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ABSTRACT:

This paper presents a method for reconstructing automatically the quantitative structure model of every tree in a forest plot from
terrestrial laser scanner data. A new feature is the automatic extraction of individual trees from the point cloud. The method is
tested with a 30-m diameter English oak plot and a 80-m diameter Australian eucalyptus plot. For the oak plot the total biomass was
overestimated by about 17 %, when compared to allometry (N = 15), and the modelling time was about 100 min with a laptop. For
the eucalyptus plot the total biomass was overestimated by about 8.5 %, when compared to a destructive reference (N = 27), and the
modelling time was about 160 min. The method provides accurate and fast tree modelling abilities for, e.g., biomass estimation and
ground truth data for airborne measurements at a massive ground scale.

1. INTRODUCTION

The measurement of above-ground forest biomass is important
for ecology, carbon storage estimation, forest research, etc. Cur-
rently airborne and satellite-based remote sensing is needed to es-
timate the biomass of large forest areas. These measurements re-
quire calibration based on good quality reference or ground truth
data from test sites. Furthermore, it should be possible to measure
the reference data quickly, cheaply, and nondestructively. The
traditional way is to use allometry, but this can be problematic as
errors can be in some cases over 30% (Calders et al. 2015).

With terrestrial laser scanning (TLS) and computational meth-
ods it is now possible to automatically reconstruct accurate and
precise 3D models of the tree structure of the scanned trees in
minutes (Raumonen et al. 2013, Calders et al. 2015). We call
these models quantitative structure models or QSMs. They rep-
resent the trees as hierarchical collections of cylinders or other
building blocks which provide the volume and diameter of branch
segments needed to estimate the biomass. From QSMs it is thus
possible to accurately and non-destructively estimate the volume,
branching structure and branch size distribution and also detect
growth and changes (Kaasalainen et al. 2014). Notice that the
building blocks approach makes the models discontinuous, but
this does not affect the modelled structural parameters. Overall,
the circular cylinder is the best choice for a block type (Åkerblom
et al. 2014).

Our method and most other automatic reconstruction methods so
far have been working only for scans with single trees, i.e., a
manual extraction of the trees from the scans was required. In this
paper we present automatic reconstruction for plot level. In other
words, we use the “raw data” of the scans, which contain all the
trees in the plot and measurements from ground and understory.
The scans are only registered into a common coordinate system
and then all the individual trees are automatically extracted and
the QSMs are reconstructed. Fig. 1 shows an example of tree
extraction and QSM reconstruction for a plot with a 15-m radius
(modelling time about 100 min with a laptop).

∗Corresponding author

Figure 1. Filtered (top) and tree-segmented (middle) point cloud
and the reconstructed QSMs (bottom) of an English oak plot.
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Plot-level tree modelling is thus very fast and also makes the tree
extraction faster and more reliable. Extracting individual trees
manually from large point clouds is time consuming (a couple
of hours for one oak tree), and if the branches of neighbouring
trees overlap, the manual separation is not easy or reliable. There
are of course challenges also in automatic tree extraction, and it
is probably impossible to make an algorithm that could always
extract trees without any errors, especially for dense forests. We
demonstrate and test our method with an English oak leaf-off plot
and an Australian leaf-on eucalyptus plot.

Very large point clouds may require algorithms optimising mem-
ory usage and computation times. For example, parallel com-
puting can be used to simultaneously reconstruct the QSMs for
each tree. Our demonstration uses 15-m and 40-m radius plots,
but the method can be easily applied to much larger areas while
the memory and computation time increase linearly with the plot
area. Thus it is possible to scan and automatically model, e.g.,
multi-hectare-size plots.

There are a number of other methods for reconstructing single
trees from TLS-data, e.g. (Dassot et al 2012, Hackenberg et al.
2014), but these require (semi-)manual tree extraction. There are
automatic methods for some inventory data, such as dbh, volume
and height, from TLS data, e.g. (Hopkins et al. 2004, Maas et al.
2008). Eysn et al. (2013) presented a fast but manual method for
separating the stems and biggest branches from plot-level data.

The paper is organised as follows. In section 2 we introduce
the data, present the details of the extraction and reconstruction
method and a sensitivity analysis. In Section 3 we present the
results, and sections 4 and 5 contain discussion and conclusions.

2. MATERIALS AND METHODS

In this section we first present the data used for the examples, then
we give an outline of the reconstruction method, present the de-
tails of the tree extraction and reconstruction methods, and finally
go over some sensitivity analysis.

2.1 Measurements

We have measurements from two contrasting forest plots col-
lected with different scanners and setups. The first plot is an
80-year-old oak plantation in South-Eastern England (51.1533◦

N; 0.8512◦ W; 82 m asl). The plantation covers a total ground
area of about 85 ha, managed as a commercial forest of mixed
species dominated at 75% by Quercus robur L. The stocking den-
sity was 405 trees per ha in 2011, with a mean height of 23+/-2
m. The understory was dominated by hazel (Corylus avellana
L.) and hawthorn (Crataegus monogyna Jacq.) bushes. A 30 x
30 m experimental area was selected and the understory removed
before data acquisition. We have a reference for dry mass (DM ,
in kilograms) given by an empirical relation computed from the
diameter at breast height (DBH , in meters):

DM = 14720DBH2.8682. (1)

The wood density used for converting the modelled volume to dry
mass is 507+/-40 kg/m3. Five scan locations was used for this
study, one in the centre and the others near the boundary of the
plot. They were recorded in April 2012 (leaf-off, no precipitation,
wind speed averaged over the acquisition period was 0.7+/- 0.5
m/s).

The other plot is part of native Eucalyptus open forest (dry sclero-
phyll Box-Ironbark forest) in Victoria, Australia (36◦45′36.49”S;

145◦0′59.58”E). The plot, called RUSH06, has a 40-m radius
and it was established in Rushworth forest and partially harvested
in May 2012 to acquire accurate estimates of biomass. The main
tree species in the plot were Eucalyptus leucoxylon, E. micro-
carpa and E. tricarpa. Five scan locations, with one in the centre
and four 40 m from the centre, were used (Calders et al 2015).

The oak plot was scanned with the field portable (15 kg), phase-
shift range finder, single return, HDS-6100 (Leica Geosystems
Ltd., Heerbrugg) with a rotating mirror system that can cover a
310◦ in zenith by 360◦ in azimuth field of view. The beam wave-
length is within the red band (650-690 nm) with a 0.003 m spot
size at exit and a divergence angle of 0.013◦. The angular sam-
pling resolution was 0.036◦ in both directions. The maximum
detection range is about 80 m. The scanner was mounted on a tri-
pod with the laser source located at about 1.3 m above the ground.
For each location, one full scan (310◦ x 360◦) was recorded. The
final co-registered point cloud has about 124 million points.

The eucalyptus plot was scanned with a RIEGL VZ-400 (RIEGL
Laser Measurement Systems GmbH). The beam divergence is
0.02◦ and the instrument operates in the infrared band (1550 nm)
with a detection range up to 350 m. The angular sampling reso-
lution was 0.06◦ in both directions. The scanner allows fast data
acquisition and records multiple return LiDAR data (up to four re-
turns per emitted pulse). The advantage of multiple returns over
single returns is the improved sampling at greater canopy heights
(Calders et al. 2014). Because RIEGL VZ-400 has a zenith range
of 30 to 130 degrees, an additional scan was acquired at each
scan location with the instrument tilted at 90 degrees to sample a
full hemisphere. The final co-registered point cloud has about 71
million points.

For both plots, reflecting targets (six 15 cm black & white tilt &
turn targets for the oak plot) were distributed throughout the plot
area and were used to co-register the five scan locations using the
Cyclone (Leica Geosystems, version 9) and the RiSCAN PRO
(provided by RIEGL). The error in the co-registration of point
clouds was 0.125+/-0.075 cm for the Oak plot (individual scans
ranging from 0-3 mm), and 1.29 cm (ranging from 0.62 cm to
2.26 cm) for the eucalyptus plot.

2.2 Outline of the Method

The method is based on morphological rules, a cover-set approach,
and geometric primitives. By morphological rules we mean that
the reconstruction steps follow the tree topology and the major
shape characteristics. The cover-set approach means a technical
aspect of how point clouds are filtered and segmented, first into
trees and then into branches, by concentrating on the smallest
meaningful parts or units (surface patches) on the tree surface.
The surfaces and structures of the trees are reconstructed with
suitable geometric primitives; in this paper with cylinders.

The first major but optional step in the method is filtering. We fil-
ter out noise, remove some ground and understory points, include
only the points within a given plot size, and make regions of very
high point density sparser (to save memory).

The second major step is the extraction of individual trees from
the filtered point cloud. It is based on the segmentation of the
point cloud into stems and branches using large surface patches
of a fixed size . The stem bases and approximate stems are located
heuristically, based on the assumption that stems are vertical. The
likely ground and understory patches are defined similarly. The
other patches are classified as either tree or other (ground, un-
derstory, etc.) based on their connectedness and distance from
classified patches. Patches classified as trees are next segmented
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into individual trees following botanical rules: first determine the
stems one-by-one, then the 1st-order branches one-by-one, then
the 2nd-order branches, etc. In cases where the trees are sepa-
rated from each other by large enough distances between their
closest branches, the segmentation process extracts the individ-
ual trees reliably. When there are some contacts between the
branches from different trees (or the gaps between the trees are
small), we can still expect a reasonably good separation of trees.
At this point further heuristic correction steps can be included.

The third and final major step is the reconstruction of QSMs for
each tree individually. The QSM reconstruction has been vali-
dated earlier (Calders et al. 2015). Again the point cloud is cov-
ered with patches, this time with smaller and variable size that de-
creases as the branches get smaller. The variable size is based on
the information from the first segmentation used for tree extrac-
tion. The patches are again segmented into stems and branches
as earlier, and finally each segment is partitioned into smaller re-
gions for cylinder fitting.

We have made a short video demonstrating the method (Åkerblom
2014).

2.3 Technical tools

Before going into the details of the major steps in the method, we
discuss briefly some technical but necessary tools we need.

2.3.1 Cubical partition To handle a large number of points
effectively without requiring huge amount of memory and to avoid
pointless computations, it is useful to partition the point clouds
into smaller cubical regions. The coordinates Q of the cubical
region where each point belongs are computed from 1) the coor-
dinates P of the points; 2) the “lowest corner” CL of the cubical
partition space (usually the minima of the x,y,z-coordinates); and
3) the edge length e of the cubes: Q = floor[(P −CL)/e] + 1.
Here floor denotes rounding to the nearest smaller integer, and
the three components [QX , QY , QZ ] of Q are between 1 and
the number of cubes (NX , NY , NZ ) in the sides of this cubi-
cal space. One way to quickly determine the points in the same
cubes is to use the lexicographical coordinate L of Q: L =
QX + (QY − 1)NX + (QZ − 1)NXNY . Points are sorted into
increasing L-values and the consecutive points with the same L-
values are selected to form each cube.

For a fast way of finding neighbouring cubes, the e-cubes should
be recorded also as a 3D-cell array, where the coordinates Q give
also the cell coordinates. However, with small e-values compared
to the size of the space, the number of cubes can be so large that
there is not enough memory to store all the cells. Fortunately,
because the points are from the surfaces of trees, the whole space
is often quite sparsely filled. Thus it is possible to partition the
space first into much larger cubes with an edge length E, e.g.
1-10 m, in which case the number of E-cubes is only a small
fraction compared to e-cubes and still most of the E-cubes will
be empty. Then we select only the nonempty E-cubes and ex-
pand them to include one layer of neighbouring e-cubes from the
neighbouring E-cubes. The point cloud is thus partitioned into
an array of nonempty E-cubes, which are further partitioned into
3D-cell arrays of empty and nonempty e-cubes.

2.3.2 Cover Sets The cover sets of a point cloud sampling the
surfaces of trees and other objects are small subsets correspond-
ing to surface patches on the surfaces of the objects. The idea is
to partition the surfaces into small sets that 1) are in some sense
the smallest meaningful subsets corresponding to the details of
the branching structure, and 2) conform to the local shape of the
surface, i.e., correspond to connected surface patches. This is in

contrast to voxel approaches, where the boundaries of the voxels
are completely arbitrary with respect to the shape and the exact
location of the details of the surface.

The process has two basic steps and the sets are randomly but
about evenly covered along the surface of the tree with some re-
strictions. First we generate r-balls such that 1) the centres of the
balls have at least a distance d between them such that d ≤ r
holds, 2) each point is at most the distance d away from its clos-
est centre, and 3) an acceptable ball has at least n points. These
balls can now overlap, which is exploited later. Second, each ball
defines a cover set as those points of the ball that are closest to
its centre. The cover sets thus do not overlap but form a partition
of the points. Finally we define neighbour relations for the cover
sets: two cover sets are neighbours if their r-balls intersect. This
neighbour relation can be used as a convenient tool for expanding
or moving along the surface or for determining connected com-
ponents (Raumonen et al. 2013).

The generation can be realised using a cubical partition of points
into r-cubes. To determine the r-ball for the point p, we take the
r-cube of p and its 26 neighbouring cubes to restrict the search
to nearby points. More details can be found in Raumonen et al.
2013. To save memory with very large point clouds, it is possible
to carry out a cover generation without saving the partition: when
a large E-cube containing its r-cubes is defined, use it directly
for the cover generation of that cubical region and then proceed
to define the next E-cube and its cover generation.

2.4 Filtering

The first major step in the method is the filtering of the points that
are not detections of a tree surface. Another aim here is to reduce
the size of the point cloud so that the memory and computation
time requirements can be reduced. First we remove points from
ground and small understory as well as points that are too far
away from the plot centre. Second, especially for high resolution
scans the point density near the scanner may be unnecessarily
high, and to reduce the number of points, we randomly remove
some of these points. Finally, we try to remove noise, i.e., points
that are not clear samples of any surface but are generated by the
scanning process itself, e.g., by an error on range estimates due
to the footprint of the laser hitting a limb.

First the point cloud is restricted by removing all the points whose
horizontal distance from the plot’s centre is 20 m over the plot’s
radius. Next the points are partitioned into horizontally defined
rectangular regions and the bottom (ground and understory) is
removed: The side length of these rectangles is set to, e.g., 0.5
m and the minimum and maximum z-values ZL and ZH for each
rectangle are determined. If ZH > ZL+0.5 m holds, we remove
the points for which Z < ZL + 0.25 m holds.

Next we use the cubical partition of the already filtered point
cloud to modify regions with too small or too high point den-
sities: remove the points in cubes that have fewer points than
some given threshold, and thin out cubes with more points than
some threshold by randomly selecting a smaller sample. Here the
cubes are considered separately without considering their neigh-
bours. For the eucalyptus plot we used 10 cm cubes with 7 points
as the minimum threshold and 150 points as the maximum one.
The oak plot has a higher resolution: we used 10 cm cubes with
10 points as the minimum and 150 points for the maximum.

Finally we also removed 1) low density regions and 2) small sep-
arate clusters using the cover sets (Raumonen et al 2013). The
point cloud is partitioned into regions with, e.g., 10 m times 10
m horizontal area, and each region is individually covered with
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r-balls with r also as the minimum distance between the centres
and the maximum distance from any point to its closest centre.
For both plots we used r = 6 cm. Then all the points that be-
long to a ball with more points than some given threshold (5 was
used for both plots) are kept and others removed. Notice that a
point may belong to multiple overlapping balls and it is assigned
to the ball containing the most points. After this a new cover of
the filtered point cloud using new set of parameters (r, d) is gen-
erated. The connected components of this cover are determined
and all components with less sets than some given threshold are
removed. For both plots we used r = 6 cm, d = 5 cm and the
threshold was 30 sets per components.

The filtered oak plot has about 35 million points and the process
lasted about 10 min, while the filtered eucalyptus plot has about
33 million points and the process lasted about 16 min.

2.5 Extraction of individual trees

The next major step in the method is the extraction of individual
trees from the point cloud. The idea is not to recover every little
detail of the trees but only extract them quickly and reliably. Thus
the size of the cover sets is not so important and large-size sets
are used. The cover parameters at this stage are denoted as d1, r1,
n1. For the oak plot we used the values d1 = 8 cm, r1 = 9 cm,
n1 = 3, and for the eucalyptus plot, which has a lower resolution,
we used the values d1 = 10 cm, r1 = 12 cm, n1 = 3.

2.5.1 Locating stems and their bases The extraction starts
by locating the stems. First the ground level is defined by parti-
tioning the cover sets into 0.25 m horizontal squares and defin-
ing the ground level for each square as the lowest z-coordinate
in its 5x5 neighbourhood. The ”height” for each square is de-
fined similarly. Next the surface normals of the cover sets up to
3 m above the ground are determined as the smallest principal
component. The sets whose angle between the normal and the z-
direction is over α are selected as the most likely sets from stems
(see the top of Fig. 2). We set α to 70 degrees. From these sets,
with approximately horizontal normals, connected components
are determined and components with over κ sets are selected as
potential stems (see the middle of Fig. 2). We set

κ = ceil[
0.2

(1.4d1)2
] (2)

where ceil is the rounding to the nearest bigger integer. These
components are now very probably part of the stems, but multiple
components can be from the same stem. The components whose
centres are horizontally closer than δ to each other are combined
into one. We set δ to 20 cm. Finally the bottom 25 cm of each
component is removed as the potential layer containing ground,
understory, and buttresses. Those components that still have at
least κ sets and whose vertical height is over λ = 1 m are selected
as the final locations of the stems (see the bottom of Fig. 2).

Next the bases of the stems are determined. A cylinder giving
the approximate stem diameter is fitted for each stem component.
The component is then restricted to its bottom 70 cm and is ex-
panded downwards with neighbours, and only sets with normals
over α are accepted. After each expansion the cylinder is fitted
again. The expansion is stopped when 1) the diameters of the
cylinders are almost equal, or 2) the diameters are very different,
or 3) the bottom is under 10 cm from the ground level. Then the
bottom 50 cm of the expanded component is the base of the stem
(see the top of Fig. 3). The above process has four parameters;
α, κ, δ, and λ, but it is insensitive to quite large changes in their
values as shown in the section 2.7.

Figure 2. Locating stems. Top: ”Stem-like” cover sets whose
normals are nearly horizontal (blue) and the other cover sets (red)
of the bottom 3 m. Middle: The initial components of ”stem-like”
sets. Bottom: The final stem components which define the stems.

Because the extraction is based on segmentation, it is essential
to segment also trees whose stem is outside but near the plot’s
boundary. Therefore all stems whose distance from the plot’s
centre is less than Rplot + 10 m are segmented (the red stems in
Fig. 3) and all sets further than Rplot + 15 m are classified as
other (the green stems in Fig. 3).

2.5.2 Classifying sets The next step is to classify every cover
set either as tree or other. We begin by expanding the stem com-
ponents upwards to determine the stems approximately (see the
bottom of Fig. 3). We want approximate stems for robust tree
extraction and the determination of initial ground and understory
sets. To prevent an expansion too much downwards along branches
or into understory or ground, the expansion is restricted to neigh-
bours that are, e.g., under 50 cm from the current highest set. Due
to occlusion this expansion may stop before the top of the tree. In
such a case the nearest sets above the current top of the expansion
are connected to the top and the expansion is continued until the
top of the tree is reached.

The ground and understory sets are next defined as the non-stem
sets in the 1-m layer above the ground level. These sets are then
expanded as much as possible with the neighbours. At this point
every set is classified as tree (stem) or other (ground and under-
story), or is not classified (see Fig. 4).

The unclassified sets are next classified by connecting them either
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Figure 3. Approximate stems and their bases. Top: The stem
components of Fig. 2 are expanded downwards and their bottom
part (blue) is selected as the base. Green components are too far
away from the plot’s centre. Bottom: The stem components are
expanded upwards to define the stems approximately.

Figure 4. Classification of sets. Tree (red) and other (green) ex-
panded as much as possible. Purple points are the non-classified
sets which will be classified either as tree or other.

to tree or other sets. First we expand the tree sets into unclassi-
fied sets as much as possible. If there still are unclassified sets,
then we connect them to either class. We determine the connected
components of the unclassified sets and using the cubical parti-
tion, with initially about 20 cm cubes, we check if each compo-
nent has in its neighbouring cubes tree or other sets. A component
is connected to the closest tree or other set. In this process we first
connect the nearest components, which then expand the tree and
other sets step-by-step. If there are gaps so large that some com-
ponents cannot be found in the neighbouring cubes of expanding
tree or other sets, then we increase the size of the cubes as long
as needed.

2.5.3 Segmentation of trees For the extraction of individual
trees from the tree sets we use the segmentation method presented
in Raumonen et al. (2013). We start from one of the bases of
the stems and expand it step-by-step with neighbours. If the ex-
panding “front” becomes disconnected, then there may be a bi-
furcation, in which case a new branch basis is defined and further
expansion into that branch is prevented. The stem is defined by
expanding it as much as possible, after which the same is done
for the other stems. The process continues case-by-case from the
bases of the first-order branches, and so on from the second-order

Figure 5. Segmentation of the tree sets. Stems are in blue, 1st-
order branches in green, 2nd-order branches in red, etc.

branches, etc., until every tree is segmented.

This initial segmentation may have problems: segments stop too
early, or take wrong turns at bifurcations, or small segments could
be part of bigger segments. We try to make some modifications
to make the segmentation more correct, i.e., such that each seg-
ment corresponds to a real stem or branch without child branches.
First we try to make the segments as long as possible, to correct
the early stops or wrong turns. For each segment we select all the
segments that can be traced back to it with the parent relation of
the segments. Then we calculate the distances from the tips of
these segments to the base of the current segment. If the furthest
tip of these segments is farther than the tip of the current segment
is from its base, we modify the segments and their parent-child re-
lations so that the current segment continues without bifurcations
to the furthest tip. The modification conforms to the branching
order, i.e. first the stem, then the first-order branches, etc. For
stems and first-order branches we use restrictions on the length
vs. distance ratios making the segments nearly straight. Fig. 5
shows an example of the final segmentation of the point cloud,
and the middle of Fig. 1 shows the extracted individual trees in-
side the plot.

There can be some problems in the resulting tree extraction. Due
to occlusion, some tree parts may be quite far away from any
other tree parts, and in our process this part is then connected to
the closest tree part, which may not be the right one. In these
situations, based on the distances from the stems and other in-
formation, one can try to estimate the likelihood that the part is
connected to the right tree. We have not applied such methods
in practice. Furthermore, two segments from different trees may
touch each other, and because of their generation process, there is
no guarantee that this connecting place is accurate. One frequent
reason for this is that there is an erroneous connection made be-
tween tree parts and one tree reaches the other over a big gap.
If this is the case, then we can expand through neighbours from
the enjoining location into both trees and see if there are big gaps
between neighbouring cover sets (see Fig. 6).

Finally we have the trees extracted and we can proceed to the re-
construction of the individual QSMs for the trees located inside
the plot. However, in the tree extraction step the idea was not to
model every detail and so the size of the cover sets was large ev-
erywhere. Smaller cover sets are needed to model smaller details.
The segmentations used for the extraction give us approximations
on the size of the branches and thus we can generate cover sets
whose size is better suited for the local details. We calculate the
local size for every tree point as follows: each segment is layered
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Figure 6. Tree extraction correction. Left: Blue denotes the meet-
ing of two trees (red and green). Right: The expansion from the
meeting place into the green tree is stopped earlier than the ex-
pansion into red tree because of a big gap and thus this expanded
part is added to the red tree.

into cover sets: the base is the first layer, the second layer consists
of its neighbours, etc. The ”thickness” of the branches and stems
are estimated as the number of cover sets in the layers 2 - 6. The
relative size of the sets at the base of a branch is the quotient of
the thicknesses of the branch and stem. Furthermore, the size of
the sets decreases along the branch from the base to the tip to the
user-defined minimum.

2.6 QSM of individual trees

From the tree extraction we have the point clouds of individual
trees and the relative size of the cover set for every point, based
on the likely sizes of local details. For each tree the QSM is
reconstructed separately with the following steps. First generate
a random cover with a varying set size. Next define the base of
the stem as the bottom 20 cm layer of the point cloud and update
the neighbour relation to make the whole tree connected. Then
segment the tree into its stem and branches. Finally fit cylinders
to the segments.

All steps until the cylinder fitting are similar to those described
in the tree extraction phase. The cover parameters are r2 and
d2, which give the maximum set sizes, and f , which gives the
fraction of the minimum and maximum set sizes. The local sizes
are calculated from these parameters. For the oak plot we used
the values d2 = 6 cm, r2 = 6.6 cm, n1 = 3, f = 0.25, and
for the eucalyptus plot we used the larger values d2 = 8 cm,
r2 = 8.8 cm, n1 = 3, and f = 0.333. We always made five
QSMs per tree to estimate the inherent modelling variations due
to the randomness in cover generation. Furthermore, if the DBH
of the first QSM was under 80 % of the stem diameter used in the
stem location process, then we progressively added 1 cm to d1
and r1 until the DBH of the QSM is over the threshold.

The refining of the segmentation is exactly the same as explained
above, but there are two additional steps at the end. First, very
small segments are removed if they do not have child segments
and if their distance from the parent is not much more than the
radius of the parent. Second, often some part of the real base
of a segment is left to the parent segment forming quite large
ledges. These ledges can make cylinder fits at their location
too large. Thus we try to remove these ledges partly or entirely
(see Appendix of Raumonen et al. 2013). The refining process
can substantially reduce the number of segments and the maxi-
mum branching order so that the final segmentation usually cor-
responds well to the real branching structure.

2.6.1 Cylinder fitting In the last step of the QSM reconstruc-
tion, cylinders are fitted to the segments. Here we introduce an-
other input parameter l, which controls the relative length of the
cylinders, i.e., the ratio of the length and radius of the cylinder.
Shorter cylinders can better approximate the local size and cur-
vature of the branches but, especially with small branches, noise,
an incomplete point cover, etc., can make them also more sensi-
tive to errors. Longer cylinders are less likely to be affected by
such factors, but they can be too large due to the curvature or the
tapering of the branch. For both plots we used the value l = 3.

The reconstruction proceeds according to the branching order;
first the stem, then the first-order branches, etc. Each segment
is first divided into subregions so that their approximate relative
length is close to l. The radius is estimated as the median of
the point distance from the approximated axis, which in turn is
estimated as the vector from the region’s base to the region’s top.

Cylinders are fitted to the regions by least squares. The fitting
is renewed with the farthest points from the cylinder surface re-
moved as outliers. We accept the fitted cylinder if i) the radius
is under three times the initial estimate, ii) the angle between the
initially estimated axis and fitted axis is under 35◦, and iii) the
mean absolute distance to the cylinder’s surface is smaller than
the initial estimate for the radius.

The radii of the cylinders along the branch are corrected locally
by imposing maximum and minimum taper curves. Details for
this are presented in Calders et al. (2014). Finally the starting
points are also improved to close possible gaps between cylinders
by extending the starting point into the plane defined by the parent
cylinder’s end circle.

2.7 Sensitivity analysis

In this kind of reconstruction there usually are some parameters
whose values must be given and which can affect the final results
greatly. A useful and reliable method should not be sensitive to
the exact values of these parameters, and a robust method should
work even with relatively large changes in the values.

The important parameters in the tree extraction step are the cover
parameter d1 and α, κ, δ, and λ used in the stem locating pro-
cess (see Sec. 2.5.1). Table 1 shows the values given to these
parameters. For κ the value in the table is the numerator in Eq. 2.
Furthermore, due to randomness, the covers for different runs are
always different, which can have effects on the stem locating.
Thus we have 6 variables and we ran the stem locating with all
possible 1296 combinations for the oak plot. We counted the
number of big stems found inside a 20-m circle and compared it
to the visually determined reference value. In all cases all refer-
ence stems were found inside the circle, and only one reference
stem was missing in a few cases outside the circle. Thus the stem
locating, at least for the oak plot, seems to be very robust and not
very sensitive to relatively large changes in different parameter
values.

Parameter Values Units
Cover set diameter d1 8; 10; 12; 14 cm

Number of covers 4
”Normal angle” α 60; 70; 80 degrees

”Component size” κ 0.1; 0.2; 0.3
”Component distance” δ 10; 20; 30 cm
”Component length” λ 0.5; 1; 1.5 m

Table 1. Parameters in the sensitivity analysis of stem locating.

Other important parameters are d2 and l for reconstructing the
QSMs. There are already some published results on these (Calders
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et al. 2014) and we are publishing soon a more detailed analysis
on these, so we do not present a detailed analysis here. We only
mention here that the resulting QSM and particularly its branch
volume can be somewhat sensitive to the chosen values of d2 and
l. Usually the volume increases as we increase the values of these
parameters, so they should be quite small. On the other hand,
making them too small makes the results unstable.

3. RESULTS

3.1 The oak plot

We made five different covers for the tree extraction part (d1 = 8
cm, r1 = 9 cm, n1 = 3) and for each of these cases we made
five different QSMs per extracted tree (d2 = 6 cm, r2 = 6.6 cm,
n2 = 3, f = 0.25). From the modelled volume we computed
the dry masses using the density and the reference dry mass com-
puted from the empirical relation given in Eq. 1 using the DBH
of the QSMs. Fig. 7 shows the average modelled masses from
five different QSMs for each tree for one of the extraction cases
and compares them to the reference values (the error bars show
two standard deviation of the means from the five QSMs). The
average relative absolute error for the five tree extraction cases
varies from 23.7 % to 25.5 %, and the total plot level biomass
overestimation varies from 15.3 % to 18.8 %. All the 15 trees
inside the plot were extracted and modelled for each case. The
total modelling time for filtering, tree extraction, and one QSM
per tree was about 1 h 40 min for each case (MATLAB, Mac-
Book Pro, 2.8GHz, 16GB). With five QSMs per tree, the total
modelling time was about 4 h for each case.
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Figure 7. Comparison of modelled individual tree masses for the
oak plot. The red line is the 1:1 line, the blue dots are averages
and the error bars denote two times the standard deviation com-
puted from 5 different QSMs.

3.2 The eucalyptus plot

We used one cover for the tree extraction part (d1 = 10 cm,
r1 = 12 cm, n1 = 3) and made five QSMs per tree (d2 = 8 cm,
r2 = 8.8 cm, n2 = 3, f = 0.333, l = 3). From the modelled
volume we computed the dry masses using the density and the
reference dry mass was computed from destructively measured
fresh weight for 27 trees. Fig. 8 shows the average modelled
masses from five different QSMs for each tree and compares them
to the reference values (the error bars show two standard devia-
tion of the means from the five QSMs). Fig. 9 shows the tree seg-
mented point cloud and QSMs. From visual inspection we can
say that every tree inside the plot was extracted and modelled.

However, in the plot there are some multi-stem trees, whose stem
bifurcates very close to ground. Most of these were extracted as
single trees, such that one of the stems was segmented as the stem
and the others as big branches. A few reference trees were multi-
stem trees, where the reference mass was measured for each stem.
In these cases we added the reference masses together to give the
reference for the one modelled tree. The average relative abso-
lute error was about 28.5 % and the error in the total biomass of
the reference trees was about 8.5 %. The total modelling time for
filtering, tree extraction, and one QSM per tree was about 2 h 40
min (MATLAB, MacBook Pro, 2.8GHz, 16GB). With five QSMs
per tree, the total modelling time was about 9 h.
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Figure 8. Comparison of modelled individual tree masses for the
eucalyptus plot. The red line is the 1:1 line, the blue dots are av-
erages and the error bars denote two times the standard deviation
computed from 5 different QSMs.

4. DISCUSSION

The results show that the automatic tree extraction and QSM re-
constructions are fast, robust, and accurate. The computation
time for the filtering, tree extraction, and QSM reconstructions
was altogether a few hours for both plots.

All the trees inside the oak plot were found and correctly ex-
tracted except for a few small errors with some small branches.
In the case of the eucalyptus plot all the trees were also extracted,
but for some multi-stem trees there were bigger errors for sepa-
rating the trees correctly, which appears in Fig. 8 as bigger errors
and error bars. The heuristic stem location process was shown to
be robust and insensitive to the four parameters used in the pro-
cess as quite large changes in the parameter values did not affect
the results. We used two completely different plots and scanners,
and different scanning resolutions, which further corroborates the
generality and robustness of the method.

The computed tree and plot level biomass were close to the refer-
ence values. Taking into account all the uncertainties in the refer-
ence measurements, such as the wood density and dbh measure-
ments, it is possible that the differences could be even smaller. In
Calders et al. (2015) the same eucalyptus plot was modelled with
the same QSM method; however, some details may have been dif-
ferent, the tree extraction was not automatic, and different cover
sizes were used. Their modelled biomass results were similar to
the ones obtained here, as expected.

These plots were not very large or dense as only five scan loca-
tions were enough to map both plots accurately, but the tests pro-
vide a proof-of-concept. The oak plot was also leaf-off making it
much easier to see upper branches. With leaf-on conditions, the
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Figure 9. The extracted trees (top) and their QSMs (bottom) for
the eucalyptus plot.

visibility would be poorer and we can imagine forest plots with
much more understory and higher stem density. Plots that have
lots of dissimilar tree species can be also challenging as different
modelling parameters may be optimally suited for each species.
These more challenging cases need more testing, validation, and
further method development. However, these two plots can still
be used for further testing and validation, and for example the
multi-stems of the eucalyptus plot require modification to the al-
gorithm to recognise them as separate trees, if needed.

In future, and to some extent already, the scanning is possible to
do with mobile scanners, which means that large forest areas can
be scanned more quickly and comprehensively. Our method is a
good starting point for measuring the forest structure from these
big data sets as the method scales up easily.

5. CONCLUSIONS

In this paper we have presented the first method that automati-
cally extracts and reconstructs the volumes and 3D structures of
all the individual trees in massive TLS point clouds. The method
is a development of our earlier published method extracting and
reconstructing a single tree from point cloud data. With two dif-
ferent types of plots and two different scanners, we have shown
that the method is accurate, robust, and fast.

Automatic tree extraction has been a big bottleneck for the large-
scale use of TLS and reconstruction methods for estimating tree
biomass and structure. We have demonstrated here that automatic
and nondestructive biomass and structure estimation is possible
in certain types of forests. Considerable further development is

still needed, but this method opens up numerous possibilities in
the remote sensing of forests and their applications.
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