
HOMOLOGICAL PERSISTENCE FOR SHAPE BASED CHANGE DETECTION
BETWEEN DIGITAL ELEVATION MODELS

Bruno Vallet

IGN, Laboratoire MATIS
73 avenue de Paris

94165 Saint-Mandé, FRANCE
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ABSTRACT:

Digital Elevation Models provide an accurate description of scenes allowing change detection by radiometric independence measure-
ments. The height information gives access to the changes in the 3D shape of a scene occurring between two dates. In this paper, a
procedure to extract meaningful changes is proposed based on analysing this shape variation. Instead of filtering a difference map, a
multilevel analysis of the difference map based on the theory of persistence is developed to make such analysis independent from a
choice of threshold values.

1 INTRODUCTION

1.1 Context

Change detection from aerial or spatial images is a major stake for
accelerating and automatizing of geographical databases. Such
databases are becoming larger, more complete and more accurate,
so the task of keeping them up to date is becoming ever more
challenging. In this study, we consider change detection based
solely on Digital Elevation Models (DEMs). We have made this
choice because we are interested in finding only where the ge-
ometry of the scene has changed, not only its radiometry. This
is much simpler as radiometric differences may come from many
other sources than a change in the scene geometry: change in
lighting conditions, in object color, in acquisition conditions (dif-
ferent viewpoint), etc. The drawback of this choice is that we will
be very dependant on the quality of the DEM used to detect the
changes. In particular, we will not be able to sort easily between
actual changes and DEM errors.

1.2 Related works

Change detection has often been performed in order to update an
existing geographic database, for instance of buildings, in which
case the data at the former date is this database, and aerial/satellite
imagery at the later date. This is out of the scope of this paper,
which focusses on purely DEM to DEM comparison (without re-
quiring such a database), so we refer to the detailed performance
analysis of (Champion et al., 2011) on such approaches.

Most existing change detection between DEMs rely on the fol-
lowing simple steps:

1. Resample the two DEMs in a common geometry (if they
are not already). The height information comes either from
Aerial Laser Scanning (ALS) or photogrammetric dense match-
ing using aerial images.

2. Compute the difference map between the DEMs in this com-
mon geometry. (Kuo-hsin et al., 2006) proposes to simply
give this map to an operator for visual interpretation.

Figure 1: Constructions (blue) and destructions (red) obtained by
thresholding a DEM difference map. Two separate constructions
(circled in green) are merged by the choice of a low threshold.
The resulting component has a low compactness while the indi-
vidual real changes were highly compact, which may result in
their rejection based on shape analysis.

3. Threshold the difference map

4. Filter the resulting binary mask based on the shapes of its
components

The main differences rely on the way the resulting components
are filtered, and sometimes the addition of other sources of infor-
mation. The easiest and most popular way to filter the compo-
nents is to apply some mathematical morphology filters (shrink-
ing, expansion) which removes thin, elongated components. The
radiometric information from orthophotos at the two dates can
also be be used as an additional indicator of change (Sasagawa
et al., 2008). A finer geometric analysis of the components can
be performed through the use of a compactness factor in addi-
tion to mathematical morphology (Chaabouni-Chouayakh et al.,
2010). In this case the DEMs can be classified using the Iso-
Data unsupervised classification algorithm to enhance the detec-
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tion. Finally the uncertainty on the height given by the individual
DEMs can be estimated to refine the study of their difference in
the context of topographic survey of sediment budgets (Wheaton
et al., 2010). The spatial variability of elevation is then estimated
through a fuzzy inference system then this estimate is modified
based on the spatial coherence of height variation.

Such approaches suffer from a major drawback: The results highly
depend on the choice of the threshold used to binarize the differ-
ence map. High thresholds tend to miss some significant changes,
leading to high under detection rates. Conversely, low thresholds
tend to merge different changes into a single change with very
complex shape (Figure 1) that risks rejection by a compactness
criteria while the individual changes were compact enough. The
resulting detection will also be highly undersegmented.

Classification may be used in two different ways for change de-
tection:

1. Classifying the data at the two dates and comparing the clas-
sifications, as proposed by (Chaabouni-Chouayakh et al.,
2010)

2. Posing the change detection problem as a classification prob-
lem

Two very innovative recent works take the second choice:

1. (Guérin et al., 2012) poses the problem of change detec-
tion as a labelling problem with a data attachment term and
a regularization term, which solution is found by dynamic
programming. Thus unlike (Chaabouni-Chouayakh et al.,
2010), compactness is not used to filter out components but
is a prior to enforce that the components found are compact.

2. (Tian et al., 2013) proposes to merge segmentations of the
DEM at the two dates and classify the resulting segments
using various indicators.

Finally, we can cite a very different approach: in the case of aerial
laser scanning, (Hebel et al., 2011) proposed to work directly in
3D (instead of a 2.5D DEM) by voxelizing space and using the
intersection of laser rays with such voxels to decide wether thay
are occupied. Changes are then located by finding conflicts be-
tween such occupancy computed for two different acquisitions
using Dempster-Shafer evidence theory.

1.3 Method overview

The approach that we propose studies the morphology of changes
in order to make the detection independent from the choice of an
arbitrary (and hard to tune) threshold, thus to avoid the afore-
mentioned issues. Homological persistence will be used to study
changes at all the levels when significant changes happen in or-
der to automatically choose the threshold the most appropriate to
their analysis.

As with classical approaches, we start by filtering a difference
map between the DEMs at the two dates and splitting this dif-
ference map (Section 2.1). Splitting separates positive and neg-
ative components of the difference maps (potential constructions
and destructions), resulting in very large components, which only
serves to cut the area of interest into smaller areas that will be
analysed independently. This is preferable over cutting the area
in rectangular blocks because this way we ensure that no change
will overlap two blocks (changes will be strictly contained in

(a) 2006 DEM

(b) 2010 DEM

(c) Blurred difference

(d) Thresholding

(e) Erosion

Figure 2: Input DEMs and filtering. Constructions are in blue
and destructions in red.
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these components). Each component is then analysed using the
theory of homological persistence in order to study the compact-
ness of all possible topological subcomponents. The theory of
homological persistence is briefly presented in Section 2.2, the
definition of a compactness criterion is given in Section 2.3 and
the application of both to shape based change detection in Sec-
tion 2.4. Finally results are given and discussed in Section 3 and
conclusions drawn in Section 4.

2 METHOD

2.1 Filtering

We propose to filter the difference map both before and after split-
ting as shown in Figure 2. A general idea that we push forward in
this paper is that the full shape of the change needs to be anal-
ysed. By ”shape of the change” we mean both the altimetric
shape (shape of the difference map over the area of the detected
change) and planimetric (shape of the detected change area as
seen on a map). Blurring the DEM difference before splitting
allows to give more importance to small changes with high alti-
metric difference. This is performed by convolution of the DEM
difference with a Gaussian (Figure 2(c)) which standard devia-
tion should be adapted to the DEM resolution (typically 4 times
the pixel size). After this blurring, the DEM difference is split
(Figure 2(d)) into positive and negative components. Construc-
tions (∆ > 0) and destructions (∆ < 0) can be separated in this
step. Finally, a morphological erosion is performed (Figure 2(e))
to remove thin differences often occurring near building edges.
The resulting components should not be interpreted as changes
but as areas of potential changes that will be analysed in further
steps using homological persistence (Section 2.2) and generalized
compactness (Section 2.3).

2.2 Homological Persistence

Homological persistence is a very general study of the evolution
of the topology of the level sets of functions as the level varies.
We will only present here the special case of 2D functions over
the real space (f : R2 → R) and only study the first homology
group (of order 0), which represent the connectedness of compo-
nents. In 2D there is also a second group (of order 1) representing
the loops. For the general theory of homological persistence, we
point the interested reader to (Cohen-Steiner et al., 2005).

Homological persistence relies on detecting topological events
that occur when there is no strict 1-to-1 mapping (by inclusion)
between the connected components of:

fa = {x ∈ R2|f(x) ≤ a ∈ R} (1)

between two different levels a1 < a2. In our special case, this
may only happen when:

1. A component appears between a1 and a2 (minimum of f ).

2. Two components merge between a1 and a2 (saddle point of
f ).

For a function f defined over a set S of pixels p, this will be
done by constructing a persistence tree. Each node and leaf of
the tree is a connected components Ci ⊂ I defined by the set of
its pixels and having a unique identifier i. The tree is built by pro-
gressively adding all pixels p in descending or ascending order of
f(p) and maintaining an identifier map Id(p). Updating the tree

Figure 3: Representation of persistence tree computation: red
leafs correspond to the apparition of a component, blue nodes to
the merge of two components, green line to the current level.
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when adding a pixel p depends on the number of different exist-
ing active components in its neighbourhood (number of different
identifiers in the neighbourhood of p in the identifier map i):

1. 0: creation of a new active component Ci containing only
p and setting Id(p) = i. Such components are leafs of the
persistence tree, they do not have ancestors.

2. 1: growing the neighbouring component Ci by adding p to
its set of pixels and setting Id(p) = i.

3. n > 1: merging the neighbouring components Ci1 , ..., Cin
by creating a new component Cj containing all the pixels of
all the merged components. Set Id(p) = j and Id(q) =
j∀q ∈ Ci1 ∪ ...∪Cin . Declare Ci1 , ..., Cin as ancestors of
Cj . They are now inactive (they won’t change any more) as
their identifiers have all been replaced by j in the identifier
map.

This construction finishes when all the pixels in S have been
added. At that point, there is only one active component con-
taining all the pixels of S. The process is illustrated in Figure
3 where the nodes are placed at the creation level of the corre-
sponding component.

The persistence tree represents the topological structure of the
level sets of the function, and its construction is parameter-free.
When we analyse the DEM difference, the changes that we want
intuitively a change detection method to find can be at any level
of this tree. Thus we will analyse all the nodes of the tree in
order to find the changes of interest, based on several geometric
criteria, for instance:

1. Area of the change: number of pixels of the component

2. Maximum, median or average height of the change: maxi-
mum, median or average ∆z between pixels of the compo-
nents, or equivalently level difference between the analysed
node and the highest leaf over it.

3. Compactness: see Section 2.3.

The first three indicators are very easy to compute (they can be
updated each time a pixel is added to a component) and are vari-
ous indicators of the size (both altimetric and planimetric) of the
change. In order to make our geometric analysis finer, we pro-
pose, as (Chaabouni-Chouayakh et al., 2010), to use a compact-
ness operator. Compared to this work, our contribution is double:

1. The compactness operator is used to analyse nodes at all
the levels of the persistence tree instead of a single arbitrary
level.

2. We define a generalized compactness to overcome some lim-
itations of the classical compactness.

2.3 Generalized Compactness

(Chaabouni-Chouayakh et al., 2010) use the classical compact-
ness indicator defined by:

C(C) =
2
√
πA(C)

P(C) ∈ [0, 1] (2)

whereA andP are the area and perimeter of the componentC. It
is maximum (1) for disks, close to 0 for very complex/elongated

shapes, and 0 for 1D shapes (that have a perimeter but null area).
These properties are useful to filter out elongated and complex
components, but suffers a strong limitation in our case where
components are rasterized (represented by a set of pixels). Indeed
rasterization implies that smaller components are more compact
than larger ones (it is hard to be complex or elongated is you have
few pixels). In other terms, because the pixel size is fixed, com-
pactness is sensitive to scale. To overcome this limitation, we
propose the following ”generalized” compactness :

Cα(C) =

√
2(2π)αA(C)

P(C)α+1 (3)

the constants being chosen such that a disk of radius r has a
compactness of r(1−α)/2. The α = 1 case is the classical com-
pactness criterion which favours small components. Conversely,
α = 0 favours too much large components so α should be chosen
in the [0, 1] interval.

2.4 Application to shape based change detection

We now need an indicator of what is a good geometry for a
change, and consider that the answer to this question is very ap-
plication dependent. In our case, we were mainly interested in
building, so we chose a quality estimator of the form:

Q(C) = C0.5(C)∆av
z (C)

C0.5 has similar values for small compact components and larger
more complex components, which characterizes well the planime-
try of buildings, and the second term favours changes for which
the altimetric difference is high. This quality criteria combines
the quality of the planimetric and altimetric shape of the potential
changes.

The selection of components in the persistence tree based on
quality criterionQ is then done in a greedy manner:

1. ComputeQ for each node of the tree

2. While the quality of the best component Q(Cbest) is above
a threshold:

(a) Add Cbest to the list of detected changes
(b) Remove Cbest, all its ancestors (components contain-

ing Cbest) and successors (components included in
Cbest) from the tree

(c) Find the new best component in the rest of the tree.

This algorithm allows for a much finer geometric analysis of
changes than without using the multilevel approach based on per-
sistence. For instance, the two components of our running exam-
ple are well separated as shown on Figure 4(a) without requiring
a threshold tuning.

Vegetation however still causes problems: because DEMs are
rather bad in vegetation, the resulting DEM differences have very
random shapes some of which are good according to our quality
criteria. Figure 4(b) shows that our algorithm, and especially the
generalized compactness criterion allows to remove most false
alarms in the vegetation, but some are compact enough to remain.
Thus we used the vegetation detection of (Iovan et al., 2008) to
remove vegetation found coherently at the two dates. This way,
we remove false alarms in what is detected as vegetation at the
two dates, but keep changes corresponding to the replacement
of a tree with non vegetation (tree cut to build something) or the
inverse (something built replaced by trees) which are often mean-
ingful cues.
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(a) On our running example: the two components circled in Figure 1 are
well separated

(b) On the vegetation: most complex components are filtered out. Only
the components with compact shapes remain and will need a vegetation
mask to be filtered out.

Figure 4: Result of the greedy search: all potential changes are
encircled in red (destructions) and blue (constructions), selected
changes are in yellow (destructions) and cyan (constructions).

3 RESULTS AND DISCUSSION

A performance study of this algorithm has been conducted on two
test areas covering around 2km2 near the cities of Phoenix (USA)
and Toulouse (France). The ”Phoenix” area covers an industrial
zone so most of its area is covered with industrial buildings and
parking lots with vehicles of various sizes. The ”Toulouse” area is
in the suburbs and contains a wide variety of typologies: individ-
ual and collective housing, large buildings (hospital and school),
forest, fields,... The data available on Phoenix was panchromatic
satellite imagery: Ikonos in 2008 with 80cm GSD and World-
view2 in 2011 with 46cm GSD. For Toulouse, we used 25cm
GSD aerial photographs from 2006 and 70cm GSD Pléiades satel-
lite images from 2010. The four DEMs have been made us-
ing the MicMac software (Pierrot-Deseilligny and Paparoditis,
2006), with a standard parameterization.

Results are satisfactory even in difficult cases. Figure 5 shows
the correct detection of new buildings, and Figure 6 shows that
even (large) vehicles groups can be detected. All the signifi-

(a) 2006 orthophoto with detections encircled

(b) 2010 orthophoto with detections encircled

Figure 5: Constructions correctly detected over the Toulouse area
by our method (cyan=constructions, yellow=destructions).

(a) 2008 panchromatic image with detections highlighted

(b) 2011 panchromatic image with detections encircled

Figure 6: Result of the change detection over a part of the
Phoenix area (cyan=constructions, yellow=destructions).
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Area Precision Recall
Phoenix 160/224 = 71.4% 160/189 = 84.65%

Toulouse 142/231 = 61.5% 142/153 = 92.8%

Table 1: Performance of our algorithm on the two selected areas
around Toulouse

cant changes are detected, and the compactness criteria elimi-
nates most artefacts. False alarms mainly come from errors in
the input DEMs. An interpreter (specialized in change detection
from satellite imagery) has validated the results of our algorithm
(separating true and false detections) and noted the areas where
real changes had not been detected, which allowed us to compute
the Precision (ratio of good detections over the total number of
detections) and Recall (ratio of good detections over total number
of real changes) which are given on Table 1 for the two areas.

Thanks to the NDVI based vegetation mask, most false alarms in
vegetation have been removed. Many false alarms remain in ar-
eas where vegetation is not detected consistently between the two
dates. It is often hard to know if this is really due to a change be-
tween vegetation and non vegetation classes that is not interpreted
as meaningful by the operator or to errors in the vegetation masks.
Most of the other false alarms come from errors in the DEM com-
putation, and in particular around discontinuities that are often
smoothed by the regularization term of the surface reconstruction
method. This problem is even increased in our case where the
satellites were viewing the scene under a rather high angle (away
from NADIR). Things are even worse when the viewing direction
is very different at the two dates (which was the case on Phoenix),
or when the acquisition typology is different (aerial vs spatial in
Toulouse). These considerations are general to all DEM based
change detection approaches and not only ours. Finally, it has
to be noted that the results were evaluated by professional image
interpreters, for which the notion of meaningful changes, in an
operational definition, is often quite far from varying heights as
we try to define change in this work. Thus many false alarms and
missed detections come from this differences of point of view. A
tree replaced by bare ground will be detected by our algorithm
but often omitted by the interpreter.

Concerning the parametrization of the method, the only parame-
ters to tune are the two parameters of the filtering, the α parame-
ter of generalized compactness and the threshold on quality. The
first two are very standard while the last two are very specific to
our method and define what the correct shape for a change is.
The main contribution of this paper is not the shape analysis that
uses these two parameters (even if the generalized compactness
is novel and useful) but the (parameter free) persistence tree con-
struction.

4 CONCLUSIONS AND FUTURE WORK

Homologic persistence and the notion of persistence tree allow
for a multi-level analysis of the geometry of changes that is not
sensitive to the choice of a threshold. Generalized compactness
has proved a useful geometric indicator if the change detection fo-
cuses mainly on buildings as it allows for the rejection of complex
shapes without favouring smaller components too much. The re-
sults are highly satisfactory and lead us to think that this algo-
rithm could be used for production purposes, as long as the qual-
ity of the DEMs used is sufficient. Enhancing DEM quality is
therefore the best lead for improvement. Obviously, the method
will also perform better is the DEMs have been acquired in sim-
ilar conditions (time of day and year, viewing angle, resolution,
same sensor, ...) and if the same method (and same parameters
for this method) is used.

Future work on the method itself will probably focus on a more
global optimization (rather than greedy search) to select the op-
timal subset of components from the persistence tree, and to in-
tegrate other cues than purely geometric ones (using edges ex-
tracted from the images and image based classifications at the two
dates). Finally, we could exploit the results to use our persistence
tree concept along with a supervised learning method instead of
simply thresholding a quality criterion.
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