
INTEGRATION OF SPECTRAL INFORMATION  

AND PHOTOGRAMMETRIC DSM FOR URBAN AREAS CLASSIFICATION 
 

F. Nex 
a
, M. Dalla Mura 

b
, F. Remondino

  a
  

 

a
 3D Optical Metrology unit, Bruno Kessler Foundation (FBK) – <franex, remondino>@fbk.eu, http://3dom.fbk.eu          

b
 GIPSA-Lab, Grenoble Institute of Technology – mauro.dalla-mura@gipsa-lab.grenoble-inp.fr, http://www.gipsa-

lab.grenoble-inp.fr 

 
Commission III, WG 4 

 

KEY WORDS:  Classification, Urban,  DSM, Matching, Spectral 

 

ABSTRACT:  

The automated classification of urban areas in one of the main topic in the Geomatics domain. Several papers dealing with this topic 

have been already presented in the last decade. Most of these approaches uses multi-spectral or LiDAR data or both of them as input. 

In this paper, an algorithm for urban areas classification based only on overlapping RGB images is presented. The integration of 

radiometric and geometric information derived from aerial images is exploited in order to extract the three main classes of urban 

areas (i.e. building, vegetation and road) in automated way and without prior information. A photogrammetric Digital Surface Model 

(DSM) is firstly generated applying dense image matching techniques and this information as well as some spatial features provided 

by morphological filters are combined to derive a first classification. Subsequently, a thematic classification of the surveyed areas is 

performed considering the surface’s reflectance in the visible spectrum of the used images and the multi-image information provided 

by the overlapping images. Range and image information are so merged in an algorithm that allows the reciprocal and iterative 

sharing of information in order to increase the reliability and completeness of the classification process. After a detailed description 

of the algorithm, the achieved results over dense urban areas are shown and discussed. 

 

 

1. INTRODUCTION 

It is well known that remote sensing images can be extremely 

useful for the monitoring of Earth’s surface evolution (Richards 

and Jia, 2006) and in particular for urban areas analyses 

(Donnay et al., 2001). In most cases, a thematic classification of 

the surveyed scene is requested. Different typologies of data, 

regardless their origin (LiDAR acquisitions, photogrammetry, 

cadastral maps) have already proven to provide valuable 

information for classification purposes. Some works considered 

the use of LiDAR data, as the multi-echo (or full waveform) 

information can be very useful for the vegetation extraction and 

the building detection (Lafarge and Mallet, 2012; Fujii and 

Arikawa, 2001). Other papers consider the integration between 

LiDAR and spectral images (Guo et al. 2011; Awrangjeb et al., 

2010). On the other hand, aerial and satellite images are 

normally employed for classification purposes exploiting the 

information provided by different bands on urban scenes (Ok et 

al., 2013; Licciardi et al., 2012; Longbotham et al., 2012; 

Pedergnana et al., 2012; Longbotham et al., 2011; Pedergnana 

et al., 2011; Sirmacek and Ulsalan, 2011) or forest areas 

(Dalponte et al., 2008). Only some of them exploit the 3D 

information achievable from multispectral images (Zebelin et 

al., 2006; Krauss and Reinartz, 2010). 

In the practical cases, up-to-date and dense LiDAR data or 

multispectral images might not be available. The problem 

becomes more complex when the availability of both this data is 

needed. The availability of overlapping images acquired over 

the same scene is a common scenario thanks to the acquisitions 

of photogrammetric blocks from airborne sensors. Their spatial 

coverage is usually limited with respect to satellite imagery 

whilst they can provide a richer description of the scene thanks 

to the higher spatial resolution and the angular information.  

The main application of photogrammetric blocks (with 

panchromatic and multispectral images) is the generation of 

DSMs of the surveyed area via image matching approaches and 

of ortho-rectified images.  

In this work we focus on the analysis of photogrammetric 

blocks acquired in the visible domain (i.e. RGB images). Thus, 

no information is available in the Near InfraRed (NIR) region. 

This choice is motivated by the fact of using existing aerial 

images and also by the constantly increasing spread of UAVs 

mounting commercial SRL or even compact cameras which 

acquire only RGB images. 

The paper’s goal is to perform a classification of the scene 

exploiting the characteristics of series of overlapping RGB 

images. Such kind of images can provide a rich description of 

the scene since objects on the ground appear in several images 

of the sequence. Furthermore, the height information provided 

by the DSM can greatly increase the discriminability of the 

classes. Nevertheless, such processing is not straightforward 

since areas on the ground might appear in less images than 

others and the generated DSM can show some imprecisions 

(that implies a not correct orthoimage). In a previous work, 

Dalla Mura et al. (2012), we proposed a supervised 

classification of an urban area, considering overlapping RGB 

images and a generated DSM. However, the assumption to 

dispose of a labelled set of samples can be critical, since in 

many operative scenarios such information might not be 

available, or incomplete (if only acquired on a portion of the 

scene) or not fully representative (when they are insufficient for 

describing the diversity of a class). For this reason in this work 

the scene classification problem in an unsupervised way is 

considered. Both the spectral information of overlapping images 

and the depth information provided by the extracted DSM are 

exploited and merged to increase the completeness and 

reliability that could be achieved by using this information 

separately. Three classes are considered, namely vegetation, 

roads and building roofs, as they represent the main land cover 

types that are present in most of the European urban areas and 

that are valuable information for map updating and land use 

monitoring purposes. In the presented approach the use of 

photogrammetric processing gives a double contribution to the 

classification of urban areas. On the one hand, it allows the 

definition of correspondences between pixels on different 

images: in this way multiple spectral information is available of 

corresponding points providing a richer characterization of the 

scene which can be exploited for classification. On the other 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W3, 2013
CMRT13 - City Models, Roads and Traffic 2013, 12 – 13 November 2013, Antalya, Turkey

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 67



hand, the classification based only on spectral pixel values can 

be guided and integrated with 3D coordinates information 

increasing the capabilities of the classification process with 

respect to the only use of colour information. Since in this work 

we are interested in an unsupervised approach, no information 

on the scenes analysed is considered. Thus, the discrimination 

into the three land cover types of interest is given by performing 

a sequence of operations based on the different characteristics 

of the classes. The proposed architecture is thus based on some 

a priori assumptions (e.g., buildings are off-ground objects, 

vegetation might be on- or off-ground but spectrally 

homogeneous, etc.) which drive a set of hierarchical decision 

rules that are implemented in the analysis. The cooperation 

between range and image information is exploited over the 

whole process in order to increase the quality of the achieved 

classification results. 

In the following sections, the classification performed using 

DSM and image data separately will be firstly described. Then 

it is presented how this information is shared and merged. 

Finally the results achieved over two dense urban areas (Torino 

and Marseille) are reported and commented. 

 

2. METHODOLOGY 

In this section the description of the adopted classification 

methodology is described. It can be divided in two main steps 

that are then merged together in order to share their 

complementary information: (i) the DSM classification and (ii) 

the image classification. For the sake of simplicity, these parts 

are initially described separately in the following sections. Their 

integration for the final classification process is described in the 

last section.  

 

2.1 DSM geometric classification 

The classification of a photogrammetric DSM can be a 

demanding task, as no multi-echo information is available. The 

classification itself must consider only the geometric 

information of the “single return” DSM provided by dense 

image matching techniques (Pierrot-Deseilligny and 

Paparoditis, 2006; Hirschmuller, 2008; Krauss et al., 2008). In 

the presented approach the MicMac (Pierrot-Deseilligny and 

Paparoditis, 2006) software have been used for DSM extraction. 

Photogrammetric DSMs (Figure 1a) are usually denser but 

noisier than the LiDAR data and can have several mismatches 

in correspondence of occluded areas and shadows. For this 

reason a preliminary DSM filtering is normally performed. 

Man-made objects on urban areas are usually characterized by 

local flat areas (roofs, roads, etc.) with reduced slope variations. 

On the other hand, matching blunders are usually characterized 

by chaotic and rough depth variations. Thus the estimation of 

the local reliability of points’ height can give a good indication 

about of each point location. The local reliability is computed 

considering the height variations in 8 different directions. A 

point is considered unreliable when its height is different from 

the values of its neighbourhood (Nex and Remondino, 2012): a 

threshold of 2-3 GSD (Ground Sampling Distance) is usually 

adopted. An example of the achieved reliability maps is shown 

in Figure 1b. Unreliable areas are usually excluded from the 

DSM in order to prevent errors in the successive classification 

processes. The filtered DSM is finally used as input for the 

successive off-ground region extraction (Chen et al., 2006; Lee 

et al., 2008; Awrangjeb et al., 2010; Habib et al., 2010). In 

particular, the areas in correspondence of buildings and 

vegetation are extracted with an iterative regular grid filtering 

(Nex and Remondino, 2011). This method starts from the 

assumption that the height of a point on the ground is locally 

lower than the height of neighbouring non-ground points. 

 

   
(a)                                       (b) 

Figure 1: Original DSM (a) and unreliable areas in white (b). 

 

The approach splits the DSM in patches and considers two 

different problems: (i) the ground height variations over a large 

patch and (ii) the presence of buildings of large dimensions that 

makes the retrieval of the ground height more complex if a too 

small DSM patch is considered. The ground height is thus 

iteratively computed on different DSM patch dimensions. At 

each iteration (4-5 iterations are normally performed) the patch 

is halved  and the most representative value of the ground 

height is determined. The minimum height values on DSM 

patches are initially considered and their consistency with the 

ground value of the former iteration is checked in order to 

achieve reliable results in dense urban areas with buildings of 

very different heights and dimensions. Off-ground points are 

defined considering points higher than a defined threshold (2.5-

4 m) with respect to the ground height value. The approach has 

shown to be reliable even when the terrain slope increases and 

the parameter settings do not significantly influence the 

achieved results (Figure 2a). 

 

  
(a)                                       (b) 

Figure 2: Off-ground region for the DSM of Figure 1a (a) and 

filtered vegetation (b). 

 

The off-ground extraction allows to separate what is on the 

ground from the regions that are above (primarily buildings and 

trees) but the distinction between buildings and vegetation 

cannot be easily defined and achieved. Most of the vegetation 

has been filtered during the unreliable areas filtering (Figure 

1b), while the remaining areas are sufficiently smooth to appear 

similar to building shapes. Anyway, the remaining vegetation 

areas are characterized by irregular height variations and 

contours. For this reason, two different features have been 

extracted to find out these regions: a variability map and the 

perimeter/area ratio. For each pixel the variability Vc of the 

pixel c can be defined as: 
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where i, j define row and column of the image with respect to 

the considered pixel c and Nw is the number of reliable pixels of 

the window; wij is equal to 1 when the pixel is reliable, 0 

otherwise; Z is the height value. The variability value will be 

very low on flat areas (i.e. roofs), where the height differences 

of neighbouring points are small, but it will be higher in 
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correspondence of irregular shaped regions (i.e. vegetation). 

Therefore, considering also the contours of the regions, areas 

characterized by irregular contours and high values of 

variability in height can be classified as vegetation while areas 

with regular contours and low variability maps are defined as 

buildings. The variability threshold is usually set equal to the 

image GSD (Ground Sampling Distance) dimension, but this 

threshold could differ according to the quality of the data. The 

perimeter/area ratio has a threshold ranging between 1 and 2. 

An area is classified as vegetation when both the thresholds are 

overcome. These two features do not allow a complete 

distinction and classification but they usually provide an overall 

good indication of some of the vegetated areas which are then 

used as training areas by the image classifier (Figure 2b). 

 

2.2 Image classification 

As mentioned, an unsupervised approach for land cover 

mapping was chose to overcome the unavailability of a training 

set or the limitations related to an incomplete set of samples. 

For performing the classification we considered k-means (Duda 

and Hart, 1973), a widely used clustering algorithm that assigns 

each pattern in the classification problem to the cluster with 

closest centroid. The algorithm requires the user to specify the 

number of clusters to search and performs iteratively the 

updating of an arbitrary initial grouping until a stable 

configuration is reached.  Since this algorithm considers all the 

samples in the process and requires the computation of 

distances between each pairs of patterns (here considered as 

Euclidean distances), the computational load can be very high 

for large datasets. For this reason the algorithm is run only on a 

subset of pixels selected randomly from the full image. The 

experimental tests showed the clustering are not significantly 

influenced by the size of the subsets considered.   

A supervised algorithm is also used for deriving a final 

classification map of the scene and considering the results of the 

initial clustering as labeled samples for the training phase. This  

operation was performed in order to “propagate” the decision  

given by the k-means on a subset of pixels to all the others in 

the image.  Random Forest (RF) is considered as classifier due 

to the robustness and high performances achieved in the 

classification of remote sensing images (Breiman, 2001). RF is 

an ensemble of Classification And Regression Trees (CART). 

They are considered together, forming a forest, in order to 

derive the decision for each pixel. Each tree in the forest is 

constructed considering only a random subset of all the labelled 

samples for training and a random subset of the available 

features. These characteristics avoid the classifier to over-fit the 

known data. The final decision is obtained by majority voting 

on all the decisions of the single trees. In all the experiments, 50 

trees were considered in the forest and the number of features 

considered in each split was set to the square root of the total 

number of features - suggested default value in (Breiman, 

2001). 

 

2.3 Integrated classification workflow 

The photogrammetric DSM and image spectral analysis provide 

complementary information that can be merged together in 

order to improve the results achieved separately by each 

typology of classification. The proposed integration 

methodology can be divided in two main steps:  

(i) the training phase (that automatically defines the suitable 

training samples for the classifier);  

(ii) the final classification.  

The training phase can be divided in several sequential steps, as 

shown in Figure 3. The input data is provided by the available 

 

Figure 3: Scheme of the training methodology. 

 

overlapping images. The samples available for training the 

classifier are not given a priori but are generated by the 

unsupervised clustering performed on 3D data. 

The DSM, the vegetation map, the variability and off-ground 

regions are derived according to the methodology presented in 

section 2.1. An ortho-image (Oi) and the visibility map (Ωi) for 

each image are also computed. Then, the intersection of all the 

Ωi is performed in order to define areas that is visible from all 

the image (ΩTOT): only this area will be considered on the ortho-

images (Oi ∩ ΩTOT). Then the RGB space is converted in the 

L*a*b* space. In L*a*b* space the color information is 

confined in the a* and b* channels and the luminance of the 

color in L*, whereas these are mixed in the RGB space. Thus, 

by considering the a* and b* channels it is possible to perform 

more effectively an analysis focused on the color information 

rather than considering the RGB version of the data. 

Each Oi  is then clustered in 3 different classes: C1, C2 and C3. 

Behind this step there is the assumption that the samples 

belonging to neither of the three classes are much less in 

number with respect to the other classes. If this assumption is 

not valid, it will be likely to have mixed results. The found 

clusters are intersected with the maps obtained from the analysis 

of the DSM (variability, vegetation and off-ground) in order to 

extract suitable training samples for the building, vegetation and 

road classes. To do that, the following rules are considered: 

 

     (2)(22 

                                                       (2) 

 

 

 

where TR defines the training samples and Ci
* defines the 

maximum overlapping class with the term in brackets of the 

equation: e.g. C1
* will be the more frequent class on the region 

defined by (Offground  ∩ Variability). These rules relies on the 

different characteristics of the thematic classes. For instance, 

buildings will typically show low variability and height above 

the ground.  
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After having found the training samples the training samples are 

used as input in the second part of the methodology, when the 

classification of the whole urban area is performed (Figure 4). 

Each image of the dataset is converted to L*a*b* space and it is 

classified separately using the RF classifier trained on the 

available samples labelled by the clustering algorithm (10000 

samples per class were considered in the experiments). The 

classifications achieved on each image are then merged in a 

unique map with a majority rule. In this way, most of the noise 

and the uncertainties that can be detected on a single image can 

be compensated by the multi-image approach. This spectral-

based classification allows to achieve reliable results in most of 

the cases. Anyway, several misclassification can be still 

detected: some regions on buildings can be still classified as 

vegetation and roads. For this reason, the 3D information 

provided by the DSM and off-ground classification is used to 

correct the topological discrepancies. Points initially classified 

as roads (i.e. roof niches) and located in the off-ground region  

(and connected to other roofs) are re-classified as roofs. Then, 

little isolated regions (i.e. little roof region in the vegetation 

area) are re-classified using the information provided by the 

neighboring points.  

 

 

Figure 4: Scheme of the classification methodology 

 

 

3. INPUT DATA AND PERFORMED TESTS 

Two different datasets were used for testing the developed 

methodology. For both image blocks a photogrammetric DSM 

was derived using an optical flow algorithm implemented in 

MicMac. The spatial resolution of the achieved point cloud was 

set equal to the image GSD.  

 

3.1 Torino dataset (Italy) 

The dataset is composed of three aerial RGB 8-bit images 

acquired with a DMC camera over an area of Torino (Italy) and 

covers about 0.5×0.5 km. The image GSD is 12 cm. The 

surveyed scene is representative of a dense European urban area 

and it features several high buildings (up to 25 m), trees, roads, 

a terrain height variation and shadows in the streets. Only a 

subset of the original images was considered in the experiments, 

in particular the area visible in all the images (Figure 5a).  

The achieved results show the off-ground region (Figure 5b), 

the roof region exploiting the spectral information (Figure 5c) 

and the final classification (Figure 5d): red represents the 

building class, blue roads and green vegetation; black areas are 

in correspondence of unclassified regions (due to missing data 

in the DSM). The roof region can be generally reconstructed in 

a quite correct way. Several problems still remains in the 

vegetation and shadow regions: these problems could be due to 

the number and radiometric quality of the images. The achieved 

results were compared with a ground truth (defined by visual 

inspection) as proposed in (Dalla Mura et al., 2012; Congalton 

and Green, 2009). A quantitative evaluation was performed by 

computing class-wise and global accuracies (Table 1).  

 
 Buildings Vegetation Roads 

User Accuracy (%) 97.59 8.03 81.06 

Producer Accuracy(%) 98.87 18.86 44.36 

Overall Accuracy (%) 90.62 

Kappa Coefficient 0.61 

Table 1: Accuracy evaluation of the Torino test area. 

 

From the obtained results, it is possible to state that overall the 

classification of buildings is achieving good results whereas 

vegetation and roads are less accurately discriminated,  in 

particular for vegetation.  
 

    
a) b) c) d) 

Figure 5: The analysed scene (a), the off-ground classification 

(b), the roof class provided by the spectral information (c) and 

the final 3-classs classification (d). Classification results: 

building in red, roads in blue and vegetation in green. 

 

3.2 Marseille dataset (France) 

The data set consists of 9 overlapping images acquired with a 

DMC camera over the very dense urban area of Marseille 

(France). For the classification, only the central part of the block 

is used in order to maximize the image overlap and have a better 

redundancy in the image classification. The images were 

processed according to the proposed workflow. In Figure 6, the 

produced DSM and achieved classification are shown.  By 

visual inspection it is possible to assert that the classification is 

generally more accurate than the former example, thanks to a 
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more accurate DSM (higher image overlap and better image 

quality). The vegetation areas are extracted in more precise way 

and the classification is generally more correct. Some problems 

arise on the buildings borders that are sometimes not very sharp. 

Some misclassifications are still visible in correspondence of 

some trees. Some unclassified areas are mainly concentrated on 

the ground and in correspondence of narrow, shadowed and 

occluded roads.  

 

a)  

b)  

c)  

Figure 6: The analysed area over Marseille (a) with the 

generated DSM (b) and the classification results (c): building 

(red), roads (blue), vegetation (green) and missing data (black). 

 

The advantages of integrating spectral and geometric 

information are clear by looking at Figure 7 which shows the 

roof classification results achieved using only spectral 

information (Figure 7a) only geometric information (Figure 7b) 

and combining DSM-based features and spectral information 

(Figure 7c), as proposed in this article. The first two approaches 

produced holes and incorrect classifications while the proposed 

integrated method allowed to improve the quality of the results. 

The achieved results were compared to a vector cadastral map 

provided by the French IGN (Figure 7d) to qualitatively 

compare their completeness and reliability. The map shows the 

outline of buildings as available to the cadastral census. In order 

to be able to quantitatively evaluate the results of the proposed 

classification process the cadastral map was rasterized and 

resampled at the same spatial resolution of the classification 

map and registered to it. We assumed that all the areas that are 

not buildings in the cadastral map should either be vegetation or 

roads. The accuracy evaluation was performed by considering 

two classes: buildings and vegetation + roads (Table 2).  

 
 Buildings Vegetation + roads 

User Accuracy (%) 85.72 91.84 

Producer Accuracy (%) 97.49 63.42 

Overall Accuracy (%) 87.03 

Kappa Coefficient 0.68 

Table 2: Accuracy evaluation of the Marseille test area. 

 

The low success rate for the buildings is mainly due to small 

buildings surrounded by higher palaces that partially occluded 

or shadowed them in most of the images: the quality of the 

DSM in that areas was very poor and the spectral information 

was partial or unreliable for classification purposes. 

 

a)  

b)  

c)  

d)  

Figure 7: Spectral (a) and geometric (b) classifications of the 

building class. Results obtained combining both information (c). 

Digital map of the test area for completeness analyses (d). 

 

 

4. CONCLUSIONS AND FUTURE DEVELOPMENTS 

This paper presented an unsupervised technique for the 

classification of urban areas was proposed. The technique is 

based only on RGB images and exploits the redundant spectral 

information and the geometric information of the extracted 

DSM. The classification is performed considering 

simultaneously in a unique framework (i) spectral values of 

reflectance, derived by all the available overlapping images 

(projected on the ground through the collinearity equations) and 

(ii) elevation data of the DSM (derived using a dense image 

matching algorithm). The proposed methodology allows to 

perform a supervised classification defining the training 

samples in an automated way. The classification methodology is 

able to distinguish in an automated way building, vegetation 

and road classes. The DSM provides complementary 

information to the spectral one, but the simple use of this 

information as a feature in the classification process does not 
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provide significant improvements (Dalla Mura et al., 2012). On 

the opposite, the use of 3D data in the selection of proper 

training samples and in the correction of topological 

inconsistencies has increased the classification results.  

The achieved results has provided quite promising results in the 

analysed areas especially in the classification of buildings. 

Vegetated areas proved to be difficult to extract mainly due to 

their spectral vicinity to roads (especially in Torino data set) and 

not accurate characterization in the DSM. The comparison with 

available reference maps has quantitatively shown  the potential 

of the proposed method.  

Several improvements still need to be done. The used sequential 

approach could be critical as errors can cumulate in the process: 

further improvements to increase the stability of the process will 

be performed. The building outlines are sometimes not precise 

and some misclassifications can be still detected especially in 

correspondence of the vegetation class: the detection of this 

class is partially influenced by the DSM quality. The influences 

on the number and positions of overlapping images on the 

classification results will be considered too. New tests will also 

be performed on more extended areas in order to evaluate the 

reliability of the method in different operative conditions.  

 

REFERENCES 

Awrangjeb, M., Ravanbakhsh, M., Fraser, C.S., 2010. Automatic 
detection of residential buildings using LiDAR data and multispectral 

imagery. ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 

65, pp. 457-467. 

Breiman, L., 2001. Random forests. Machine Learning, Vol. 45(1):5-32. 

Chen, L.C., Teo, T.A., Hsieh, C.H., Rau J.Y., 2006. Reconstruction of 

building models with curvilinear boundaries from laser scanner and 
aerial imagery. LNCS, Vol. 4319, pp. 24-333. 

Congalton, R., Green, K., 2009. Assessing the accuracy of remotely 

sensed data: Principles and practices. 2nd Edition. CRC/Taylor & 
Francis, Boca Raton (FL), USA, 183p.  

Dalla Mura, M., Nex, F., Remondino, F., Zanin, M., 2012. Integration 

of photogrammetric DSM and advanced image analysis for the 
classification of urban areas. Image and Signal Processing for Remote 

Sensing XVIII, Proc. of SPIE, Vol. 8537. 

Dalla Mura, M., Benediktsson, J. A., Waske, B., Bruzzone, L., 2010. 
Morphological attribute profiles for the analysis of very high resolution 

images. IEEE Trans. Geoscience and Remote Sensing, Vol. 48, pp. 

3747-3762. 

Dalponte, M., Bruzzone, L., Gianelle, D., 2008. Fusion of hyperspectral 

and lidar remote sensing data for classification of complex forest areas. 

IEEE Trans. Geoscience and Remote Sensing, Vol. 46(5), pp. 1416-
1427. 

Donnay, J., Barnsley, M., Longley, P., 2001. Remote sensing and urban 

analysis. GISDATA Series, Taylor & Francis. 

Duda, R. O., Hart, P., E., 1973. Pattern classification and scene analysis. 

Vol. 3.Wiley Editors, New York. 

Fujii, K. and Arikawa, T., 2002. Urban object reconstruction using 

airborne laser elevation image and aerial image. IEEE Trans. 

Geoscience and Remote Sensing, Vol. 40(10), pp. 2234-2240. 

Guo, L., Chehata, N., Mallet, C., Boukir, S., 2011. Relevance of 

airborne LiDAR and multispectral image data for urban scene 

classification using Random Forests. ISPRS Journal of Photogrammetry 
and Remote Sensing, Vol.66, pp. 56-66. 

Habib, A.F., Zhai, R., Kim, C., 2010. Generation of complex polyhedral 

building models by integrating stereo aerial imagery and LiDAR data. 
Photogrammetric Engineering & Remote Sensing, Vol. 76, pp. 609-623. 

Hirschmuller, H., 2008. Stereo processing by semi-global matching and 

mutual information. IEEE Trans. PAMI, Vol. 30, pp. 328-341. 

Krauss, T., Lehner, M., Reinartz, P., 2008. Generation of coarse 3D 
model of urban areas from high resolution stereo satellite images. 

ISPRS Int. Archives of Photogrammetry, Remote Sensing and Spatial 

Information Sciences, Vol. 37, pp. 1091-1098. 

Krauss, T. and Reinartz, P., 2010. Enhancement of dense urban digital 

surface models from VHR optical satellite stereo data by pre-

segmentation and object detection. Int. Archives of Photogrammetry, 
Remote Sensing and Spatial Information Sciences, Vol. 38(1). 

Lafarge, F., Mallet, C., 2012. Creating large-scale city models from 3D-

point clouds: a robust approach with hybrid representation. International 
Journal of Computer Vision, Vol. 99(1), pp. 69-85. 

Lee D.H., Lee K.M., Lee S.U., 2008. Fusion of LiDAR and imagery for 

reliable building extraction. Photogrammetric Engineering & Remote 
Sensing, Vol. 74(2), pp. 215-225. 

Licciardi, G. A., Villa, A., Dalla Mura, M., Bruzzone, L., Chanussot, J., 

Benediktsson, J., 2012. Building height retrieval from Worldview-2 
multi-angular imagery using attribute profiles and geometric invariant 

moments. IEEE Journal of Selected Topics in Applied Earth 

Observations and Remote Sensing, Vol. 5(1), pp. 71-79. 

Longbotham, N., Chaapel, C., Bleiler, L., Padwick, C., Emery, W., 

Pacifici, F., 2012. Very high resolution multiangle urban classification 

analysis. IEEE Trans. Geoscience and Remote Sensing, Vol. 50(4), pp. 
1155-1170. 

Longbotham, N., Bleiler, C., Chaapel, C., Padwick, C., Emery, W., 

Pacifici, F., 2011. Spectral classification of Worldview-2 multi-angle 
sequence. Proc. IEEE Joint Urban Remote Sensing Event (JURSE), pp. 

109-112. 

Nex, F., Remondino, F., 2012. Automatic roof reconstruction from 
photogrammetric DSM. ISPRS Annals of Photogrammetry, Remote 

Sensing and Spatial Information Sciences, Vol.(I-3), pp.257-262. 

Nex, F., Remondino, F., Rinaudo, F., 2011. Integration of range and 
image data for building reconstruction. Videometrics, Range Imaging 

and Applications XI - Proc. of SPIE Optical Metrology, Vol. 8085. 

Pedergnana, M., Marpu, P., Dalla Mura, M., Benediktsson, J., 
Bruzzone, L., 2012. Classification of remote sensing optical and lidar 

data using extended attribute profiles. IEEE Journal of Selected Topics 

in Signal Processing, Vol. 6, pp. 856-865. 

Pedergnana, M., Marpu, P. R., Dalla Mura, M., Benediktsson, J. A., 

Bruzzone, L., 2011. Fusion of hyper-spectral and LiDAR data using 

morphological profiles. Image and Signal Processing for Remote 
Sensing XVII , Proc. SPIE, Vol. 8180. 

Pierrot-Deseilligny, M., Paparoditis, N., 2006. A multiresolution and 

optimization-based image matching approach: an application to surface 
reconstruction from spot5-hrs stereo imagery. ISPRS Int. Archives of 

Photogrammetry, Remote Sensing and Spatial Information Sciences, 

Vol. 36(1/W41). 

Ok, A.O., Senaras, C., Yuksel, B., 2013. Exploiting shadow evidence 

and iterative graph-cuts for efficient detection of building in complex 

environments. ISPRS Int. Archives of Photogrammetry, Remote 
Sensing and Spatial Information Sciences, Vol. 40(1/W1). 

Richards, J. A., Jia, X., 2006. Remote sensing digital image analysis: an 

introduction. Springer Verlag. 

Sirmacek, B., Unsalan, C., 2011. A probabilistic framework to detect 

buildings in aerial and satellite images. IEEE Trans. Geoscience and 
Remote Sensing, Vol. 49(1), pp. 211-221. 

Zebedin, L., Klaus, A., Gruber-Geymayer, B., Karner, K., 2006. 

Towards 3D map generation from digital aerial images. ISPRS Journal 
of Photogrammetry and Remote Sensing, Vol.60, pp.413-427. 

 

 

ACKNOWLEDGEMENTS 

This work was partly funded by the “CIEM Project” (co-founded Marie-

Curie Actions 7th F.P. - PCOFOUNDGA-2008-226070, acronym 
”Trentino Project”). 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W3, 2013
CMRT13 - City Models, Roads and Traffic 2013, 12 – 13 November 2013, Antalya, Turkey

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 72


