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ABSTRACT:

In this paper we develop and compare two methods for scene classification in 3D object space, that is, not single image pixels get
classified, but voxels which carry geometric, textural and color information collected from the airborne oblique images and derived
products like point clouds from dense image matching. One method is supervised, i.e. relies on training data provided by an operator.
We use Random Trees for the actual training and prediction tasks. The second method is unsupervised, thus does not ask for any user
interaction. We formulate this classification task as a Markov-Random-Field problem and employ graph cuts for the actual optimization
procedure.

Two test areas are used to test and evaluate both techniques. In the Haiti dataset we are confronted with largely destroyed built-up
areas since the images were taken after the earthquake in January 2010, while in the second case we use images taken over Enschede,
a typical Central European city. For the Haiti case it is difficult to provide clear class definitions, and this is also reflected in the
overall classification accuracy; it is 73% for the supervised and only 59% for the unsupervised method. If classes are defined more
unambiguously like in the Enschede area, results are much better (85% vs. 78%). In conclusion the results are acceptable, also taking
into account that the point cloud used for geometric features is not of good quality and no infrared channel is available to support

vegetation classification.

1 INTRODUCTION AND RELATED WORK

Oblique airborne imaging is entering more and more into pho-
togrammetric production workflows. For a relatively long time
Pictometry and the Midas Track’Air system have been a stan-
dard in small format multi-head photography, but recently many
camera vendors released multi-head midformat camera systems.
Examples are IGI Pentacam, Hexagon/Leica RCD30 Oblique or
Microsoft Osprey. While initially the use was for manual inter-
pretation, the stable camera geometry and accurate image orienta-
tion procedures enable to perform automated scene analysis. One
of the outstanding properties of oblique airborne images is that
vertical structures, such as building facades or trees, get depicted.
While this is also possible in the border areas of vertical looking
nadir images, we have a viewing angle of at least 45° already in
the image centre of oblique images. The major shortcoming as a
consequence of this property is a large amount of occlusion which
needs to be addressed in any automated interpretation method.

In (Gerke, 2011) we demonstrated that for urban scene classifi-
cation of multiple view airborne images the fusion of radiome-
tric, textural and point cloud-based features in three-dimensional
object space showed better results compared to a purely image-
based 2D classification. The motivation behind that analysis has
been that for oblique images vertical structures within the scene
are visible and — opposed to nadir-looking images — can be de-
tected, but because of that the integration in the entire scene must
be in 3D space rather than in 2.5D space. We used oblique air-
borne images over Haiti after it has been severely affected by
the earthquake early 2010. A 3D point cloud was derived from
the multiple image matching method by Furukawa and Ponce
(2010). Features reflecting geometrical, textural and color pro-
perties were computed and assigned to voxels representing the
scene. While in (Gerke, 2011) we argued that so far 3D scene
interpretation was done only rarely and only relied on geometric
features, two very interesting and related works appeared in the

meantime (Ladicky et al., 2012; Haene et al., 2013). Both ap-
proaches combine the problem of 3D scene reconstruction and
labeling in a joint optimization framework and show some con-
vincing results.

Compared to the aforementioned methods we rely on existing
point cloud information, computed from the images beforehand,
in this case use state-of-the-art dense matching. This procedure
on the one hand splits up the whole problem into two steps, on
the other side we can use derived 3D features such as plane nor-
mals, their residulas explicitly or normalized heights for the la-
beling task; in both other works only the pure depth information
or image-based features can be exploited for the classification.

The presented former approach (Gerke, 2011) followed a super-

vised strategy, that is, a human operator needs to provide training

data for the voxel-based classification. For many applications,

however, an unsupervised and thus fully automatic method is of
greater value, e.g. for rapid scene interpretation. The main ob-

jective of this paper is to present an extension of the previously

defined work towards its embedding in a Markov-Random-Field

(MRF) framework, while optimization is carried out through graph
cut (Boykov et al., 2001). The approach uses ideas from the

optimization-based scene classification introduced by Lafarge and
Mallet (2012) but extends this towards the use of color features

and the detection of building fagades and discrimination of sealed

and non-sealed ground objects.

2 DATA PREPARATION

After image processing, i.e. bundle block adjustment and dense
image matching (Furukawa and Ponce, 2010), we assume to have
proper image orientation and calibration information and a dense
point cloud. In a preprocessing stage we perform two steps: 1)
filter the ground points and compute normalised heights for non-
ground points and 2) convert the point cloud into a voxel repre-
sentation.
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2.1 Ground filtering and height normalization

In order to be able to discriminate ground and off-ground objects
we initially label each point whether it is a ground point or not.
For this purpose we use the tool lasground, which is part of las-
tools (Rapidlasso, 2013). The software largely implements the
method proposed by Axelsson (1999), i.e. it is based on mesh
simplification. In a subsequent step for each off-ground point the
height difference between that point and the closest ground point
is computed and stored as the normalized height.

2.2 Spatial enumeration (voxelisation)

The motivation to do a voxelisation of the point cloud is to fi-
nally have a more regular point pattern. However, the plane-
based point segmentation and features computed from the point
cloud (normalized height, normal vectors, see below), are com-
puted from the original data. In this sense the voxels are only
carrying the information derived from the points inside a particu-
lar cube. The voxel cube side length is defined in order to ensure
a good sampling of the original data, so as a rule of thumb the
mean ground sampling distance is chosen.

3 METHOD

The workflow of processes within the method we propose is sket-
ched in Fig. 1. The input is given by the point cloud data as de-
rived from image matching, its voxel representation and the origi-
nal images. Features are computed from the point cloud and from
the images and assigned to each voxel. Ultimately we are aim-
ing at classifying segments which are defined by geometric fea-
tures. To this end we first perform a region growing algorithm,
introduced by Vosselman et al. (2004), yielding a segmentation
according to planarity of segments. All voxels not assigned to
a planar segment are clustered through a connected components
analysis and each cluster is treated as independent segment in
the following. The segmentation information is then assigned to
the voxels and feature values are computed per segment. We use
two different independent classification schemes: a supervised
approach, based on Random Trees (RTree, (Breiman, 2001)), and
an unsupervised, rule-based approach which applies a graph cut-
based optimization scheme.

3.1 3D geometry- and image-based features

Points from image matching explicitly represent the geometry of
objects. Man-made objects are mainly composed out of planar
faces, as opposed to natural surfaces like trees and shrub. In ad-
dition the height above the ground surface helps to distinguish
building roofs and trees from ground. So, beside the normal-
ized height, computed in the pre-processing step, we estimate
per point the normal of a face, composed out of the 10 closests
points. In particular we use the residual of the normal, which
helps to distinguish smooth from rough surfaces. The residual
of the normal corresponds to the smallest eigenvalue of the co-
variance matrix associated with the centre of gravity, computed
from all points under consideration; the normal vector is the cor-
responding eigenvector. The Z-component of the normal is used
as well in order to distinguish horizontal from vertical and other
planes.

Concerning image-based features we compute color values (Hue,
Saturation, in this case), texture in the form of a standard devia-
tion in a 9x9 matrix around each image pixel, and straight lines.
The latter one is computed using the line growing algorithm by
Burns et al. (1986). For each image pixel which is part of a

straight line we encode the length of that line as feature, asso-
ciated to that pixel. We use straight lines because our assumption
is that at man-made structures, such as roofs or road surfaces we
find linear structures and thus the incorporation of such an infor-
mation into the classification will help to distinguish man-made
from natural objects.

We use a visibility analysis which checks for every voxel if the
line of sight between that voxel and the projection centre of the
respective camera is blocked by any other voxel. In order to avoid
effects of void areas caused by an insufficient matching perfor-
mance the voxels used for this test are dilated by factor 10. De-
tails of this method can be found in (Nyaruhuma et al., 2012).
Thanks to this visibility check we ensure that image based fea-
tures are assigned to the correct voxel when we back project the
voxel to image space. Since we have overlapping images, values
for a certain feature will be observed in multiple images. There-
fore, the final feature value will be computed from the median of
all input values.

3.2 Combination of features per segment

We use the segment as the main entity for classification, so we
need to compute per feature a joint value representing all voxels
inside this segment. To this end we compute a mean value per fea-
ture, associated to each segment. Further we compute a standard
deviation which is used as weight in the optimization-based clas-
sification. To summarize the following features are available per
segment: The normalized height helps to distinguish ground from
non-ground segments, the z-component of plane normal helps to
distinguish horizontal from slanted or vertical planes (facades),
the residual of plane normal is a measure for segment roughness.
In addition we use 2 color features: hue, saturation, the standard
deviation in a 9x9 window, which is a texture measure and related
to surface properties, and finally we use straight line length and
direction which provide evidence for man-made structures.

3.3 Supervised segment classification using Random Trees

One of the objective of this paper is to compare the performance
of a supervised classification approach and an optimization tech-
nique which does not need training information, using the same
features.

Two state-of-the-art machine learning techniques which showed
good results in our previous experiments (Gerke, 2011) are adap-
tive boosting ”AdaBoost” (Freund and Schapire, 1996) and Ran-
dom Trees (Breiman, 2001). Because of the similar results ob-
tained earlier we believe that the actual selection of a supervised
method is not very critical here, so we chose the RTrees approach
for the processing to leave space for the actual comparison bet-
ween supervised and un-supervised methods in the result section.

In a manual processing step an operator creates reference data by
labeling the original images. The labels are then transferred to the
point cloud through a simple back projection of the 3D points to
the images, only considering the actually visible points in the re-
spective image. The feature vector per segment and the reference
class are then fed into a RTree learning scheme. In order to moni-
tor the quality of learning (e.g. to detect overfitting) the training
and prediction is done several times, where each time a differ-
ent subset (about 20%) of reference data is used for the training.
Since in later experiments no significant difference showed up
between the single runs, only the first result is used in later sec-
tions to simplify the analysis.
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Figure 1: Entire workflow from point clouds and images to classification

3.4 Fully automatic classification in a MRF framework

The advantage of this scheme over other techniques is that it com-
bines observations (data term) with a neighborhood smoothness
constraint. Among a selection of optimization methods to mini-
mize the overall energy, the graph cut (Boykov et al., 2001) ap-
proach showed good performance in the past. The representa-
tion is in the 3D lattice, i.e. each voxel will retrieve an individual
label, and thus also an individual data term and the neighbor-
hood is defined in the 3D lattice, as well. However, in order to
represent the segmentation the features as computed per segment
will be used for the respective voxels inside. We compute energy
data terms for the classes roof, tree, facade, vegetated ground,
sealed ground and roof destroyed/rubble and also add a class
background to represent “empty” voxels. In the following the
class roof destroyed/rubble will be named rubble.

The total E energy is composed out of the data term and a pair-
wise interaction term:

E = ZDp(fp)J’_ Z Voa(fps fa),

peEP (p,a)EN

6]

where D, (fp) is the data energy at point (i.e. voxel) p for class
fp- Vpq is the pairwise interaction potential, considering the neigh-
borhood N. In particular we use the Potts interaction potential
as proposed by Boykov et al. (2001) which adds a simple label
smoothness term:

qu(fpyfq) = )\qu, with
_— {0, if f,=f, and

1, else

Features contributing to the data term are normalized to the range
[0,1]. Internally all features are stored in 8bit images, i.e. in
a resolution of 1/256. Especially for height values this is the
reducing factor, and needs to be taken into account. The feature
values contribute to factors for the total energy, depending on the
actual class. Each factor S is initialised with 1 to avoid that in
case a feature does not contribute evidence for a particular class
the total energy vanishes. The features and the derived factors are
defined as follows:

Normalized Height m g : the normalized height coded in decime-
ter dm. In order to reflect the fact that ground objects have a
low height, and — depending on the object type — roofs or trees
have a significantly large height above terrain we compute some
values mu, = |mg — z|. The fact that we can store only 256
different values means that we can represent normalized heights
up to 25.5m. All heights above this value are set to that maxi-
mum. For our task this does not restrict the functionality since the
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normalized height is basically used to differentiate ground from
non-ground features only.

min(mmso, Mueo, Mmoo), if fp=roof

mipso, if fp € {tree,facade}

Su = : k
min(mus, muso), if fp=rubble

mps, else

Note: The heigt is defined in dm, hence the energy formulation
for roofs is in this example best for buildings up to 9m, but can
easily extended for taller buildings. For rubble we cannot really
use knowledge concerning its normalized height. It can be close
to ground, or form a relatively tall rubble pile.

Line Length m— and mpy: if one or more lines are assigned to
the segment where the voxel is located, we compute two different
values: mr,_ the difference to the shortest line in the overall area
and mp+: the difference to the longest line. Those two values are
used in the energy computation, depending on the class assuming
that longer lines can be found at man-made structures, shorter
lines in natural environments or at destroyed buildings.

s~

Plane Normal, Z-component mz: to distinguish horizontal from
vertical and other planes

mpry, if fp € {roof facade}

mr—, else

mg, if fp=facade
g, — 1 —mg, if fy=sealed_grnd
Z- min(1 —mz,[0.5 —mz|), if fp=roof

min(mz,1 —mz,|0.5 —mz|) + C, else

Note: For tree, vegetated ground and rubble the normal vector
cannot contribute any evidence — it is arbitrary. In order to avoid
that this ignorance has an influence on the total energy, the factor
for those classes is the same as the minimum energy from the
other classes, with an added very small constant energy C'

Texture: Standard Deviation mr: standard deviation in a sliding
9x9 window in an image. Since we assume a large value for
trees we also compute the overall maximum standard deviation
MTmaz- FOr tree and rubble we expect larte m7 values.
g {|mT — MTmaz|, if fp € {tree,rubble}
=

mr, else
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Color mc: We use the RGB values to compute the saturation
(SAT) and HUE values. We observed that the saturation is gen-
erally high for vegetation, while it is low for sealed areas and
rubble:
S, — 1—mcgg, if fp € {tree,veg_grnd}
@5 = mcg, else
In the HUE definition the color green is defined at 120°. Hence

we assume that vegetation has a peak around that hue value, while
other classes show a relatively small signal there:

S, — 1 —|mc, — 1207, if f, € {tree,veg_grnd}
17 Y min(l — |mey, |, 1 — [me,, — 240]), else

*: For the sake of simplicity the fixed angular values are given in
the original unit. In practice they are also scaled to [0,1]. -

To consider the uncertainty inherent in the feature values result-
ing from the merging of values from different views we add a to
each factor a penalizing energy which is proportional to the stan-
dard deviation computed during the merge of feature values per
segment.

In conclusion each feature contributes to a final factor S5 =
So+50,,..,, per object class, which is defined in [0,1]. The energy
computed from all features voting for a certain label p is

Dp(fp) = S;-I(fp) 'S/L(fp) S/Z(fp)S/T(fp)
SICS (fp) : S/CH (fp)

In the practical implementation of graph cut we need to con-
vert the energies into integer values. Some internal experiments
showed that an actual ranking of the energy per entity gives the
best result. That is, we assign an energy defined in [0, N — 1] —
where N is the number of classes — to Dy (fp), according to the
sequence in the original D, (fp) computation.

4 RESULTS
4.1 Haiti test area

In our experiments we concentrated on the same test area as de-
scribed in (Gerke and Kerle, 2011; Gerke, 2011). Pictometry1
images were acquired over Port-au-Prince, Haiti, in January 2010
a few days after the earthquake. The ground sampling distance
(GSD) varies from 10cm to 16¢m (fore- to background). Due to
varying image overlap configuration the number of images which
observe a particular part of the scene varies from 4 to 8. In this
experiment only oblique images were used since the nadir ima-
ges are shipped only after ortho rectification, and without further
specification of the ortho image production process. See Fig. 2
for some example images and results. Opposed to the experi-
ments conducted earlier we are now using more images (11 in-
stead of only 3). Earlier we only used three images to directly
compare per-image to object space classification. Here we con-
centrate only on the object space and thus exploit all the informa-
tion we have.

4.1.1 RTrees result The confusion table showing the RTrees
classification per-segment result using the validation subset of the
reference data is given in Table 1. Percentages refer to the total
number of reference entities, i.e. rows sum up to 100% (+because
of round-off errors). The overall classification accuracy — com-
puted as the normalized trace of the confusion matrix —is 73.1%.

Lhttp://www.pictometry.com

For the least clearly definable classes rubble and sealed_grnd we
observe a strong interclass confusion: actually almost 29% of the
sealed_grnd got classified as rubble. This has certainly got to do
with the varying height levels of rubble. This statement is also
supported by the observation that approximately 14% of rubble
segments got labeled roof. Other interclass confusion worth men-
tioning here concerns fagades and roofs: 10% of all facade seg-
ments got labeled as roof. Typically this misclassification occurs
at slanted roofs.

REF— Facade | Roof Rubble | Seal Grd | Tree

Facade 0.721 0.105 0.093 0.070 0.012
Roof 0.046 0.796 0.086 0.060 0.011
Rubble 0.078 0.143 0.681 0.076 0.023
Seal_Grd 0.000 0.048 0.286 0.619 0.048
Tree 0.049 0.049 0.024 0.024 0.854

Table 1: Confusion matrix RTrees Haiti, overall accuracy 73.1%

Compared to the result published earlier we obtain similar results
for all classes except for tree, which has a correctness here of
85% while it was much worse earlier (around 25% only). Two
reasons might explain this. First, in the earlier work we did not
use the normalized height explicitly, and second, the use of mul-
tiple images renders more trees visible as before.

4.2 Unsupervised result

The per-voxel result from the unsupervised, MRF-based method
for the Haiti testdata is shown in the confusion matrix in Table 2.
Here the problem of the unclear object class definition for rubble
becomes even more obvious than in the supervised result. Each
object class got labeled as rubble by at least 24% (building), and
up to 67% (sealed ground). Another reason for classification er-
rors is relating to the height normalization, and in particular the
ground filtering. Especially in destroyed areas, for instance at
rubble piles, there is a kind of smooth transition between ground
and non-ground features, and the latter ones might then get la-
beled as ground. This is observable in the results as well: actually
12% of all roof voxels got labeled as sealed_grnd. The major dif-
ferentiation in the energy function for those two classes is made
from the normalized height. In the result from the supervised me-
thod that problem does not become this obvious since the height
uncertainty gets implicitly modeled during RTrees training.

REF— Facade | Roof Rubble | Seal Grd | Tree
Facade 0.665 0.042 0.243 0.030 0.021
Roof 0.097 0.441 0.344 0.118 0.001
Rubble 0.031 0.084 0.836 0.044 0.006
Seal_Grd 0.023 0.004 0.671 0.267 0.035
Tree 0.008 0.042 0.356 0.009 0.586

Table 2: Confusion matrix unsupervised through MRF/graph cut
Haiti, overall accuracy 58.9%

4.3 Enschede test area

To use the Haiti data for the experiments has the drawback that
object classes in the scene after a major seismic event are not as
clearly definable as in an intact region. For this reason we will
also demonstrate the new method in a dataset showing a typical
European sub-urban scene. The images over Enschede were ac-
quired by Slagboom en Peeters® in May 2011. This company
mounted five Canon EOS 5D Mark II cameras in one head, using
the same Maltese Cross configuration as Pictometry: one camera
pointing into nadir direction and the remaining ones into the four
cardinal directions under a tilt angle of 45°. Due to the low flight
altitude of 500m above ground the GSD varies from 5 to 8 c¢m,
and the image overlap is at least 60% in all directions, i.e. making

2http://www.slagboomenpeeters.com/
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Figure 2: Example oblique images from Port-au-Prince and derived information. Upper row: oblique images facing North, East, West
direction. Lower row: colored point cloud computed with PMVS2 (Furukawa and Ponce, 2010), the same with grey values representing
height, zoom in to an example area, result from supervised classification, result from MRF-based classification. Images: ©Pictometry,

Inc.

Legend for labels:

stereo overlap available from all perspectives. Residuals at check
points are quite large, they are in the range of more than 2 pixels
(RMSE up to 20cm), which also has an effect on the point cloud
computation; the standard deviation computed from plane fitting
residuals partly goes up to 50cm, see (Xiao, 2013) for a more
detailed evaluation. In Fig. 3 some example images showing the
area are displayed in the upper row. The scene shows some quite
large industrial halls, but also a typical settlement area with in-
dividual free standing houses of different construction type. The
bottom row shows the colored point cloud of the entire test area,
first real colors, then a gray coded height visualisation. The centre
image shows a zoom-in to a region of interest and the two right
hand images give again the classification result (RTrees next to
the middle image, MRF-based right hand).

4.3.1 RTrees result The confusion matrix in Table 3 shows
better overall accuracy compared to the Haiti dataset; it is almost
85%. Remarkable is again the confusion of roofs and facades:
12% of facades got labeled as roof which is mainly due to small
structures at facades like extensions with a flat roof structure,

g

Veg Ground Sealed Ground
Figure 3: Example oblique images and derived information for Enschede. Upper row: oblique images facing North, East, West

direction. Lower row: colored point cloud computed with PMVS2, the same with grey values representing height, zoom in to an
example area, result from supervised classification, result from MRF-based classification. Images: ©Slagboom en Peeters B.V.

which are facade in the reference, but got classified as roof. More-
over segments in the upper part of facades are often classified as
roof due to the height. Another main confusion concerns trees
and ground vegetation: more than 14% of tree-segments got la-
beled veg_grnd. In this case the quite fuzzy definition of those
classes causes most of the confusion: close-to-ground vegetation
like bushes is labeled by the operator as ground vegetation, how-
ever, due to their elevation the classifier might confuse it with
trees. Since we do not have access to infrared channels in this
case the classifier cannot make use of spectral information to fur-
ther separate those classes. This is also the reason for a certain
interclass-confusion between sealed and vegetated ground seg-
ments.

4.4 Unsupervised result

The overall classification accuracy for our unsupervised, MRF-
based approach is 78.3%, i.e. some 6% worse compared to the
supervised method, but by 20% better as for the Haiti data. Look-
ing closer at the confusion matrix in Table 4 reveals similar ten-

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 29



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume 11-3/W3, 2013
CMRT13 - City Models, Roads and Traffic 2013, 12 — 13 November 2013, Antalya, Turkey

REF— Facade | Roof Seal_Grd| Veg-Grd | Tree

Facade 0.806 0.122 0.054 0.002 0.015
Roof 0.075 0.876 0.036 0.001 0.013
Seal_Grd 0.032 0.009 0.905 0.043 0.012
Veg_Grd 0.000 0.000 0.069 0.862 0.069
Tree 0.019 0.019 0.049 0.143 0.771

Table 3: Confusion matrix RTrees Enschede, overall accuracy
84.7%

dencies as for supervised case, but the interclass confusions are in
general larger. The mix-up of roofs and fagades on the one hand
and trees and ground vegetation on the other hand is significant
here as well. Since the height variations are not modeled in the
MREF energy definition, the confusion is even larger than in the
supervised case. The same holds for the modeling of color fea-
tures to support the discrimination between sealed and vegetated
ground.

REF— Facade | Roof Seal_Grd| Veg.Grd | Tree

Facade 0.628 0.231 0.073 0.051 0.018
Roof 0.066 0.838 0.071 0.006 0.020
Seal_Grd 0.002 0.001 0.800 0.196 0.000
Veg_Grd 0.000 0.000 0.029 0.968 0.003
Tree 0.012 0.045 0.037 0.303 0.602

Table 4: Confusion matrix unsupervised through MRF/graph cut
Enschede, overall accuracy 78.3%

5 DISCUSSION AND CONCLUSIONS

We have developed and tested two different 3D scene classifica-
tion methods; one was a supervised scheme, based on the Ran-
dom Trees machine learning technique. The second one was for-
mulated in a MRF framework, where the graph cut approach was
used for energy minimization. All in all most of the results can
be considered satisfactory, however, there are some specific prob-
lems. If object classes are not clearly defined, that is they sig-
nificantly share properties with other classes, like rubble in our
example, the MRF-based method basically fails. The relatively
good result for the same method, but in a better structured envi-
ronment shows that such unsupervised optimization method are
applicable in real-world scenarios. In fact, in that case the overall
accuracy is only worse by 6% compared to the supervised me-
thod. We assume that the quite noisy point cloud from the image
matching has also an impact on the classification quality, at least
for the unsupervised method. Thus in further work we need to
have a closer look into that. A problem inherent in the approach is
its overall dependency on the 3D point cloud accuracy and com-
pleteness: if parts of the scene are not represnted in the point-
cloud, e.g. because of poor texture, the respective area does not
get considered at all. This is a drawback and would need some
attention in the future.

Apart from that the whole classification will potentially become
more accurate in the future. Upcoming multiple camera heads
like Hexagon/Leica RCD30 Oblique or Microsoft Osprey will
have NIR channels available which will make the vegetation clas-
sification much simpler as in our case where only RGB was avai-
lable. In addition the mid-frame cameras used in those systems
are supposed to have a more stable camera geometry and better
lenses compared to the DSLR cameras employed here.
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