
SELF-LOCALIZATION OF A MULTI-FISHEYE CAMERA BASED AUGMENTED
REALITY SYSTEM IN TEXTURELESS 3D BUILDING MODELS

S. Urban, J. Leitloff, S. Wursthorn and S. Hinz

Institute of Photogrammetry and Remote Sensing (IPF),
Karlsruhe Institute of Technology (KIT)

Englerstr. 7, D-76137 Karlsruhe, Germany
(steffen.urban, jens.leitloff, sven.wursthorn, stefan.hinz)@kit.edu

http://www.ipf.kit.edu

Commission III WG III/3

KEY WORDS: computer vision, fisheye camera, real-time object detection, model-based tracking, augmented reality

ABSTRACT:

Georeferenced images help planners to compare and document the progress of underground construction sites. As underground posi-
tioning can not rely on GPS/GNSS, we introduce a solely vision based localization method, that makes use of a textureless 3D CAD
model of the construction site. In our analysis-by-synthesis approach, depth and normal fisheye images are rendered from presampled
positions and gradient orientations are extracted to build a high dimensional synthetic feature space. Acquired camera images are
then matched to those features by using a robust distance metric and fast nearest neighbor search. In this manner, initial poses can be
obtained on a laptop in real-time using concurrent processing and the graphics processing unit.

1 INTRODUCTION

This paper describes a multi fisheye camera system to support
localization of a mobile augmented reality (AR) client on sub-
way construction sites. It is part of the work of a joint research
group on computer-aided collaborative subway track planning in
multi-scale 3D city and building models. It addresses the chal-
lenges of integrating the collaborative planning effort within a
synchronous software workflow for seamlessly modeling, man-
aging and analyzing both CAD and GIS based 3D models (Bre-
unig et al., 2011). A mobile client is supposed to support the
planning process by augmenting camera images with 3D models
of distinct construction stages on-site. Consequently, the camera
snapshots need to be localized and orientated within the spatial
context of the 3D model. The overlay of projected 3D data on
these camera snapshots is supposed to help planers to compare
planning stages with the actual status (Breunig et al., 2012).

The interior orientation of three cameras with fixed focus fisheye
lenses is determined in a calibration step and is considered con-
stant for all images grabbed with a particular camera. The six
degrees of freedom of the exterior camera orientation need to be
determined with every new image. A major challenge is the lack
of GNSS signals at subway construction sites, which would ease
getting at least an initial position and some stabilization points
that are needed for a continuous tracking. The process of deter-
mining the six degrees of freedom of the camera’s exterior ori-
entation within the given 3D model with feature correspondences
extracted both from the images and the untextured 3D models
alone is the purpose of our sub-project within the research group.

We do not use depth images from stereo or range imaging de-
vices due to their limited range and field of view (Weinmann et
al., 2011). Cameras do easily fit on a building-site helmet in con-
trast to e.q. laser scanning devices. In this paper we will concen-
trate on the initialization step of our designated tracking process.
We use gradient orientations, extracted from rendered images of
the 3D model and compare these to gradient orientations in the
real camera images by using a robust distance metric, to find the
camera pose in the model.

1.1 Previous Research

The fact, that only an unknown fraction of the building model
will be visible on the camera images is challenging and has rarely
been addressed in other publications on model based tracking. In
(David et al., 2003, David et al., 2004, Wuest et al., 2005) edge
based methods compare 3D model edges projected into the im-
age with regions that have high image gradients. (Drummond and
Cipolla, 2002) project 3D points that lie on model edges onto the
image plane and minimize distances to the nearest edges in the
image. The matched 3D-2D point correspondences are used to
solve the registration of the image within the 3D model. The sys-
tem is supposed to operate in real-time, but a good initial registra-
tion is needed in order to minimize the distances. (Behringer et
al., 2002), (Reitmayr and Drummond, 2006) and (Simon, 2011)
need additional sensors for position (GPS) and orientation to ini-
tialize their tracking systems in large outdoor environments.
(Wuest et al., 2007) propose the use of an inertial measurement
unit in the future for initialization.

(Ulrich et al., 2009) use offline training of various possible ob-
ject poses to achieve an image based initialization. (Ottlik and
Nagel, 2007) show automatic initialization in the domain of ve-
hicle tracking in traffic videos. Both implementations are robust
against occlusions but the models are supposed to completely fit
into the images.

In the remainder of this paper the multi fisheye camera system is
introduced first as well as the calibration of the camera and the
system. Afterwards the self-localization method is shown and
each step in the process is detailed. Subsequently a test on sim-
ulated data is carried out, to adjust parameters that are crucial to
the initialization and to evaluate pose estimates. Finally we give
a conclusion and describe our future work.

2 CAMERA SYSTEM

The camera system consists of three synchronously triggered cam-
eras, equipped with equal fisheye lenses with a FOV of ∼ 190◦.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W2, 2013
ISA13 - The ISPRS Workshop on Image Sequence Analysis 2013, 11 November 2013, Antalya, Turkey

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 43

Fisheye cameras are often superior to narrow angle perspective
cameras in tracking tasks (Svoboda, 1998, Micušık and Pajdla,
2006). Features stay longer in the field-of-view during camera
movement, partially occluded model parts occur only in small
image regions and pose estimation is often better conditioned. To
further improve the quality, stabilize the pose estimation and pro-
vide a maximum number of visible features, three fisheye cam-
eras are used. The horizontal angle between each principal axis
averages 120◦, creating a 360◦ panoramic view of the environ-
ment. This particular camera arrangement was chosen to allow
a robust localization even if one or two cameras fail to maintain
their pose estimate, which could happen on construction sites.
(Fig. 1).

Figure 1: System configuration of the three fisheye cameras.

2.1 Fisheye Camera Model and Calibration

Camera calibration is essential to many vision tasks. The result
is a mapping function that describes the relation between a pixel
on the image plane to its corresponding 3D ray. In an analysis-
by-synthesis tracking approach, the calibration is crucial to the
rendering step, as the virtual camera needs to fulfill the same
mapping functions as the real camera. The calibration of a fish-
eye camera differs from perspective camera calibration, because
camera models need to allow for incident angles greater 90◦. In
recent years, different models and calibration methods for fish-
eye cameras have been published (Scaramuzza et al., 2006, Mei
and Rives, 2007, Micušık, 2004). A comprehensive overview is
given in (Puig et al., 2012). We chose the unified taylor model in-
troduced by (Scaramuzza et al., 2006). The following section de-
tails parts of the model that are important for the rendering (Sec.
3.2). Let P = (X,Y, Z)T be a point in world coordinates. Then
the function f(u, v), that maps the 2D image point p = (u, v)T

to P , i.e. the forward-projection, is calibrated:

P =

XY
Z

 =

 u
v

f(u, v)

 (1)

The fisheye lens is assumed to be rotational symmetric thus the
polynomial can be written as:

f(ρ) = a0 + a2ρ
2 + ...+ anρ

n (2)

with

ρ =
√
u2 + v2 (3)

We chose a polynomial degree of n = 4 in this paper, which
gave the best calibration results. During rendering, the mapping
function of a 3D object point onto the image plane is needed. This
back-projection is modeled by the inverse of f(ρ):

d = f−1(Θ) (4)

where d is the distance of a back projected point from the image
center and

Θ = arctan
(

Z2

X2+Y 2

)
(5)

is the incident angle to the principal axis. Thus temporary image
coordinates can be calculated:

[
u
v

]
=

 X f−1(Θ)√
(X2+Y 2)

Y f−1(Θ)√
(X2+Y 2)

 (6)

Then a affine mapping is applied to compensate for small dis-
tortions, non-square pixels and misalignments between lens and
image plane axis. Finally the image coordinates are related to the
upper left image corner by adding the coordinates of the principal
point: [

u′

v′

]
=

[
c d
e 1

]
·
[
u
v

]
+

[
xc

yc

]
(7)

with principal point xc, yc and affine parameters c, d, e.

2.2 System Calibration

After determination of each cameras intrinsic parameters, the mul-
tiple fisheye camera configuration can be examined. In order to
fully exploit the configuration, relative poses between each cam-
era are necessary. In this way, the systems exterior orientation
can be maintained, even if two cameras fail to estimate their
pose. As each camera points in a different direction, a calibra-
tion object that is only visible in one camera at a time, like a cal-
ibration pattern, is unusable. Hence we directly made use of the
3D building model in which the system is moving (for a descrip-
tion of the model see section 4). A trajectory was recorded and
synchronous keyframes from this trajectory were selected. Then
2D image features and their corresponding 3D coordinates in the
model were manually extracted. Next, the exterior orientation for
each keyframe and each camera was estimated from these 2D-3D
correspondences. The relative poses were then extracted from a
series of exterior orientations for each camera.

3 SELF-LOCALIZATION

The system is supposed to estimate its initial position without hu-
man intervention. This process is detailed in Figure 2. It can
be divided into two parts, i.e. online and offline phase. During
the offline phase, the system creates virtual camera poses, renders
synthetic views of the model and extracts features from them.
These features are then clustered and saved. In the online phase
the cameras acquire images and extract feature vectors from them
likewise. These features are then matched to the synthetic fea-
tures for each frame and each camera with a particular metric. If
the metric exceeds a certain threshold the virtual camera pose is
assigned to the real camera and the system has localized itself in
the model. The following sections detail each consecutive step
shown in Figure 2.

3.1 Position Sampling

At first glance the camera pose in the 3D model seems to be en-
tirely random. This would require a huge amount of pre-sampled
positions and hence to many feature vectors to process. But since
the system is supposed to be head mounted, some constraints can
be applied.

A sampled position is expressed in spherical coordinates. The
origin of the sphere is at position X,Y, Z in model coordinates

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W2, 2013
ISA13 - The ISPRS Workshop on Image Sequence Analysis 2013, 11 November 2013, Antalya, Turkey

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 44

Figure 2: Flow-chart of the self-localization process.

and the view direction is expressed by a polar (or yaw) angle φ
and a azimuth (or pitch) angle θ. Now assumptions about the
range of values can be made. For instance, the operator tilts his
head in a narrow range which constrains the pitch angle θ. In this
work θ is set to [−20◦, 20◦] from the horizon and is sampled in
10◦ steps. The yaw angle is free from [0, 360◦] and is sampled in
10◦ steps in this example. The horizontal sampling is a parameter
that can be optimized, though, because of the similarity of adja-
cent views (Fig. 3). Further the operators body height is known

(a) view onto x-y plane (b) view onto y-z plane

Figure 3: (a) Camera view directions in the x-y plane. Depicted
is the sampling of the polar angle. (b) Camera view directions
in the y-z plane. Depicted is the sampling of the azimuth angle.
This covers approx. the range an operator would tilt his head.

and thus theZ component can be set accordingly. This still leaves
the X and Y component free. To further reduce the number of
presampled positions, X and Y are sampled in a rectangular grid
at levelZ (Fig. 4). The spacing between each position determines
the density of the position sampling. We chose a grid density of
0.5 m for this work. Sampling the view sphere also prevents from
presampling positions for each camera separately since the dis-
tance from each camera to the origin is small w.r.t the density of
the grid.

3.2 Rendering

After sampling virtual camera poses in the 3D model, synthetic
views of the 3D model are generated (Fig. 5). This approach is
called analysis-by-synthesis (Wuest et al., 2007). The idea is, to
render a view of the 3D model, extract all visible edges from it
and match them to the real camera image of the model. OpenGL
(Khronos Group, 2013) is used to perform hidden line removal
and to render the image in a normal and a depth image. This
two-time rendering is necessary, as the normal image contains all
crease edges and the depth image all step edges. A conventional
rendering pipeline only supports two kinds of projection matri-
ces, either orthographic or perspective. Neither applies to fisheye
cameras.

Figure 4: Distribution of view speres in the horizontal grid. The
z-coordinate of the grid resamples approx. the height of the op-
erators head.

Thus we elude the fixed vertex processing by using a custom ver-
tex shader. Latter allows us to manipulate the geometry of the
scene. First, the model is transformed to the camera reference
frame using the model-view matrix, which contains the camera
pose in the 3D model. Now the incident angle Θ for each vertex
can be calculated Eq. (5) and the inverse mapping Eq. (4) for
each viewing ray is determined. Then the corresponding pixel is
calculated according to Eq. (6), Eq. (7). Hereby the calibrated
mapping function of each real camera is exploited in a vertex
shader, to extend the simple perspective camera view to a geo-
metrically correct fisheye view.

After vertex processing, a fragment shader is used to color the
pixels according to their normal (Fig. 5(a)) and depth (Fig. 5(b))
information respectively. At this point it is important to note,
that the normal and depth values are independent of the vertex
transformation. The z-value of each vertex is untouched during
the mapping as well as the normal vectors. Latter are assigned
to each face and vertex respectively and are calculated prior to
the mapping. Otherwise the fisheye mapping would change these
information and the resulting image would contain wrong normal
and depth values.

(a) normal image (b) depth image

Figure 5: Rendered fisheye images for combined crease edge (a)
and step edge (b) extraction.

Image pyramids help to speed up feature extraction, but the pro-
cess of generating these pyramids for both images, i.e. normal
and depth images, slows down the overall process. Thus, in-
stead of rendering a full resolution image followed by subsequent
downsampling, we chose to render different image octaves di-
rectly by applying different viewport sizes, followed by concur-
rent edge extraction.

3.3 Feature Extraction

Until now, each virtual camera position consists of two images.
In this step the information of both images is combined and 1D
feature vectors are created. The extraction of gradient orien-
tations is similar to (Hinterstoisser et al., 2012). First the x-
and y-derivatives of both images are extracted for each chan-
nel using a 3×3 sobel kernel without gaussian smoothing. The

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W2, 2013
ISA13 - The ISPRS Workshop on Image Sequence Analysis 2013, 11 November 2013, Antalya, Turkey

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 45

smoothing step can be omitted since rendered images do usu-
ally not contain noise. Then a gradient magnitude image IC =√
G2

C,y +G2
C,x is calculated for each channel, where GC,x and

GC,y are the sobel derivatives in x and y direction for a channel
C ∈ {R,G,B,D}, where the first three belong to the normal
and the last to the depth image.

All magnitude arising from the normal image are tested against
a threshold. Latter corresponds to a orientation change. Round
structures and surfaces in 3D models are appoximated by many
faces. The edge extraction would yield all edges, even if they
are not present in the real image. To avoid this, the threshold
has to be set accordingly. If no edge has been detected for a
particular pixel in the normal image, the depth image is tested.
In this case another threshold needs to be set, which corresponds
to the z-buffer range and precision. We then choose the highest
magnitude Ĝ of all magnitude images for a particular pixel u, v
and extract its orientation

Φ(u, v) = arctan

(
ĜC,y(u, v)

ĜC,x(u, v)

)
(8)

The combined gradient image is depicted in Figure 6(a). Edges
are not thinned using non maximum suppression. However it
showed, that broader edges lead to better matching results, as
there will never be a perfect match and thus broader edges serve
indirectly as a pull-in range for the nearest neighbor matching.

(a) combined edge image (b) synthetic image edges

Figure 6: (a) Combined edge image. After extracting edges from
normal and a depth image seperately, the maximum gradient is
chosen to extract edge orientations. (b) Extracted edges from ren-
dered model. The added noise to pose and image, respectively is
visible.

Each combined edge image is then reshaped to a 1D holistic fea-
ture vector that contains the orientations of all visible edges. In
our implementation the feature extraction is carried out on the 4th
pyramid level. Here the images size is 49×65 pixels leading to a
feature dimension of 3185.

3.4 Feature Matching

The last step to self-localization is crucial. The offline created,
synthetic feature vectors have to be matched against the incom-
ing camera images, using a robust distance metric. Since a lin-
ear search trough all features for an exact match would not be
real-time capable, an efficient way of clustering and searching a
nearest neighbor to a given feature vector is used.

3.4.1 Distance Metric The matching is solely performed on
edges. Hence the distance metric has to be robust to occlusion,
illumination change and clutter. Geometric deformations can be
neglected since we use a rigid 3D model. We use the metric de-
fined in (Hinterstoisser et al., 2012) which is adapted from (Ste-
ger, 2002). Latter shows its robustness to occlusions and illumi-
nation changes by taking the absolute value of the cosine: Unsim-
ilar egdes contribute little to the sum and negative values, caused

by different illuminations, are mapped to the positive range. The
metric is based on gradient orientations to determine a measure
of similarity. In contrast to (Steger, 2002), Eq. (9) minimizes the
number of features and calculations during tree construction and
matching:

d =

w·h∑
i=1

| cos (Φsi − Φti) | (9)

where Φsi and Φri are gradient orientations of search and tem-
plate image and w, h are width and height of the search image.

3.4.2 Clustering and Nearest Neighbor Search As presented
in Section 3.1 a lot of virtual cameras are sampled and high di-
mensional feature vectors are extracted. For instance, 50 presam-
pled positions with an angular increment of 10◦ lead to 9000 fea-
ture vectors. Taking the feature dimension of 3185 from the last
section, this would require ∼ 30 million calculations in a linear
search, as Eq. (9) had to be computed for each template image
against the search image.

Hence, we experimented with multiple randomized kd-trees and
hierarchical trees with k-means clustering and use the implemen-
tation of flann (Muja and Lowe, 2009) a library for fast approx-
imate nearest neighbor search to high-dimensional feature vec-
tors. Usually the performance of nearest neighbor search de-
creases with the dimensionality of the feature vector. But (Muja
and Lowe, 2009) show that for real world data sets, where strong
correlation between dimensions exist, the precision remains al-
most constant. Both trees have different parameters which are
crucial relating to speed and precision. The next section details
the algorithm choice.

4 RESULTS AND DISCUSSION

For all our experiments, a L-shaped part of the buildings base-
ment is used, which is characterized by bad light conditions, par-
tially narrow walls and objects occluding edges. The 3D model
is the result of a laser scan point cloud. The point cloud was
simplified, cleaned and meshed. The final model has ∼ 550.000
vertices and ∼ 190.000 faces and consists of flat and round sur-
faces.

4.1 Simulated Data

To test our method and adjust parameters, i.e. the number of
presampled positions, sampling density, edge thresholds, speed
and search parameters the 3D model was rendered from 100 per-
turbed poses. These poses are randomly drawn from the set of all
9000 presampled poses. To simulate false and missing edges and
to add image noise that occurs in a real world scenario, we attach
a noisy, coarse resolution wall texture to the model and render it.
The edges of the resulting image are depicted in Figure 6(b).

First, the linear search is applied to find the corresponding fea-
ture vector from all prerendered poses, as it is the most accurate
method. We then add an increasing gaussian noise to position
and angle values respectively. The noise is added separately to
position and angle to test the robustness of the method against
both parameters. The result is depicted in Figure 7. One can
see that, for increasing angle noise, the accuracy reaches 50%
when the noise reaches 5◦. This corresponds exactly to half of
the horizontal sampling distance we applied in Section 3.1. The
position accuracy remains good up to a position noise of 0.15m.
This is one third of the sampling density from Section 3.1. As
the method is supposed to initialize the position in real-time, the

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W2, 2013
ISA13 - The ISPRS Workshop on Image Sequence Analysis 2013, 11 November 2013, Antalya, Turkey

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 46

0 5 · 10−2 0.1 0.15

60

80

100

0 1 2 3 4

σposition [m]

[%
]

σangle [◦]

σposition

σangle

Figure 7: Precision of matching with increasing noise.

search speed is crucial. The linear search for 9000 features takes
about 370ms on a Intel i7-3630QM CPU, which is not sufficient
for real-time applications. Hence different trees and parameter
combinations for flann (Muja and Lowe, 2009) were tested, to
evaluate the accuracy against the linear search.

Again 100 textured images are rendered from perturbed positions.
Then the 9 different trees from Figure 8(a) are searched. This
time however, the number of recursively searched leaves is in-
creased. This leads to a better search precision on the one hand,
but reduces the search speed on the other. Thus, a trade-off be-
tween search speed, precision and tree build time has to be found.
Figure 8 shows search speed and corresponding precision for an
increasing search depth. For all six hierarchical k-means trees
the search time increases faster than the precision. Consider-
ing that for real-time AR-applications all calculations for each
camera have to be finished within 45ms ≈ 22fps (fisheye camera
fps), the k-means tree is only feasible for lower search depths.
However at a search depth of 300, the precision hardly exceeds
50%. A higher number of iterations during build time resulted
in a longer build time but did not significantly improve the preci-
sion.

Hence we chose the randomized kd-tree. Even for 500 trees the
build time is feasible and the precision for the simulated scenario
keeps up with the hierachical k-means trees. The huge advantage
is the search speed which is feasible for real-time AR.

4.2 Real Data

After adjusting parameters during the simulation, we tested our
system under real conditions. To exploit the full spherical view
of the scene, we create panoramic feature vectors, i.e. we stack
the feature vectors of all three cameras together. We then match
those to prerendered panoramic features from the feature creation
step. The position sampling scheme is basically the same, but
instead of rendering one image per sample position, we render
three images, using the known relative poses of the cameras.

Since we did not yet acquire ground truth for each frame of an
entire full frame rate trajectory, we conducted a qualitative visual
verification of the initialization results for the 14 keyframes from
Section 2.2 where the exterior orientation of the system was de-
termined with a total station. We found that the initialization was
correct in 11 out of the 14 keyframes. Figure 9 depicts such a case
(and comprises a link to the sequence). The correctly matched
model edges are overlaid in green. Note that the model edges do
not fit perfectly. On the one hand we initialized the system from
discrete poses, but in reality the trajectory is continuous, i.e. we
initialized the nearest neighbor of the true pose. On the other
hand the initialization is carried out on the lowest scale level.
From here on, the pose has to be refined by, e.g. minimizing
the squared distances to the nearest edge on each scale level.

5 CONCLUSIONS AND FUTURE WORK

In this paper, a novel approach to image based self-localization of
a multi fisheye camera system in texture-less 3D models was pre-
sented. To approach the problem of a comparatively big model
and the fact, that the camera pose is inside the model and only
parts of it are visible at a current pose, virtual camera poses are
presampled and fisheye camera views are rendered using OpenGL
and a custom vertex shader. Then feature vectors based on gra-
dient orientations are extracted on low pyramid levels and clus-
tered for fast nearest neighbor search. A robust distance metric
was used to match features during nearest neighbor search, which
handles occlusions, clutter, illumination and contrast changes.

To further increase search precision and search speed for future
work, redundancies between feature vectors have to be elimi-
nated, i.e. two adjacent camera poses that contain approximately
the same information can be omitted. In addition, all feature vec-
tors live in memory during runtime and a decrease to the essen-
tial number could increase the scalability, however the presented
configuration allocates 110MB (9000× 3185× 4 byte) memory
which is viable even for larger feature sets.

One drawback of the method presented is, that it depends on a
threshold to declare an initialization correct. The nearest neigh-
bor search gives the best (highest distance metric sum) result for a
given frame, which is not instantaneously correct and there might
be other neighbors that are almost equally good and thus could be
probably correct. Thus, in future work, we will base our method
on a particle filter. Each presampled positions can be seen of as a
particle and the distance metric can be used as a likelihood mea-
sure for each consecutive frame. This means, that all particles
will have a high likelihood in the neighborhood of the correct
pose, which can be described by a probability density function
over the state space (presampled poses).

REFERENCES

Behringer, R., Park, J. and Sundareswaran, V., 2002. Model-based vi-
sual tracking for outdoor augmented reality applications. In: Interna-
tional Symposium on Mixed and Augmented Reality (ISMAR), Darm-
stadt, pp. 277–278.

Breunig, M., Borrmann, A., Rank, E., Schilcher, M. and Hinz, S., 2012.
Towards 3d geoinformatics and computational civil engineering support
for cooperative tracks planning. In: Proceedings of FIG Working Week,
Rome.

Breunig, M., Rank, E., Schilcher, M., Borrmann, A., Hinz, S., Mundani,
R., Ji, Y., Menninghaus, M., Donaubauer, A., Steuer, H. et al., 2011.
Towards computer-aided collaborative subway track planning in multi-
scale 3d city and building models. In: Proceedings of the 6th 3D geoinfo
conference, Vol. 17.

David, P., Dementhon, D., Duraiswami, R. and Samet, H., 2003. Simul-
taneous pose and correspondence determination using line features. In:
IEEE Conference on Computer Vision and Pattern Recognition, Madison,
USA, pp. 424–431.

David, P., Dementhon, D., Duraiswami, R. and Samet, H., 2004. Soft-
posit: Simultaneous pose and correspondence determination. Interna-
tional Journal of Computer Vision 59(3), pp. 259–284.

Drummond, T. and Cipolla, R., 2002. Real-time visual tracking of com-
plex structures. IEEE Transaction on Pattern Recognition and Machine
Intelligence 24(7), pp. 932–946.

Hinterstoisser, S., Cagniart, C., Ilic, S., Sturm, P., Navab, N., Fua, P.
and Lepetit, V., 2012. Gradient response maps for real-time detection
of textureless objects. Pattern Analysis and Machine Intelligence, IEEE
Transactions on 34(5), pp. 876–888.

Khronos Group, 2013. Opengl - the industry standard for high perfor-
mance graphics. http://www.opengl.org, visited in june 2013.

Mei, C. and Rives, P., 2007. Single view point omnidirectional cam-
era calibration from planar grids. In: IEEE International Conference on
Robotics and Automation.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W2, 2013
ISA13 - The ISPRS Workshop on Image Sequence Analysis 2013, 11 November 2013, Antalya, Turkey

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 47

0 2 4 6 8 10 12

kd-tree 50
kd-tree 150

k-means 10 8
kd-tree 500

k-means 16 8
k-means 16 12
k-means 10 12

k-means 32 8
k-means 32 12

k-means
kd-tree

(a) comparison of build times for 9000 features in minutes

200 400 600 800 1,000
20

40

60

80

100

0

50

100

150

of recursively searched leaves

ac
cu

ra
cy

[%
]

se
ar

ch
tim

e
[m

s]

50
150
500

(b) kd-tree with randomized trees

200 400 600 800 1,000
20

40

60

80

100

0

50

100

150

of recursively searched leaves

ac
cu

ra
cy

[%
]

se
ar

ch
tim

e
[m

s]
10 8
16 8
32 8

(c) hierachical trees with k-means clustering

200 400 600 800 1,000
20

40

60

80

100

0

50

100

150

of recursively searched leaves

ac
cu

ra
cy

[%
]

se
ar

ch
tim

e
[m

s]

10 12
16 12
32 12

(d) hierachical trees with k-means clustering

Figure 8: Search precision vs. speed (dashed lines) for 9 different trees (number of features for all plots: 9000). Angle noise was set
to σangle = 1.5◦ , position noise to σpos = 0.05m. The accuracy is related to the precision at this particular noise level for the linear
search. Parameters: k-means branching factor and number of iterations, kd-tree number of trees.

Figure 9: All three fisheye images overlaid with model edges after correct self-localization with the real image sequence. Complete
sequence see http://www2.ipf.kit.edu/Projekte/3DTracks/.

Micušık, B., 2004. Two-view geometry of omnidirectional cameras. PhD
thesis, Czech Technical University.

Micušık, B. and Pajdla, T., 2006. Structure from motion with wide cir-
cular field of view cameras. Pattern Analysis and Machine Intelligence,
IEEE Transactions on 28(7), pp. 1135–1149.

Muja, M. and Lowe, D. G., 2009. Fast approximate nearest neighbors
with automatic algorithm configuration. In: International Conference
on Computer Vision Theory and Application (VISSAPP’09), INSTICC
Press, pp. 331–340.

Ottlik, A. and Nagel, H.-H., 2007. Initialization of model-based vehi-
cle tracking in video sequences of inner-city intersections. International
Journal of Computer Vision 80(2), pp. 211–225.

Puig, L., Bermúdez, J., Sturm, P. and Guerrero, J., 2012. Calibration of
omnidirectional cameras in practice: A comparison of methods. Com-
puter Vision and Image Understanding 116(1), pp. 120 – 137.

Reitmayr, G. and Drummond, T., 2006. Going out: Robust model-based
tracking for outdoor augmented reality. In: Proceedings of the Interna-
tional Symposium on Mixed and Augmented Reality (ISMAR).

Scaramuzza, D., Martinelli, A. and Siegwart, R., 2006. A flexible tech-
nique for accurate omnidirectional camera calibration and structure from
motion. In: Computer Vision Systems, 2006 ICVS’06. IEEE Interna-
tional Conference on, IEEE, pp. 45–45.

Simon, G., 2011. Tracking-by-synthesis using point features and pyra-
midal blurring. In: International Symposium on Mixed and Augmented
Reality (ISMAR), pp. 85–92.

Steger, C., 2002. Occlusion, clutter, and illumination invariant object
recognition. International Archives of Photogrammetry Remote Sensing
and Spatial Information Sciences 34(3/A), pp. 345–350.

Svoboda, T., 1998. Motion estimation using central panoramic cameras.

Ulrich, M., Wiedemann, C. and Steger, C., 2009. Cad-based recognition
of 3d objects in monocular images. In: IEEE International Conference on
Robotics and Automation, Kobe, Japan, pp. 1191–1198.

Weinmann, M., Wursthorn, S. and Jutzi, B., 2011. Semi-automatic image-
based co-registration of range imaging data with different characteris-
tics. In: PIA11 - Photogrammetric Image Analysis, Vol. 38 Part 3/W22,
pp. 119–124.

Wuest, H., Vial, F. and Stricker, D., 2005. Adaptive line tracking with
multiple hypotheses for augmented reality. In: Fourth IEEE and ACM
International Symposium on Mixed and Augmented Reality (ISMAR).

Wuest, H., Wientapper, F. and Stricker, D., 2007. Adaptable model-
based tracking using analysis-by-synthesis techniques. In: 12th Interna-
tional Conference on Computer Analysis of Images and Patterns (CAIP),
LNCS, Vol. 4673, Springer Berlin/Heidelberg, Wien, pp. 20–27.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W2, 2013
ISA13 - The ISPRS Workshop on Image Sequence Analysis 2013, 11 November 2013, Antalya, Turkey

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 48

