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ABSTRACT:

In large-scale automatic traffic sign surveying systems, the primary computational effort is concentrated at the traffic sign detection
stage. This paper focuses on reducing the computational load of particularly the sliding window object detection algorithm which is
employed for traffic sign detection. Sliding-window object detectors often use a linear SVM to classify the features in a window. In
this case, the classification can be seen as a convolution of the feature maps with the SVM kernel. It is well known that convolution
can be efficiently implemented in the frequency domain, for kernels larger than a certain size. We show that by careful reordering
of sliding-window operations, most of the frequency-domain transformations can be eliminated, leading to a substantial increase in
efficiency. Additionally, we suggest to use the overlap-add method to keep the memory use within reasonable bounds. This allows
us to keep all the transformed kernels in memory, thereby eliminating even more domain transformations, and allows all scales in a
multiscale pyramid to be processed using the same set of transformed kernels. For a typical sliding-window implementation, we have
found that the detector execution performance improves with a factor of 5.3. As a bonus, many of the detector improvements from
literature, e.g. chi-squared kernel approximations, sub-class splitting algorithms etc., can be more easily applied at a lower performance
penalty because of an improved scalability.

1 INTRODUCTION

The availability of large-scale collections of street-level panoramic
photographs has led to new possibilities for surveying real-world
objects. Several mobile mapping companies densely record pano-
ramic photographs from driving vehicles, of which a few compa-
nies do this annually. This development is especially relevant
for governmental institutions that are responsible for maintaining
the roads and related infrastructure, such as traffic signs, street
lights or traffic lights. The ability to view up-to-date photographs
on a computer at the working place thereby avoiding multiple
site visits and enabling a substantial cost reduction. It has be-
come popular to regularly survey road-side objects such as traffic
signs, because they can be damaged by collisions, deteriorated in
color due to aging, be vandalised, stolen or become occluded by
greenery. Additionally, situations occasionally arise where traffic
signs keep being added over the years, leading to confusing and
potentially dangerous traffic situations. Surveying traffic signs
is a key example of a process that can become vastly more effi-
cient by using street-level panoramic photographs combined with
(partially) automated computer vision techniques. A system to
automate this task needs to perform three functions: sign local-
ization (in images with signs), sign classification (for traffic sign
identity) and 3D positioning (to find 3D coordinates of the sign).
As millions of panoramic photographs are involved in the search,
the computational load of such systems is an important concern.
In most systems, the computational load is highest at the sign
localization stage, mainly because for every sign multiple pic-
tures have to be analyzed. In this paper we have found a new
method to reduce computional complexity of this large search,
while preserving the quality of the sign localization with existing
techniques.

Several complete traffic sign surveying systems that consider the
entire pipeline from detection to classification and 3D positioning
have been reported in literature. For example, the work of (Tim-
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ofte et al., 2009) has many similarities to our proposed applica-
tion, although the input consists of video rather than panoramic
images. The use of video simplifies the detection problem due to
increased redundancy in the data. Another example is the system
described in (Hazelhoff et al., 2012) that deals with the previously
described large-scale panoramic datasets taken at a 5-m intervals.
For each of the individual stages of the pipeline there is much
literature available, but since our focus is on sign localization,
we will not describe the other stages. There is considerable prior
work on traffic sign detection. A large portion of this research is
focused on other applications, such as driver assistance systems
or autonomous vehicles. These alternative applications have dif-
ferent constraints from our surveying application. The alternative
systems often work in real-time on video streams, while support-
ing a small subset of traffic signs. In contrast, our application
does not need to work in real-time, deals with high-resolution
panoramic images taken every 5 meters and supports hundreds
of traffic sign types. The real-time constraints of the systems re-
lated to vehicles often lead to algorithms based on the Viola and
Jones detector, or highly specific algorithms created for this pur-
pose. Some example systems can be found in (de la Escalera
et al., 1997) and (Bahlmann et al., 2005). Another approach is
taken in (Creusen et al., 2010), where a generic object detection
algorithm is employed for traffic sign detection and extended to
include color information. This approach is adopted in this pa-
per, as it has some important advantages. The detector can easily
be extended with support for additional traffic signs by providing
new training samples. Additionally, the same algorithm can be
used for detecting traffic signs as well as persons, license plates,
street lights and other kinds of objects.

Many successful object detection algorithms are based on the
sliding-window principle. One of the earliest examples of a de-
tector of this type is the well-known Viola-Jones object detec-
tor (Viola and Jones, 2001). Features extracted from a rectan-
gular window are used to classify the presence of an object in a
region. The window is then slid across the image and each win-
dow is classified. Often, this is repeated on multiple scales to
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enable multi-scale detection. The computational load of object
detection algorithms is usually concentrated in two stages: (1)
feature extraction and (2) the sliding-window stage. In practice,
the classification algorithm is frequently chosen to be a Support
Vector Machine (SVM) with a linear kernel, because the enor-
mous amount of windows does not allow for very complex clas-
sification algorithms, although other classifiers such as Adaboost
can also be used. In this paper, we focus exclusively on opti-
mization of the sliding-window stage of a detector using a linear
classifier, such as for example the popular Histogram of Oriented
Gradients approach (Dalal and Triggs, 2005).

Recently, many proposals have been published that improve the
effectiveness of HOG-based detectors, either by extracting more
features from the image, or by using multiple SVM kernels for
a single object class. Both of these categories of improvements
increase the computational load on the sliding window part of
the object detector. An example is the proposal (Vedaldi and
Zisserman, 2012) of a set of feature map transformations to ap-
proximate a Chi-Square kernel SVM, based on a linear kernel
with an extended set of features, leading to a significant increase
of the number of feature maps. Wijnhoven and De With (Wi-
jnhoven and With, 2011) propose a method to improve perfor-
mance by splitting classes into multiple sub-classes, which leads
to improved performance at the cost of an increase in the number
of classes. When decomposing an object into parts, i.e. a part-
based model, such as in (Crandall et al., 2005), the number of
classes also increases significantly. Another proposal (Creusen et
al., 2012) to extract features from multiple color channels, also
leads to a multiplication of the number of feature maps. This is
just a selection, this list is not exhaustive. In all of the above
proposals, an efficient sliding-window implementation is essen-
tial. These papers illustrate that an increase in computational effi-
ciency of the sliding window stage can be used for two purposes:
(1) improving the detection performance by applying one of the
previously mentioned proposals or (2) to improve the scalability
of the system towards large scale panoramic datasets.
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Figure 1: Overview of computations in a regular sliding-window
process. The convolution is performed once for each class per
feature map, and corresponding convolution results are summed
up per class.

Traditionally, sliding window detector are implemented in the
pixel domain. For each position of the sliding window, a fea-
ture vector is extracted which is then classified by the classifica-
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Figure 2: Schematic view of our proposed optimizations. Note
that O.A. stands for Overlap-add. The FFT kernel maps can be
stored in memory and do not need to be recomputed.

tion algorithm. In case of a linear classifier, the classification can
be considered as a series of convolutions of feature maps with
their corresponding kernel maps. We show that by performing
this convolution in the frequency domain and changing the order
of operations, the processing time can be significantly reduced.
Furthermore, we propose a way to limit the memory usage of the
kernel maps, allowing them to be kept in memory, to avoid re-
computation. Additionally, our approach allows the same set of
transformed kernels to be used for all scales in a multiscale pyra-
mid. It will be shown that the performance is much less sensitive
to parameters like kernel size, number of classes and number of
feature maps.

The remainder of this paper is structured as follows. Section 2
describes the sliding-window stage of a typical detector with a
linear SVM. Our optimizations to the standard implementation
are described in Section 3. In Section 4, the benchmark results
of our implementation are compared to the standard implementa-
tion. Finally, Section 5 contains concluding remarks.

2 SYSTEM OVERVIEW

Typically, an object detection algorithm extracts a number of fea-
ture maps from the image. In the standard HOG algorithm, these
features correspond to image gradients in a particular direction,
contained within a group of pixels. However, these feature maps
can contain other information such as color, texture or shape in-
formation, enabling the use of a mix of different types of feature
maps. When training the SVM, information extracted from all
these feature maps is concatenated into one large feature vector.
After the SVM training process, the resulting coefficient vector
can be split into separate kernel maps that correspond to each of
the feature maps. In the case of a linear classifier, the sliding-
window stage is equivalent to a convolution of the feature maps
with their corresponding SVM kernel. Each class has a corre-
sponding kernel for each of the feature maps, and the results of
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the convolutions should be accumulated to obtain the resulting
representation. The process is visualized in Figure 1.

The feature extraction stage is typically relatively slow, but is
only performed once per scale. The convolution stage is faster
than feature extraction, but still quite slow and is performed mul-
tiple times. It is performed for every object class on every feature
map, and therefore it can easily become a computational bot-
tleneck. The convolution operation in the pixel domain scales
quadratically with respect to kernel size. The summation is also
performed many times, but this is a much faster operation than
the convolution.

3 EXECUTION OPTIMIZATIONS

It is well known that convolutions can be performed efficiently
in the frequency domain for kernels larger than a certain size.
The advantage of frequency-domain convolutions is that they are
completely insensitive to the size of the kernel. However, the
FFT and its inverse transformation are still expensive operations.
If a naive frequency-domain approach is used, the gain in perfor-
mance would be small, although this depends on the kernel size.
The real advantage of using a frequency-domain approach is that
this allows us to perform the final summation of the convolutions
in the frequency domain, as it is a linear operation. This reduces
the number of inverse FFT operations by a large amount, down to
one per class per image, instead of once per feature map per class
per image. This approach already achieves a significant reduction
in the number of computations, but can be improved even further.

A second issue is the efficient handling of kernel maps. Usu-
ally, when performing a frequency-domain convolution, the ker-
nel is zero-padded to the same size as the feature map, and then
transformed to the frequency domain. However, this means that
the kernel maps consume a large amount of memory, and it be-
comes impractical to keep all the transformed kernels in memory.
As a solution, we propose to use the overlap-add method, which
is a common method of splitting a convolution of a large image
by a small kernel into many smaller convolutions, see Figure 3.
The kernels now only need to be zero-padded up to the size of
the overlap-add region, and this makes it possible for them to be
stored transformed in memory continuously during the compu-
tation. For example, an overlap-add region of 100 × 100 pixels
means that each transformed kernel consumes about 78.1 kB of
memory (stored as complex single-precision floating-point val-
ues), meaning that thousands of kernels can be kept in memory
in a modern PC. This has the additional benefit that the memory
usage of the sliding-window process is now completely decou-
pled from the image resolution, since tile-by-tile image process-
ing is performed. This aspect is also beneficial for multi-scale
processing, because all scales can be processed with the same set
of transformed kernels.

There are only a few frequency-domain transformations that re-
main essential in normal operation of the system, and they occur
on small tiles rather than on full-resolution feature maps. The
feature maps still have to be transformed to the frequency do-
main, and the result maps require inverse transformation. All
other operations are directly performed in the frequency domain
as complex multiplications (for the convolutions) and additions.
For a typical number of 48 feature maps and 20 object classes, the
number of FFT and IFFT transformations has been reduced from
1028 in the naive FFT implementation to 68 with our proposed
optimizations. This is an impressive reduction with a factor 15,
although the overlap-add process does add some overhead. The
final optimized process is visualized in Figure 2.
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Figure 3: Overview of the overlap-add process for a single kernel.
In our proposed system multiple kernels are used and their results
are accumulated in the frequency domain.

4 EXPERIMENTAL RESULTS

To evaluate the performance improvement of our proposed tech-
nique for performing the sliding-window stage in the frequency-
domain, we compare our system to a normal pixel-domain imple-
mentation, for which the filter2D function from OpenCV (Brad-
ski, 2000) is used. Please note that the filter2D function auto-
matically switches to a frequency-domain implementation for the
kernels in our experiment larger than 10 × 10 pixels. Addition-
ally, we compare the performance to a naive frequency-domain
implementation, in which for each convolution two transforma-
tions and one inverse transformation is performed. For the fre-
quency transforms, the FFTW library (Frigo and Johnson, 2005)
is used, and the complex multiplication and additions are imple-
mented using SSE-optimized functions. All experimental execu-
tion times reported are the average over 50 executions, and the in-
dicated measured time consists exclusively of the sliding-window
stage of the detector, so the time for feature extraction is ignored.
The image is processed at a single scale.

The results are shown in Figure 4. Figure 4(a) shows that the FFT-
based implementations are not significantly affected by the kernel
size. The processing time of our proposed system increases only
slightly because the overlap-add method becomes less efficient
for larger kernels (more padding must be used). In Figure 4(b)
we show the impact of the number of feature maps on the perfor-
mance of the sliding-window stage. As expected, the processing
time increases linearly with the number of feature maps for all
apporaches, however we can observe that the processing time of
our proposed method increases at a much slower pace compared
with the regular and naive FFT implementations. The same can
be concluded about the number of classes in Figure 4(c), where
the performance of our proposed system scales much better than
the other implementation methods.

For a typical configuration of 20 classes, 48 feature maps and
8× 8 kernels, the processing time is reduced by a significant fac-
tor of 5.3. The previous benchmark results are for only one part
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(a) Effect of kernel size on performance. Square kernels are used
with sizes equal to the number on the x-axis. The number of fea-
ture maps is set to 48, and the number of classes to 20. Note that
the filter2D implementation automatically switches to an FFT-
based implementation for kernels larger than 10× 10 pixels.
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(b) Effect of the number of feature maps on performance. The
kernel is set to 8× 8 pixels, and the number of classes to 20.
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(c) Effect of the number of classes on performance. The kernel
size is set to 8× 8, and the number of feature maps to 48.

Figure 4: Experimental results of our benchmarks. Experiments
are performed on a Windows-7 PC with a CPU Core i7 920,
single-threaded. Processing times are in seconds, for feature
maps of 600× 300 pixels.

of the detection algorithm, the sliding window stage and only on
a single processing scale. In order to validate how big the perfor-
mance gain is in a more realistic setting, we have also performed
a benchmark of the whole detector, including reading 20 MPixel
images from the network, preprocessing, feature extraction on 45
image scales, mean shift clustering of results and writing them to
disk. We have found that in this scenario, the performance gain
is obviously less large than when measuring the sliding window
stage in isolation, but still amounts to a reduction of 28% in the
total time. We would like to emphasize that the detection results
are identical with our proposed sliding window system compared
with the traditional pixel domain implementation, therefore we
have not included performance figures.

5 CONCLUSIONS

We have proposed an optimized implementation of the sliding-
window stage of an object detection algorithm. This implemen-
tation significantly improves the scalability of the object detec-
tion algorithm with respect to the number of classes, the number
of feature maps and the kernel size. This proposal can be used
to achieve two goals. First, it gives an increase in computational
performance leading to faster processing times, which makes ap-
plications on large-scale datasets such as country-wide datasets
of panoramic images more feasible. Second, for the same com-
putation time, our technique enables improved detection perfor-
mance. The ways for implementing this approach have been pub-
lished already in literature, such as by increasing the number of
feature maps or by expanding the number of classes. By perform-
ing the convolutions in the frequency domain, and switching the
order of operations, multiple transformations can be eliminated.
Finally, when using the overlap-add method to split the large con-
volutions in many smaller convolutions, the memory usage of the
kernel maps is significantly decreased, so that they can be kept
in memory and recomputations are avoided. The only remain-
ing transformations in the system are the forward transformations
of the feature maps and the inverse transformations of the result
maps, which is a factor 15 less than a naive FFT implementation,
for the presented case of 20 classes and 48 feature maps.

Our benchmarks show that for a typical configuration of 20 classes
and 48 feature maps, the processing time is reduced by a factor
of 5.3. Further experiments show that the system is relatively in-
sensitive to variations in kernel size, number of feature maps and
number of classes. This means that many of the detector improve-
ments from literature, such as color planes, chi-squared kernel
approximations, sub-class splitting algorithms or shape models,
now carry a significantly smaller performance penalty.
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