustment was
set to 20.

For key point detection as well as for their descriptors we used
SIFT features with three octave layers (Lowe, 2004). The de-
tected key points were matched in the way described in section
4.1. Performing the estimation of the trifocal tensor with a point
transfer threshold of five pixels resulted in a nearly blunder-free
matching result (cf. figure 1, where the accepted matches are
shown in green, the ones rejected by the validation of the tensor
are shown in red). The facade has a rather repetitive structure, and
though the majority of the matches seems to be correct, which in
the figure is indicated by more or less parallel lines, there exists
a considerable amount of blunders. The accepted matches pro-
vide an excellent basis for the estimation of initial values for the
orientation of the triplet and the object points.

To give a visual quality analysis of our results we also determined
the orientation parameters and the object coordinates of the tie
points by a bundle adjustment using the software PhotoModeler3.
We used identical observations and the same definition of the ob-
ject coordinate system. However, PhotoModeler excluded some
of the observations, either because they were assumed to be blun-
ders or because they did not fulfil specific constraints, e.g. a mini-
mum intersection angle in object space. The PhotoModeler result
is considered as the reference solution in this paper. Figures 2(a)
and 2(b) show the resulting point clouds generated by our algo-
rithm after orienting the first 10 and all of the 20 images of our
sequence, respectively. The point colours indicate their distances
to the model points computed by PhotoModeler. The distance is
given in a metric scale which we determined by evaluating the

2http://opencv.willowgarage.com/wiki/
3http://www.photomodeler.com/
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Figure 1: Triplet matching results after refinement by the trifocal
tensor. Accepted matches are shown in green, rejected matches
are shown in red colour.

GPS-positions of the UAV during image acquisition. In figure
2(a) one can see that after ten images the structure of the facade
is reconstructed rather well by the point cloud generated by our
method. The front of the turret on the left side as well as some
points on the ground in front of the building were rejected by Pho-
toModeler, which is the reason why for these points the distance
to the nearest point in the model generated by PhotoModeler is
rather large. After 20 oriented images our result becomes noisier
(figure 2(b)). Especially on the right side of the central turret the
facade plane is rotated probably due to a drift of the orientation.

Figure 3 indicates the images each object point is visible in. One
can see that there are points that are measured in up to eleven im-
ages. The higher the number of views per point, the more stable
the solution is. The fact that points are observed in more than
three images means that the precision of the estimated object co-
ordinates should increase whenever a new image with observa-
tions for the respective point is included. We analysed the co-
variance matrix Σx̂x̂ of the estimated parameters. As we use the
variance factor σ0 = 1, the covariance matrix of the estimated
unknowns Σx̂x̂ equals N−1

+ (Eq. 9). The blue curve in figure 4
shows the trace of the part of Σx̂x̂ corresponding to the first 161
estimated object points. In green one can see the trace of the part
of Σx̂x̂ corresponding to the exterior orientation parameters of the
first two images. The more images are introduced into the bundle
adjustment the higher is the overall precision of the estimated pa-
rameters. Figure 4 also illustrates the improvement of the already
estimated parameters in subsequent iterations (eq. 19). The mean
point precision is approximately 6−7 cm inX- and Y - direction
(approximately main plane of the facade) and about 25 − 28 cm
in Z- direction (orthogonal to the facade). Given the block con-
figuration (focal lenght c ≈ 600 pixel, distance between facade
and projection centres about 50 m, base-height ratio between the
extreme images of a triple 1:10), this corresponds to a precision
of about 1 pixel in planimetry and 1/3 pixel in depth. We also
cross-checked the relative distances between the projection cen-
tres of the first triplet derived by combined bundle adjustment
using PhotoModeler with the distances estimated by our method.
The variations are below 5 % of the estimated base length.

The computation time highly depends on the number of newly
found object points. During the orientation of the 20 images
shown in figure 2(b) the mean computation time for one triplet
was about four seconds on a current desktop computer in a non-
optimised implementation. In our experience this is an adequate
time for the orientation of images acquired by a VTOL-quadro-

(a)
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0 [m]

20m

(b)

Figure 2: Vertical view of the resulting point cloud after orienting
10 images (a) and after orienting 20 images (b) using our algo-
rithm. The positions of the image planes are represented by the
green parallelograms in (b). Variations in size are caused by dif-
ferent viewing angles. Note that some camera stations only differ
in height, so that the respective parallelograms are superimposed
in (b). The point colours encode their point-to-point distances to
the model computed using PhotoModeler.
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Figure 3: Indices of the images in the sequence in which each
object point was visible.

copter to provide a visual on-line check of the completeness of
the data acquisition as long as the velocity is low (in case of ob-
serving buildings normally the UAV is navigated manually with
a velocity of about one meter per second).

6 CONCLUSIONS AND FUTURE WORK

In this paper we have presented an approach for an on-line ori-
entation of a micro-UAV based on low resolution imagery. We
were able to show that a low quality image sequence transmit-
ted by a PAL-camera mounted on the UAV can be oriented using
our algorithm, obtaining exterior orientations of the images and
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Figure 4: Trace criterion of the covariance matrix Σx̂x̂ of the
first 161 estimated object coordinates (blue) and of the exterior
orientation parameters of the first two images (green) over five
subsequent epochs of incremental bundle adjustment.

a sparse point cloud. Furthermore, the computation time is kept
nearly constant and short using an incremental bundle adjustment
allowing for a determination of the orientation parameters and the
point cloud in near-real-time.

A possible use for the on-line orientation is to visually discover
gaps in the sparse point cloud during the flight to avoid missing
data. In figure 2(a) and 2(b) one can see that the vertical wall of
the right turret is not represented sufficiently in the model. The
orientations of the images shown in figure 2(b) reveal that this
part of the facade is not directly observed by an adequate number
of the oriented images. Hence for a complete model of the whole
facade the flight plan would have to be refined, which could be
done on-the-fly if the point cloud were inspected on-line by the
operator.

However, our implementation also reveals several limitations. First-
ly, the more images are iteratively added, the more unstable the
solution becomes. We will approach this effect in future work
by loop closure, following a strategy similar to (Meidow, 2012).
Secondly, an absolute orientation of the resulting model is cur-
rently only possible in post-processing. To overcome this defi-
ciency, we want to integrate telemetry data (containing GPS and
IMU information) provided on-line by the downlink of the UAV
in the bundle adjustment. Thirdly, the quality of the imagery and
hence of the result of our algorithm is dependent on the trans-
mission quality. On the one hand we we will investigate ways to
exclude defective imagery automatically, e.g. based on an anal-
ysis of the variance of the grey values. On the other hand, as
the transmission defects are to a large degree a consequence of
our hardware setup, we will try to avoid them altogether by us-
ing other transmission methods e.g. wireless local area network.
Finally, once the incremental orientation has lost track, for in-
stance due to severe wind, it may become necessary to navigate
the UAV back to the last position successfully processed in order
to generate new overlapping imagery. We want to automatically
detect such situations in order to then be able to use autonomous
way-point navigation to bring the UAV back on track.

For a further analysis of our results we plan to create a reference
model of a distinct object in which the coordinate system is based
on terrestrially measured ground control points. With this refer-
ence model we hope to be able to validate our approach also in
terms of reliability and geometrical quality beyond a comparison
of our results with those achieved by a commercial software.
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