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ABSTRACT: 

 

In this study, we propose a method to accurately extract vegetation from terrestrial three-dimensional (3D) point clouds for 
estimating landscape index in urban areas. Extraction of vegetation in urban areas is challenging because the light returned by 

vegetation does not show as clear patterns as man-made objects and because urban areas may have various objects to discriminate 

vegetation from. The proposed method takes a multi-scale voxel approach to effectively extract different types of vegetation in 

complex urban areas. With two different voxel sizes, a process is repeated that calculates the eigenvalues of the planar surface using 
a set of points, classifies voxels using the approximate curvature of the voxel of interest derived from the eigenvalues, and examines 

the connectivity of the valid voxels. We applied the proposed method to two data sets measured in a residential area in Kyoto, Japan. 

The validation results were acceptable, with F-measures of approximately 95% and 92%. It was also demonstrated that several types 

of vegetation were successfully extracted by the proposed method whereas the occluded vegetation were omitted. We conclude that 
the proposed method is suitable for extracting vegetation in urban areas from terrestrial light detection and ranging (LiDAR) data. In 

future, the proposed method will be applied to mobile LiDAR data and the performance of the method against lower density of point 

clouds will be examined. 

 
 

1.    INTRODUCTION 

Light detection and ranging (LiDAR) measures laser light 

reflected from the surface of objects, and the discrete LiDAR 
data are used to model three-dimensional (3D) surfaces of the 

objects and derive the attributes. One of the most popular 

applications of airborne LiDAR data has been building 

modelling. For examples of detailed modelling, Sampath and 
Shan (2010) proposed a method to reconstruct polyhedral 

building roofs. The method selects neighbourhood via Voronoi 

meshing, and estimates surface normal vectors. The surface 

normals are clustered with the fuzzy k-means method. The 
method proposed by Kim and Shan (2011) segments points by 

minimizing an energy function formulated as multiphase level 

set. To improve modelling accuracy, the fusion with other data 

has been examined, such as aerial imagery (Susaki, 2013), 
satellite imagery (Awrangjeb et al., 2013) and terrestrial LiDAR 

(Caceres and Slatton, 2007).  

 

Another popular application of airborne LiDAR data is to model 
vegetation and estimate the height and canopy volume of the 

vegetation. Vegetation returns the light in various ways, on the 

surface, in the middle and from the bottom whereas buildings 

return the light mainly on the surface. This unique feature is a 
challenge in applying the LiDAR data to the vegetation. It is 

well known that the first and last pulses of the light reflected 

from vegetation correspond to the top (canopies) and bottom 
(ground) of the vegetation. Heights of vegetation surface and 

ground are estimated by using the first and last pulse data, 

respectively. Thus, we can derive the heights of vegetation by 

subtracting ground height from vegetation surface height. Over 
the last decade, full-waveform airborne LiDAR has been 

examined (Rutzinger et al., 2008; Elseberg et al., 2011). It can 

provide more detailed pattern of reflected light, and has 

potential to estimate the structure of the forests.  

 

Extraction of vegetation in urban areas has another important 

aspect of applications of LiDAR data. It can contribute to rapid 
and low-cost assessment of local landscape (Carlberg et al., 

2009). Susaki and Komiya (2014) proposed a method to 

estimate green space ratio (GSR) in urban areas from airborne 

LiDAR and aerial images for quantitatively assessing local 
landscape. Because of occlusion, more accurate extraction of 

vegetation can be achieved by using terrestrial LiDAR data, as 

is the case of building modelling. In addition to terrestrial 

LiDAR, mobile (or vehicle-based) LiDAR has been examined 
for the purpose because mobile LiDAR is capable of measuring 

the data in a large area rapidly (Lin et al., 2014).  

 

In a complex scene of urban areas, an automatic extraction of 
vegetation requires classifying man-made and natural objects. 

This is another challenge in applying the LiDAR data to urban 

vegetation. One of the most promising approaches is to process 

the LiDAR data on multi-scales (Unnikrishnan and Hebert, 
2008; Lim and Suter, 2009; Xu et al., 2014). For example, 

Brodu and Lague (2012) presented a method to monitor the 

local cloud geometry behaviour across several scales by 

changing the diameter of a sphere for representing local features. 
While such approaches may be effective to extract vegetation, it 

is not guaranteed that they are effective to the data measured in 

urban areas that include different types of vegetation and 
buildings. Our final goal is to develop a method to effectively 

estimate a local landscape index reflecting vegetation volume 

from point clouds. In this research, we examine and propose a 

multi-scale based method to extract vegetation in complex 
urban areas from terrestrial LiDAR data. 

 

The rest of this paper is structured as follows. Features of the 

employed data and the study area are described in Section 2. 
Section 3 describes the proposed method, experimental and 
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validation results. The implications of these results and the 

validity of the algorithm are then discussed in Section 4. 

Conclusions are given in Section 5. 
 

2.    DATA AND PREPROCESSING 

2.1 Study Area and Data Collection 

We selected as the test site a residential area in Nishikyo-ward, 

Kyoto, Japan with various kinds of vegetation. We measured 
the data by using a RIEGL VZ-400 laser scanner in May, 2014. 

Four scan positions, shown in Figure 1, were arranged along the 

road. Each scan ranged from 30° to 130° in the vertical axis and 

from 0° to 360° in the horizontal axis with an interval of 0.04°. 
Under this condition, a scanner measured a point every 7 mm on 

the surface 10 m away from the scanner. 

 

2.2 Co-registration 

Co-registration was conducted by using commercial software 

RiSCAN PRO developed by RIEGL. First, point clouds 

belonging to pedestrians and cars were manually removed. Then, 

a reference scanner was selected and the reference coordinate 
system was defined. Finally, coordinate systems of the other 

scanners were converted into the reference coordinate system 

with at least six corresponding points. The standard deviation of 

the errors was 2.8 mm. 
 

2.3 Resampling 

Our final goal is to estimate a vegetation-based landscape index 

over a large area, and for that purpose, the proposed method 
will be applied to mobile LiDAR data in future. The measured 

data were reduced to save computation time and to examine the 

performance of the proposed method against as low density of 

data as mobile LiDAR data. The point clouds were mapped into 
voxels, and then points in a voxel were represented by the 

centroid of the points. We set the voxel size to 2 cm referring 

average of primary nearest point distance with mobile LiDAR 

(Lin et al., 2014). As shown in Figure 1, areas of approximately 

20 m ×  15 m were selected as Data 1 and Data 2, and the 

numbers of points were 1,453,130 and 1,563,901, respectively. 

In addition, to examine the availability of the proposed method, 

we acquired sparser point data sets, Data 3 and Data 4, by 
setting another voxel size as 5cm. The numbers of points were 

411,269 and 527,969, respectively. 

 

 
 

Figure 1. Test site. The red dots represent four scan positions 
and the rectangles show the areas of data. 

 

 

Figure 2. Flowchart of the proposed method. 

 

3.    METHOD AND RESULTS 

3.1 Outline 

Figure 2 shows the flowchart for the proposed method. It takes 

voxel-based approach. With two different voxel sizes, the 

classification is conducted. The voxel size depends on the 
length of leaves and types of vegetation. In this research, we set 

them to 10 cm and 20cm. A process is repeated that calculates 

the eigenvalues of the planar surface using a set of points, 

classifies voxels using the approximate curvature of the voxel of 
interest derived from the eigenvalues, and examines the 

connectivity of the valid voxels. The vegetation missed at the 

1st screening will be examined for the 2nd screening with a 

larger voxel size. The approximate curvature of points is 
estimated by fitting planar surface and calculating principal 

component analysis (PCA). The proposed method uses both 

local and contextual features. The former one is calculated by 

the approximate curvature and the latter one is obtained by 
examining the connectivity of the valid voxels. By repeating the 

process twice, the accuracy of extracting vegetation can be 

improved. 

 

3.2 Principal Component Analysis 

PCA is a statistical approach to represent observed data with 

linearly uncorrelated variables called principal components. 

Each variance value according to the principal component 
corresponds to the eigenvalue. By applying PCA to 3D point 

clouds, the distribution characteristic can be analysed. The 

distribution characteristic of point clouds is captured by 

eigenvalues derived from the covariance matrix computed from 
neighbouring points (Mark et al., 2002, Vandapel et al., 2004). 

A distribution characteristic is classified into three categories, 

1D, 2D and 3D, using the proportions of each eigenvalue to the 

sum of them (Brodu and Lague, 2012). 
 

In this study, we use the result of PCA as a feature of the whole 

point clouds used to compute it. Three eigenvalues, 𝜆𝑖  ( 𝑖 =
1 … 3, λ1 ≥ λ2 ≥ λ3), are derived from 3D points set of N, pi (xi, 

yi, zi) (i = 1… N), using PCA.  
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The ratios of each eigenvalue to the sum of all are defined as the 

following Equation (1). 

 

 

Figure 3 shows the relation between ci and the distribution 

characteristic. The arrows correspond to the principal 

components and the length of them describes the magnitude of 
eigenvalues. The graph shows where 1D, 2D and 3D point 

clouds can appear on the 𝑐2 -𝑐3 plane. In the case that only the 

largest eigenvalue, λ1 accounts for the total variance, the points 

are distributed only along one principle component, which 
means they have a 1D distribution characteristic. In this 

situation, 𝑐1 approaches to 1, and the others approach to 0. In 

the case that the points are distributed on a plane surface, two of 

eigenvalues account for the total variance. As the result, only 𝑐3 

approaches to 0. In the same manner, 𝑐1, 𝑐2 and 𝑐3 have similar 

magnitude when the points are homogeneously distributed 

around 3D space. We assume that the combination of ci 

represents approximate curvature of the surface applied to the 
points of interest, and hereafter we use it to capture both local 

feature and contextual features. 

 

3.3 Voxel-based Analysis: Classification Using 

Approximate Curvature 

After voxels store points, the distribution characteristic is 

computed, using points in each voxel. Then, according to the 
characteristic, each voxel is labelled. In this study, the test site is 

located in urban area, and thus vegetation must be distinguished 

from artificial structures such as buildings or walls, which 

points of them have a 2D distribution characteristic. 

 

On the other hand, vegetation points have more scattered 

distribution than them. Therefore, vegetation with a 3D 

distribution characteristic and artificial structures with a 2D 
distribution characteristic are initially classified with slope a, 

the ratio of 𝑐3 to 𝑐2, expressed by Equation (2). 

 

𝑎 =  
𝑐3

𝑐2
 =  

𝜆3

𝜆2
 . (2) 

 

In the procedure (i) shown in Figure 2, all voxels are classified 

into three groups, G1, G2 and G3, by the value of a as described 

in Figure 4. The thresholds are represented by a1 and a2. 
Because G1 is closer to 3D than 2D, the voxels belonging to G1 

has a high probability to be vegetation. Voxels classified as G3 

have a 2D distribution characteristic, that is, most walls and 

roofs belong to this group. Voxels in G2 are difficult to be 
classified into vegetation or non-vegetation only with the 

proportion value a. In urban areas, much vegetation is trimmed 

and the surface is smoother than natural vegetation. As a result, 

the vegetation is classified into G2. Many windows and 
boundaries of two planes, such as ridges and edges of roofs, are 

classified as G2. In the following process, the voxels in this 

group are re-classified into G1 or G3 by connectivity of the 

voxels and the detail is explained in Subsection 3.4. 
 

In the procedure (ii), the extracting operation in the procedure 

(i) is repeated with different thresholds. In this step, 20 cm 

voxels are used to extract vegetation with sparse points.  
 

In this experiment, the thresholds related to a were set via the 

examination of samples from Data 1 as follows: a1 = 0.02, a2 = 

0.1, a3 = 0.06, a4 = 0.6. 
 

3.4 Cluster-based analysis: Classification by connectivity 

In the voxel-based analysis, only local features are used to 

classify voxels. As the result, many misclassifications occur on 
window frames and edges. We implement the cluster-based 

analysis to examine the contextual information, i.e. connectivity 

of valid voxels. In the case that neighbouring voxels have the 

same label given in the voxel-based analysis, they are regarded 
as one cluster. A single voxel can compose one cluster, having 

no surrounding voxels with the same label.  

 

The trimmed vegetation is difficult to be classified with a local 
feature. The trimmed vegetation occupies a great part of urban 

vegetation, and so it cannot be neglected to estimate a 

vegetation-based landscape index. Because of its flatter surface, 

the trimmed vegetation cannot be extracted with natural 
vegetation only by using a local feature. Therefore, the trimmed 

vegetation is extracted with a combination of a distribution 

characteristic and connectivity with surrounding voxels. Figure 

5 shows the process illustrated in Figure 2(a). After clustering, a 
cluster is re-classified into G1 or G3 by using the labels of the 

surrounding voxels. Classification accuracy is improved by 

using lager scale than a voxel. In Figure 5, three red voxels 

 
Figure 3. Scatterplot of c2 and c3. 𝜆𝑖  stands for eigenvalues of 

each component and ci are their proportion described by 

Equation (1). According to point distribution, 1D denotes the 

data that have a linear arrangement, 2D denotes the data that are 

on a plane and 3D denotes the data that are randomly scattered. 

 

Figure 4. Classification of voxels. Using the slope a, voxels are 

classified into three groups, G1, G2 and G3. 

𝑐𝑖 =  
𝜆𝑖

𝜆1 +  𝜆2 +  𝜆3
  , 𝑖 = 1 … 3 . (1) 
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represent a target cluster. The surrounding voxels are the 
thirteen voxels connected with the cluster. Blue and green 

voxels correspond to G1 and G3, respectively, and a transparent 

one means no data. The cluster is re-classified with Equation (3). 

 

𝑟 =  
𝑁𝐺1

𝑁𝐺1
+ 𝑁𝐺3

 . (3) 

Here, NG1 corresponds to a number of G1 voxels and NG3 

corresponds to one of G3 voxels. Vegetation_ratio, r, is defined 
as the proportion of NG1 to sum of NG1 and NG3. In the case that 

r equals to threshold r1 or more, the cluster is classified as G1. In 

the case that r is less than r1, the cluster is classified as G3. 

Therefore, the cluster has been classified as G1 in the right-hand 
side. In this experiment, r1 was set to 0.5 via the examination of 

samples from Data 1. 

 

When 3D point clouds are classified by using a local feature 
computed with PCA, many misclassifications occur on 

boundaries of several objects (Vandapel et al., 2004). In urban 

areas, the local feature is not effective to distinguish vegetation 

from window frames and edges of roofs. Therefore, cluster-
based analysis, shown in figure 2(b), is used to classify them. 

First, a number of voxels belonging to a cluster is counted. In 

the case that the number is greater than a threshold, the cluster 

is classified as vegetation. In the case that the number is less 
than another threshold, the cluster is considered as noise. 

Vegetation cluster must have many voxels because vegetation 

voxels are extracted in the former process. For the same reason, 

most noise clusters are eliminated by numbers of voxels. Then, 
a large noise cluster is distinguished by using PCA with points 

in a cluster, as shown in Figure 6. Most noise clusters are 

located in windows and edges and thus have 1D and 2D 

characteristics. When c1 is larger than a threshold b1, the cluster 
can be considered as an edge. When c3 is smaller than another 

threshold b3, the cluster can be considered as a window or an 

edge. The thresholds were set via the examination of samples 

from Data 1 to 0.6 and 0.05, respectively.  

The result of the process (a) in Figure 2 is shown in Figure 7. A 

combination of a local feature and a contextual feature 
improved the performance of extracting vegetation. Figure 7(a) 

shows the result classified only with voxel-based analysis, and 

Figure 7(b) shows the result classified with the combination of 

voxel-based analysis and cluster-based analysis. As shown in 
the black circles, the noise on the walls and the roofs becomes 

less in Figure 7(b) than in Figure 7(a). Considering the results, it 

is obvious that a combination of local and contextual features 

improves classification accuracy. The decrease in the noise is 
effective to improve classification accuracy in the following 

process because it can prevent the noise clusters from becoming 

larger. From another point of view, the trimmed vegetation 

pointed by the white arrow can be extracted with the less noise. 
 

3.5  Multi-scale Classification 

Multi-scale concept is important to improve classification 

accuracy of 3D point clouds. This concept is used to decide 
neighbouring points or to capture feature changes in some 

studies (Unnikrishnan and Hebert, 2008, Brodu and Lague, 

2012). In the proposed method, we take multi-scale 

classification with two sizes of voxels, 10 cm and 20 cm, to 
extract vegetation. When only one size is used, a small voxel 

cannot store enough points to analyse a distribution feature at a 

low density area, or large voxels cannot capture an object shape. 

The 10 cm voxel is suitable not only to capture an object shape 
but also to avoid a mixture of two objects. However, vegetation 

 
(a) Voxel 

 

 
(b) Voxel + Cluster 

 
 

Figure 7. Effect of combination of local and contextual features. 

(a) Result only using voxel-based analysis and (b) result using 
voxel-based and cluster-based analysis. 

 

 
Figure 5. Classification of clusters in Figure 2(a). 

 

 
Figure 6. Approximate curvature of clusters in Figure 2(b). 
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with low point density is difficult to be analysed with this size. 

The vegetation can be extracted to some extent with lager 
voxels. 20 cm voxels are used to re-extract such remaining 

vegetation after the first process. 

 

Figures 8(a) and (b) show the result with 10 cm voxels and the 
result with 20 cm voxels, respectively. As shown in the white 

circle, the shrub has not been fully extracted with 10 cm voxels, 

but it can be extracted with 20 cm voxels. Because of low point 

density, the number of the extracted voxels is not enough to 
describe the shape of the shrub with 10 cm voxels. The shrub 

voxels are divided into small clusters and thus loses the 3D 

feature. By contrast, the whole shrub can be described as one 

cluster by using 20 cm voxels and thus has been fully extracted. 

 

3.6 Accuracy Assessment 

The extraction performance was assessed with reference data 

that were manually obtained. The point-based assessment was 
conducted. The results of vegetation extracted from Data 1 and 

2 are shown in Figures 9(a) and (b), and Figures 9(c) and (d), 

respectively. The F-measure, expressed by Equation (4), was 

used for quantitative assessment of the performance. 
 

F-measure = 2 Precision Recall / (Precision + Recall)      (4) 

 

Precision = TP / (TP + FP), Recall = TP / (TP + FN)        (5) 
 

Here TP, FP, and FN denote true positive, false positive, and 

false negative, respectively. The F-measure results of Data 1 

and 2 are shown in Table 1. 
 

4.    DISCUSSION 

Although some misclassifications occurred, the proposed 

method performed well. Compared to the result of Data 1 (F-
measure of 94.6%), the result of Data 2 is less accurate (F-

measure of 91.8%). The thresholds used in the proposed method 

were determined by referring to the samples taken from Data 1. 

While the precision of the result of Data 2 was not as good as 
that of Data 1, it is still acceptable. In addition, the proposed 

method successfully extracted various kinds of vegetation. 

Figure 10 shows the vegetation extracted by the proposed 

method: the canopy of the road tree (Figure 10(b)), the shrub 
with the needle leaves (Figure 10(e)) and the ivy covering the 

fence (Figure 10(f)). In addition, our method has extracted the 

trimmed vegetation, which we can find much in urban areas, 

such as Figures 10(a), 10(c) and 10(d). 
 

Now, we will discuss the factors for misclassifications. The 

false positive (non-vegetation) in Figures 9(c) and (d) 

correspond to the fence close to the vegetation. The false 

positives are noticeably more in the Data 2 than in the Data1 
because the fence surface is not flat and generates more noise. 

In addition, same as the case of Data 1, the false negatives 

mainly correspond to occluded vegetation. In case of vegetation 

occluded by the fences or other non-vegetation, it does not have 

high point density enough to be extracted even by 20 cm voxels. 

Some misclassified non-vegetation can be found on the 

boundary between vegetation and non-vegetation. This is 

because the noise voxels are connected with vegetation voxels 
and thus is not been eliminated as noise. In addition, some 

misclassified vegetation, can be seen on the tips of the branches. 

This is because the numbers of vegetation voxels on the tips are 

not large enough to make large clusters.  
 

 

 
(a) 10 cm (b) 20 cm 

Figure 8. Difference of results extracted with different sizes of 
voxels (blue: vegetation; green: non-vegetation.) 

 

Data 1 
Reference data 

Vegetation Non-vegetation Total 

Classified 

data 

Vegetation 
(TP)  

833,128 

(FP) 

37,312 
870,440 

Non-

vegetation 
(FN)    

56,934 
525,756 582,690 

Total 890,071 563,068 1,453,130 
 

Precision = 95.7%, Recall = 93.6%, F-measure = 94.6% 

(a) 

Data 2 
Reference data 

Vegetation Non-vegetation Total 

Classified 

data 

Vegetation 
(TP)  

1,089,428 

(FP)   

145,188 
1,234,616 

Non-

vegetation 

(FN)  

49,505 
279,780 329,285 

Total 1,138,933 424,968 1,563,901 

 

Precision = 88.2%, Recall = 95.7%, F-measure = 91.8% 

(b) 

Table 1. Accuracy assessment of (a) Data 1 and (b) Data 2 

(Unit: point) 

Data 3 
Reference data 

Vegetation Non-vegetation Total 

Classified 

data 

Vegetation 
(TP)  

243,179 

(FP)   

6537 
249,716 

Non-

vegetation 
(FN)    

25,566 
135,987 161,553 

Total 268,745 142,524 411,269 
 

Precision = 97.4%, Recall = 90.5%, F-measure = 93.8% 
(c) 

Data 4 
Reference data 

Vegetation Non-vegetation Total 

Classified 

data 

Vegetation 
(TP)  

366,204 

(FP)   

30,522 
396,726 

Non-

vegetation 

(FN)    

40,478 
90,765 131,243 

Total 406,682 121,287 527,969 

 

Precision = 92.3%, Recall = 90.0%, F-measure = 91.2% 

(d) 

Table 2. Accuracy assessment of sparse point cloud, (c) Data3 
and (d) Data 4 (Unit: point) 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 9. Results of vegetation extracted by the proposed method. (a), (b) Results from Data 1, (c), (d) results from Data 2, (e), (f) 

results from Data 3, and (g), (h) results from Data 4. 
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Figure 10. Vegetation extracted by the proposed method. (a), (c), (d) Trimmed vegetation, (b) canopy of the tree. (e) shrub with the 

needle leaves and (f) ivy. 
 

Next, we focus on the effect of multi-scale classification. In the 

experiment, we used two different sizes, 10 cm and 20 cm, for 

voxel. The vegetation missed at the 1st screening with a voxel 
size of 10 cm is examined for the 2nd screening with a larger 

voxel size of 20 cm. As shown in Figure 8, we found that such 

multi-scale classification was quite effective to improve the 

accuracy of extracting the vegetation from point clouds. 
Moreover, we examined the applicability of the proposed 

method to sparser point clouds, Data 3 and Data 4. The numbers 

of points are approximately one third of original one. The 

accuracy is shown in Table 2. The F-measures are as high as 
those of Data 1 and Data 2 (93.8% of Data 3 and 91.2 % of Data 

4). Although some false negatives appear in Figures 9(e), 9(f), 

9(g) and 9(h), almost all vegetation is still classified correctly. 

From this experiment, it was noted that our method performs 
well against the relatively sparse data. 

 

Finally, we investigated the efficiency of a feature a, which is 

described by Equation (2). Weinmann et al. (2014) suggests a 
classification method that selects the best feature set out of 21 

features. Because the feature sets contain approximately 10 

features, the procedure is time-consuming. Instead, we selected 

the best feature among 21 features and a by measuring their 

relevance to classes. The experiment was conducted using 

sample data. The best feature was anisotropy and a was ranked 
as the fourth best one. We used anisotropy instead of a to 

classify voxels and conducted the same procedure as original 

method on Data 1 and Data 2. However, the accuracy did not 

change or decreased (F-measure of 94.6 % and F-measure of 
91.5 %). As a result, it was noted that a is effective to classify 

vegetation. 

 

5.    CONCLUSIONS 

In this study, we proposed a method to extract vegetation from 

terrestrial LiDAR data for estimating landscape index in urban 

areas. The proposed method uses two different voxel sizes, and 

a process is repeated that calculates the eigenvalues of the 
planar surface using a set of points, classifies voxels using the 

approximate curvature of the voxel of interest derived from the 

eigenvalues, and examines the connectivity of the valid voxels. 

We applied the proposed method to two data sets measured in a 
residential area in Kyoto, Japan. The validation results were 

acceptable, with F-measures of approximately 95% and 92%. It 

was also demonstrated that several types of vegetation were 
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successfully extracted by the proposed method. In addition, the 

method was applied to sparser data sets and the accuracy was 

acceptable. 

 
Considering the estimation of a vegetation-based landscape 

index, future work will concentrate on application of the 

proposed method to mobile LiDAR data. Many obstacles 

included in mobile LiDAR data such as cars and pedestrians 

make the application more challenging. However, these 

problems must be solved to estimate a vegetation-based 

landscape index with mobile LiDAR data. After estimating the 

landscape index with mobile LiDAR data, we are going to 
examine the accuracy, comparing with the result estimated by 

using aerial LiDAR data in (Susaki and Komiya, 2014). 
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