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ABSTRACT:

This paper presents a full pipeline to extract mobile objects in images based on a simultaneous laser acquisition with a Velodyne
scanner. The point cloud is first analysed to extract mobile objects in 3D. This is done using Dempster-Shafer theory and it results
in weights telling for each points if it corresponds to a mobile object, a fixed object or if no decision can be made based on the data
(unknown). These weights are projected in an image acquired simultaneously and used to segment the image between the mobile and
the static part of the scene.

1 INTRODUCTION

1.1 Context

Mobile objects occupy a large portion of urban scenes. For map-
ping purposes, these non permanent objects should be detected
and removed. On the opposite, these objects can serve to validate
traffic simulations on both roads and side-walks. Conversely, the
results of such simulations can be visualized in an image based
viewer (street view like), where existing mobile objects have been
removed (Brédif, 2013). In both cases, it is important to extract
the mobile objects from their more permanent background. The
Velodyne laser scanner is a great tool to perform this task as it
gives a 4D representation of urban scenes, consisting of both the
(x, y, z) point geometry and the time t at which each point was
acquired. On the opposite images are static, but would benefit
from an external data source to separate mobile from static ob-
jects. In particular image based 3D scene reconstruction often
relies on the hypothesis of a static scene between images.

This paper proposes a full processing pipeline to perform this
separation between static and mobile objects in images based on
Velodyne data.

1.2 Related works

The topic of separating the mobile from the static part of an im-
age is related to object tracking in videos. However, we did not
investigate the very large literature on this topic for two reasons:

1. The images in this study are acquired every 5 meters (cf
Section 3), independently of a time rate, so can hardly be
considered as videos.

2. The cameras used are mounted on a mobile mapping system
so all the scene moves, making it extremely difficult to de-
fine what is static in a frame attached to the scene and not to
the vehicle.

The most closely related topic is detection and tracking of mo-
bile objects (DATMO) from Velodyne scanning which is a topic

intensively studied in the robotics community (Azim and Aycard,
2012). AS in our paper, the central issue is to model and store the
occupancy information provided by the laser scan. The storage
is usually done in a voxel grid (Elfes, 1987) or an octree (Azim
and Aycard, 2012). Conversely, we only need to compute this
information on the points of the closest frame (in time) to the
corresponding image, so there is no need for a voxel grid or oc-
tree structure. To our knowledge, the closest work to ours focuses
in image/Lidar pedestrian detection (Premebida et al., 2009). If
the data used is the same, the goal differs as in this work, image
and lidar data is exploited in a classification framework to decide
if an object is a pedestrian, whereas in our work, we aim at a
precise image segmentation of the mobile objects using the Lidar
information, and we are not interested in the type of the object
(car, pedestrian, bicycle,...).

1.3 Method overview

The approach that we propose relies on mobile objects detection
from Velodyne data. This is done by Dempster-Shafer based time
aggregation of the occupancy information provided by the laser
scan as detailed in Section 2. This information is then transferred
to the image by projection, and regularized based on the image
discontinuities using a graph-cut framework as detailed in Sec-
tion 3. Results will be commented in Section 4.

2 EXTRACTION OF MOBILE OBJECTS IN
VELODYNE DATA

2.1 Velodyne data

In this study, we used data acquired by the mobile mapping sys-
tem (MMS) StereopolisII (Paparoditis et al., 2012) on which a
HDL-64E Velodyne laser scanner was mounted (cf Figure 1).
Such lasers have less accuracy than metrological scanners and are
more frequently used in robotics. They are composed of 64 laser
sensors, each of which has the capacity to emit a laser pulse and
record its time of flight. The 64 sensors are rigidly attached to a
mechanical piece that rotates at frequencies between 6 and 15Hz
around a vertical axis (with respect to the MMS). The system
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Figure 1: StereopolisII mobile mapping system that acquired
the data used in this paper. Velodyne is circled in green and
panoramic head in red.

Figure 2: Velodyne data acquired over a 3 seconds interval,
coloured according to backscattered intensity (blue:low, white:
average, red: high)

Figure 3: Arrangement of the 64 Velodyne sensors visualized
through the 64 laser rays that they emit (green)

records around 1.3 million points per second, that is 130 thou-
sand points per full rotation at the 10Hz rotation speed used dur-
ing this study. At this speed, the horizontal angular resolution is
0.23◦. Vertically, the Velodyne covers an angle from 45◦ below
horizontal to 10◦ above. The vertical resolution is not constant as
the sensor arrangement is not regular as shown in Figure 3, but it
is in average (45 + 10)/64 ≈ 0.86◦. For each point, the system
records:

• The (x, y, z) position of the target hit by the ray

• The (x, y, z) position of the point from which the ray was
emitted, which gives access to the 3D equation of the ray
and allows the ray representation in 3.

• The backscattered intensity, used to colour Figure 2

• The id of the sensor

• The exact GPS time at which the ray was emitted.

• The angle formed by the rigid head on which the sensors are
mounted with the base attached to the MMS.

This very complete information (in particular ray equation) lead
us to choose an occupancy based method for mobile points ex-
traction.

2.2 Geometric vs semantic mobile objects extraction

From the very large amount of points recorded by the Velodyne
laser scanner, our objective is now to distinguish which points
belong to fixed objects (with respect to a geographical frame) and
which points belong to mobile objects:

• Pedestrians

• 2 wheelers: bikes, mopeds, motorbikes

• 4 Cars, vans, trucks, buses

This distinction could be made semantically by using an exist-
ing urban point cloud analysis methods. This can be done ei-
ther based on supervised learning based on the shape of the point
cloud (Golovinskiy et al., 2009) (Serna and Marcotegui, 2014),
or with Markov networks (Munoz et al., 2009) (Shapovalov et
al., 2010). However, these approaches rely on a static scene as-
sumption. For mobile objects we are in one of the two following
cases:

1. The laser scanner sweeps a fixed plane relative to the MMS
(which is the case of most actual Mobile laser scanning sys-
tems): in this case, the mobile object will be distorted de-
pending on its speed relative to that of the MMS.

2. The laser rotates as the Velodyne described in Section 2.1:
In this case, the method should be adapted to take into ac-
count the multiple overlapping instances of the mobile ob-
jects. Moreover, the point density for one instance will be
much lower and less accurate than with a laser of the first
type.

In both cases, the semantic distinction will work well only for
static objects. Moreover, in both approaches will usually fail to
correctly label mobile objects for the reasons listed above. Con-
versely, we are precisely interested in detecting mobile objects in
this study, which is complementary to such semantic approaches:
by detecting mobile objects, we can remove them from the scene
such that the static assumption made by the aforementioned se-
mantic approaches is verified.

Based on our specific data, we propose an approach inspired by
(Xiao et al., 2013) based on Dempster-Shafer aggregation of the
occupancy information provided by the rays.
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2.3 Mobile points extraction

We will now briefly summarize the work of (Xiao et al., 2013)
that we used to determine which points in the Velodyne data
correspond to mobile objects. The central point of this work is
to model the information that laser rays give us about the occu-
pancy of space. Space is obviously empty between the laser cen-
ter and the hit point, full around the target and unknown behind.
This information is formalized using Dempster-Shafer Theory
(DST), such that the occupancy of space is given by three func-
tions (e, o, u): R3 → T = {(e, o, u) ∈ [0, 1]3|e + o + u = 1}.
We thus have three extreme cases:

1. (1, 0, 0): it is certain that the space is empty at this point

2. (0, 1, 0): it is certain that the space is full at this point

3. (0, 0, 1): nothing is known on the occupancy of space at this
point

The DST defines an aggregation operator⊕ for this type of infor-
mation: e1

o1
u1

⊕
 e2

o2
u2

 =
1

1−K

 e1e2 + e1u2 + u1e2
o1o2 + o1u2 + u1o2

u1u2


K = e1o2 + o1e2

that is commutative and associative. K is the conflict and in-
dicates an incoherence in the aggregated information. In (Xiao
et al., 2013), this operator is used to aggregate all the informa-
tion from individual rays in one scan of the scene. To com-
pare a scans 1 with a scan 2 of the same scene, the (e2, o2, u2)
of scan 2 are computed at the point locations of scan 1 where
(e1, o1, u1) = (0, 1, 0) (space is full where there is a point). The
result can be interpreted the following way:

1. e2 indicates change: scan 1 is full at this point whereas scan
2 is empty, indicating that the scene has changed in the time
interval between scans 1 and 2

2. o2 indicates consistency: scan 1 and 2 are full at this point,
indicating that the scene is the same.

3. u2 indicates uncertainty: there is no information at that point
in scan 2 so nothing can be said about it. This occurs mainly
in occlusions.

The same analysis can be performed between scan 2 and scan 1
by reversing their roles, such that for each scan we can know what
has changed or not compared to the other.

In this paper, we propose to apply this methodology to mobile
objects detection by simply defining the scans to compare at a
much shorter time interval: between Velodyne frames (defined
as a full 360◦ rotation of the Velodyne head around the vertical
axis). More precisely, scan 1 will be a Velodyne frame, and scan
2 will be a set of nframe frames before and after the frame of
scan 1. The parameter nframe should be tuned according to the
scanning frequency f and the expected size sz and speed sp of
the mobile objects that we cant to detect. To be fully detected
with this approach, a mobile object needs to have fully moved
outside of the volume it occupies in space between the studied
frame and the furthest one (in time). An object of size sz and

Figure 4: A single Velodyne frame (green) with the 10 past
frames (red) and the 10 future frames (blue)

speed sp takes a time sz/sp to achieve this, so the time interval
nframes/f should be greater:

nframes > f
sz

sp

the order of magnitude for common mobile objects (for f =
10Hz) is:

1. Pedestrian: sz = 0.5m (in the direction of movement),
sp = 1m/s, nframes > 5

2. Bicycle: sz = 2m (in the direction of movement), sp =
4m/s, nframes > 5

3. Car: sz = 5m (in the direction of movement), sp = 10m/s,
nframes > 5

so very roughly, the number of frames to use is the same for these
mobile objects. In practice, we used nframes = 10 in order to
fully detect objects moving at half the expected speeds mentioned
above. For even lower speeds, only a part of the object will be
detected (the front and the back in moving direction) which may
still lead to good image extraction.

With nframes = 10, scan 2 consists of 20 frames (10 before
and 10 after the frame of scan 1). Adding the past and the future
makes the detection more robust. A result of this adaptation of
(Xiao et al., 2013) to Velodyne data is presented on Figure 5. The
moving car is very well detected, but the method tends to over
detection (points on the street or top of parked cars are detected
as mobile). This is due to the fact that our method requires a
great accuracy, and the Velodyne is not a metrologic sensor. Thus
for point far away, the precision is low such that fixed surface
can be interpreted as moving because it is not exactly at the same
position between the first and the last frame. Fixing this issue
would require a very fine, probably non rigid registration of the
velodyne frames, and a better calibration of the Velodyne itself.

3 MOBILE OBJECTS DELINEATION IN IMAGES

From the previous section, we now have a 4D information on
mobile points in space. The aim of this section is now to transfer
this information to oriented images acquired simultaneously to
the Velodyne acquisition. We will start by describing the images
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Figure 5: Result of the mobile points extraction from Velodyne
data for the single frame of Figure 4

used in this study, the explain the time aware projection of points
in these images, and finally detail our graph-cut based approach
to mobile objects delineation.

3.1 Oriented images

Figure 6: The 14 oriented images visualized with the Velodyne
data acquired simultaneously in the background

In this study, we used oriented images acquired simultaneously
to the Velodyne data. These images are acquired by 14 cameras
mounted on the MMS, and precisely calibrated (both internally
and externally) by the method described in (Cannelle et al., 2012).
For each such image, we have a time stamp indicating the exact
moment at which it was taken.

The MMS has a georeferencing system providing its location in a
geographical frame with a high precision (decimetric) when it is
static and in an open environment, but is subject to a drift when
it is moving in urban areas where satellites are harder to acquire
and their signal is perturbed by echoes on faades. However, the
inertial unit ensures that this drift is sufficiently slow (below 1cm
per second) to be neglected in this study.

Figure 7: Histogram of number of points that project in an im-
age every 0.01s time intervals. Exact image acquisition time is
marked by a red dot.

3.2 Time aware projection

Thanks to a precise calibration of both the images orientations
and Velodyne laser, we are able to project the Velodyne points
in each acquired image. However, for the projected points to be
coherent with the image content, this should be done by taking
special care of the timing of the acquisition: the points to be pro-
jected in the image should have been acquired as close as possi-
ble (temporally) to the image. Because of its regular rotation, the
laser scan spans regularly (every tenth of a second with our 10Hz
setting) the part of the scene seen by the image. This can be vi-
sualized through an histogram showing how many points project
in the image for small time intervals as shown in Figure 7.

From that histogram, we see that the laser does not necessarily
sweep the portion of the scene seen by the image at the exact time
that the image is acquired. To minimize the time shift between
acquisition time of the image and points projected in it, we select
the closest frame by the following algorithm:

1. For image i, compute its time histogram by counting how
many points acquired in each time interval of the histogram
project in the image (cf Figure 7).

2. Extract the local maxima tj of the histogram

3. Find the local maxima tj∗ the closest to the acquisition time
ti of image i

4. For an acquisition frequency f (10Hz in our case), define
the time frame of image i as [ti − 1/2f, ti + 1/2f ]

As Figure 7 shows, for each 360 rotation of the Velodyne (every
0.1s) acquired points project in the image for a time interval of
around 0.03s. Thus, in the worst case scenario (image was ac-
quired when Velodyne was acquiring the opposite direction), the
maximum time shift between the acquisition time of a point and
that of the image is 1/2f+0.03/2 = 0.065s. Thus a vehicle with
speed 10ms−1 relative to the MMS (common for a car crossing
the vehicle) may have moved of 10 × 0.065 = 0.65m between
its acquisition by the Velodyne and the image in the worst case.
Obviously, the average case is much better (a few centimetres for
vehicles moving in the same direction as the MMS, 10-20cms for
pedestrians). Hence, we need our image delineation algorithm to
be robust to such uncertainties.

After projection in the image of the points acquired within a small
time margin, we create a weights image w = (m, s, u), by gath-
ering this information in the projected points (cf Figure 8). The
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(a) Crop of input image

(b) Projected weights image (red=mobile, green=static, blue=unknown)

(c) Image and weights overlapped with pixels where no point projects
made transparent

Figure 8: Inputs to the graph cut algorithm

pixels where no point project are attributed the weights (0, 0, 1)
(completely unknown) as illustrated in Figure 8(b). We will now
make use of this weight image w to segment the mobile objects
from the static background of the image.

3.3 Graph-cut segmentation

We will now formulate the segmentation problem between mo-
bile and static objects. We look for a labelling L : I → {0, 1}
where I is the set of pixels of the image, and label 0 is for static
pixels and 1 is for mobile. The label L will be optimized through
three concurrent objectives:

1. Laser consistency: The labelling should be as consistent as
possible with the weights w. In other terms, when w =
(1, 0, 0) (mobile),L should be 1, whenw = (0, 1, 0) (static)
L should be 0, and when w = (0, 0, 1) (unknown), L can
be indifferently 0 or 1.

2. Image Regularity: We are looking for mobile objects, which
are quite large scale, so the delineation should be quite coarse.
More formally, we will penalize the label changes, that is the
number of transitions of L from 0 to 1 (or the opposite) on
neighbouring pixels.

3. Image consistency: transitions between labels should be more
easy on image edges.

Those two objectives are formulated through an energy to mini-
mize:

E(L) =
∑
p∈I

sL(p)+m(1−L(p))+
∑

(p,q)∈N4

λ|L(p)− L(q)|
d(I(p), I(q)) + ε

where N4 is the set of adjacent pairs of pixels in image I in 4-
connectivity, λ and ε are parameters that will be discussed in Sec-
tion 4 and d is a distance on image colors, that we defined as:

d(I(p), I(q)) =

√
(rq − rp)2 + (gq − gp)2 + (bq − bp)2

255

where (r., g., b.) are the red, green and blue components of the
image in [0, 255] at p and q. This minimization problem writes
naturally as a graph cut problem (Boykov and Kolmogorov, 2004)
where each pixel is a node, and there are two types of with edges:

1. Edges between source/sink and a node, with weights s be-
tween the node and the source, andm between the node and
the sink.

2. Edges between nodes corresponding to adjacent pixels p and
q with weights (d(I(p), I(q)) + ε)−1.

One can readily check that for any cut of this graph separating
source from sink, all node pixels are attached either to the node
and the sink, and that if we label them 0 (source) and 1 (sink), the
corresponding labelling has an energy E(L) equal to the cost of
the cut (sum of all the weights of the cut edges).

4 RESULTS AND DISCUSSION

We applied the methodology described in this paper to an ac-
quisition by the StereopolisII MMS in Paris where images and
Velodyne laser point cloud were acquired simultaneously. Re-
sults for various parameter values are displayed in Figures 9 and
10. Concerning the influence of the parameters:

1. The parameter nframes: as explained in Section 2.3, we
consider 10 frames as a minimum in order to completely de-
tect objects moving slower than half their expected speed.
This parameter should not be increased excessively as pro-
cessing time is proportional.
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(a) Input: image and projected weights

(b) Result with λ = 10−2 ε = 10−3

(c) Result with λ = 3.10−2 ε = 10−3

Figure 9: Results for average parameter values. Extracted mobile
objects are highlighted in red.

2. The parameter ε > 0 weights the image attachment term.
For a high value, image consistency term is almost constant,
so the attachment to the image will be very weak and only
compactness of the regions will be favoured (Figure 10(b)).
On the opposite, for low values transitions between pixels
with similar values will be highly penalized, such that re-
gion boundaries will align with image edges (Figure 9(b)).
For good image attachment, we choose ε very small (usually

(a) Result with λ = 10−3 ε = 10−3

(b) Result with λ = 10−3 ε = 103

(c) Result with λ = 5.102 ε = 103

Figure 10: Results for extreme parameter values. Extracted mo-
bile objects are highlighted in red.

10−3). Note that ε should never be 0 because in that case we
risk division by 0 if adjacent pixels have the same color, so
it should be chosen as a small strictly positive value.

3. The parameter λ weights between data attachment and reg-
ularity. If λ is small, data attachment will be prioritized
such that region shapes will adapt to fit the projected weights
(Figure 10(a)). On the opposite, a large λ will favour very
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compact (and image aligned if ε is small) regions at the cost
of higher distance from the input (Figure 10(c)), with the
risk of having a single region if λ is too high.

We see in the results that most of the errors come from two causes:

1. Misalignment between the image and the laser. This comes
from the fact that the Velodyne is not a metrologic sensor
and has imprecisions, from the image and Velodyne calibra-
tion, and from the fact that there are naturally temporal shifts
between the image where all pixels are acquired simultane-
ously and the laser that sweeps the scene continuously.

2. Errors in the points weights which are also mainly due to
Velodyne imprecision.

The calibration of the Velodyne was made with a very rigorous
methodology so there is probably limited possible improvement
there. Concerning Velodyne imprecision, the best way to go is
a frame by frame or even temporal self-registration to enhance
the self-consistency of the data (fixed objects stay at the exact
same place through time). Finally, concerning the temporal shift,
a possible solution would be to estimate an object speed and use
this speed to estimate the points position at the exact instant that
the image was taken.

Concerning processing time, the mobile weights computation is
by far the most time consuming (15s) even though the space
queries are optimized by a kd-tree. The projection in the image
takes around 1s (including the histogram construction and anal-
ysis) and the graph construction and minimum cut computation
takes around 0.5s on a full HD 1920x1080 image, all in single
thread on an Intel Core i7 CPU at 3.33GHz processor.

5 CONCLUSIONS AND FUTURE WORK

We have presented a full pipeline to extract mobile objects in im-
ages based on a simultaneous Velodyne scan. It relies on an anal-
ysis of the evolution of space occupancy with Dempster-Shafer
theory, a projection of this information in images, and finally a
graph-cut optimization to extract the mobile objects in the image
coherently with both the image content and the projected weights.
The algorithm shows satisfying results considering the challeng-
ing data, and several leads for improvement have been proposed.

In the future, we plan on analysing more finely the laser at various
level:

• Self-registration to ensure that fixed objects are stable through
time

• Object tracking to reach an object level representation in the
laser, allowing to interpolate its position between its acqui-
sition instants for a closer matching with the image.

• Deeper image/laser collaboration by expressing the two parts
of the problem (mobile points extraction and their cluster-
ing) in a single general formulation combining 3D and im-
age.
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