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ABSTRACT:

In this article we present a new method for visual odometry based on a focused plenoptic camera. This method fuses the depth data
gained by a monocular Simultaneous Localization and Mapping (SLAM) algorithm and the one received from a focused plenoptic cam-
era. Our algorithm uses the depth data and the totally focused images supplied by the plenoptic camera to run a real-time semi-dense
direct SLAM algorithm. Based on this combined approach, the scale ambiguity of a monocular SLAM system can be overcome. Fur-
thermore, the additional light-field information highly improves the tracking capabilities of the algorithm. Thus, visual odometry even
for narrow field of view (FOV) cameras is possible. We show that not only tracking profits from the additional light-field information.
By accumulating the depth information over multiple tracked images, also the depth accuracy of the focused plenoptic camera can be
highly improved. This novel approach improves the depth error by one order of magnitude compared to the one received from a single
light-field image.

1. INTRODUCTION

Even though the concept of a plenoptic camera has been de-
veloped more than hundred years ago (Ives, 1903, Lippmann,
1908), only for the last years research based on plenoptic cam-
eras became more and more popular. One reason therefore was
the appearance of the Lytro (Ng, 2006) and Raytrix (Perwaß and
Wietzke, 2012) cameras, which are the first commercially avail-
able plenoptic cameras. Besides, today’s graphic processor units
(GPUs) are capable to process the recordings of a plenoptic cam-
era with acceptable frame rates.

Both, the Lytro and the Raytrix camera capture the light-field of
a scene as a 4D function based on a micro lens array (MLA) in
front of the sensor. Nevertheless, both therefore follow a slightly
different concept. While the Lytro camera is an ”unfocused”
plenoptic camera, which has a high angular resolution but a low
spatial resolution (Ng, 2006), the Raytrix camera is a focused
plenoptic camera as described for the first time by (Lumsdaine
and Georgiev, 2008). The focused plenoptic camera, which is
also called plenoptic camera 2.0, captures the light-field with
higher spatial resolution. Therefore it is paid by angular resolu-
tion. The high spatial resolution is beneficial in estimating depth
from the recorded light-field as described in (Perwaß and Wiet-
zke, 2012).

Even though the Raytrix camera supplies depth information, the
accuracy is rather low for a distance of a few meters compared to
other depth sensors, like Time-of-Flight (ToF) cameras or stereo
camera systems, at least at a comparable field of view (FOV). The
depth accuracy and range of a focused plenoptic camera strongly
decays when reducing the focal length. Thus, a trade-of between
wide FOV and long depth range has to be found (Zeller et al.,
2014a).

The advantages of a plenoptic camera lie more in its small di-
mensions which are similar to those of a conventional camera.
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In future there will also be miniaturized light-field sensors avail-
able, which will be assembled in smartphones (Venkataraman et
al., 2013). In addition, a Raytrix camera offers a much larger
depth of field (DOF) compared to a standard camera at the same
aperture. Thus, a Raytrix camera has a much closer short range
limit than e.g. a stereo camera system.

In many navigation applications such small sensors are profitable,
for example on unmanned aerial vehicles (UAVs), where space
and weight is limited. But also for indoor navigation or blind
people assistance, where bulky sensors can be annoying, such
small and light sensors are beneficial.

For this kin of applications today mostly monocular visual odom-
etry (or Simultaneous Localization and Mapping (SLAM)) sys-
tems are used, which gain depth information from motion (Struc-
ture from Motion (SfM)). However, such monocular systems
come with some drawbacks. One drawback of a monocular vi-
sual odometry system is its scale ambiguity. Thus, especially in
navigation applications additional sensors are needed to gather
metric dimensions. Another disadvantage of monocular systems
is that no depth can be estimated when rotating around the cam-
era’s optical center as well as for structures which are homoge-
neous along their epipolar lines.

Thus, a plenoptic camera seems to be a perfect compromise be-
tween a monocular and a stereo camera or depth sensor based sys-
tem for visual odometry. Since for a plenoptic camera based sys-
tem rough depth information is available for each single frame,
tracking becomes much more robust compared to a monocular
system. Therefore, if the camera moves not to far from one frame
to the next, a smaller section of the scene is sufficient for reliable
tracking, as will be shown in the sequel. Hence, depending on the
application a narrow FOV camera can be used and so the depth
accuracy further be improved.

1.1 Related Work

SLAM systems can be divided into feature-based and direct meth-
ods. Some of them are based on depth or stereo image sensors,
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while other are pure monocular.

In feature-based SLAM or SfM systems features are extracted
from the recorded 2D images based on some feature detector.
Those features are matched between the corresponding images.
In a second step the appropriate camera positions and the 3D fea-
ture coordinates are estimated based on the feature correspon-
dences. This reduces the complexity of the problem since most
image information is disregarded (Klein and Murray, 2007, Li
and Mourikis, 2013). Nevertheless, it also effects the robust-
ness of the tracking negatively, especially if the images do not
match the feature criteria. Thus, different feature types are used
(Klein and Murray, 2008, Eade and Drummond, 2009, Concha
and Civera, 2014). From a feature-based method itself only a
sparse point cloud is received. To obtain a dense point cloud
it has to be estimated after feature-based pose estimation using
multi view stereo methods (Newcombe and Davison, 2010).

Direct methods avoid the feature extraction by performing track-
ing and mapping directly on the recorded images (Forster et al.,
2014). Thus, tracking becomes much more robust since all image
data is used. Because the complete images are used, dense depth
maps can be directly estimated (Newcombe et al., 2011). Such
direct, dense methods are very complex. The complexity can be
reduced by performing semi-dense direct tracking and mapping
algorithms (Engel et al., 2013, Engel et al., 2014). Semi-dense
means, that only image regions of high contrast are considered
for tracking and mapping and all homogeneous regions are ne-
glected. These semi-dense methods are capable to run in real-
time on today’s standard central processing units (CPUs) or even
on smartphones (Schöps et al., 2014).

The use of multiple cameras or depth sensors strongly simpli-
fies the SLAM problem. Here depth information is already re-
ceived without motion. Besides, the scale of the scene is received
directly from the recorded images without using any additional
sensors (Akbarzadeh et al., 2006, Izadi et al., 2011, Dansereau et
al., 2011, Kerl et al., 2013).

1.2 Our Contribution

In this paper we present the advantages of visual odometry based
on a focused plenoptic camera. On one side the tracking robust-
ness of a monocular SLAM algorithm can be improved by the
introduction of light-field information. More than this, for the
case that sequent images have sufficient overlap, convergence of
the tracking algorithm and thus, gaining depth information can
be assured even for a narrow FOV. In monocular visual odome-
try tracking converges only at a wide FOV. On the other side we
demonstrate that the depth information of a plenoptic camera is
considerably improved by tracking multiple frames and combin-
ing their information.

In Section 2 we briefly present the concept of a focused plenoptic
camera. Section 3 presents the monocular SLAM algorithm on
which our light-field based method relies. Our method for visual
odometry based on a plenoptic camera is described in Section 4.
The method is evaluated in Section 5 and the corresponding re-
sults are presented in Section 6. Section 7 draws conclusion.

2. THE FOCUSED PLENOPTIC CAMERA

As already mentioned in the introduction, a plenoptic camera
records the light-field of a scene as 4D function. Since in free
space the intensity along a light-ray does not change, here the
definition of the light-field as 4D function is sufficient as shown
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Figure 1. Optical path of a thin lens. An object in the distance aL
in front of the main lens results in a focused image in the distance
bL behind the main lens.
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Figure 2. Optical path inside a Raytrix camera. The virtual image
which would occur behind the sensor in the distance bL to the
main lens is projected by the MLA to multiple micro images on
the sensor.

in (Gortler et al., 1996). Thus, a ray in the light-field is defined
by two position coordinates and two angle coordinates.

The concept of the plenoptic camera of Raytrix, which is used
in our research, easily can be derived from a thin lens projection
as shown in Figure 1. The relation between the object distance
aL and the image distance bL is defined by the thin lens equation
given in eq. (1).

1

fL
=

1

aL
+

1

bL
(1)

Different to a conventional camera, in a Raytrix camera the sen-
sor is not placed on the image plane, in the distance bL behind the
main lens. Instead, the sensor is placed closer to the main lens.
Besides, a MLA is placed in front of the sensor and focuses the
virtual image, which would occur behind the sensor, on the sen-
sor, as shown in Figure 2. A distinct feature of Raytrix cameras
is that the MLA consists of three different types of micro lenses
with different focal lengths. Each type focuses on a different im-
age distances. This increases the DOF of the camera.

Within its DOF each micro lens can be considered as a pinhole
and thus each pixel in a micro image represents the corresponding
central ray of the micro lens.

Since a point of the virtual image occurs focused in more than one
micro image and in each from a slightly different perspective, the
distance b between the MLA and the corresponding virtual image
point can be calculated by triangulation, as given in eq. (2).

b =
d ·B
px

(2)

In eq. (2) d is the length of the base line between the two micro
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lenses considered for triangulation and px is the parallax mea-
sured in the corresponding micro images. The distance B be-
tween MLA and sensor is not specified. Thus, the distance to the
virtual image b is calculated as a relative measure, the so called
virtual depth v, as defined in eq. (3).

v =
b

B
=

d

px
(3)

The relationship between the virtual depth v and the metric object
distance relies on the thin lens equation and some camera specific
parameters. This relationship has to be estimated in a calibration
procedure as presented in (Zeller et al., 2014a) for instance.

The depth for a virtual image point can only be estimated if this
point can be found in more than one micro image. Thus, the vir-
tual depth v can only be estimated for regions of high contrast.
For all other regions the depth map has to be filled by interpola-
tion.

For each virtual image point for which the virtual depth is known,
the accompanied pixel on the sensor can be determined. Thus,
based on a dense virtual depth map, a totally focused, central per-
spective image can be calculated from the raw light-field image
since it is known which light-rays contribute to which virtual im-
age point. To calculate the totally focused image it is sufficient to
have a reliable virtual depth only in regions of sufficient contrast
since for homogeneous regions it does not matter which pixels
belong to the same virtual image point.

Virtual image points which have a long image distance bL (short
object distance aL) occur in more micro images than points with
a short image distance. Thus, the totally focused image has a
higher effective resolution in regions with a small virtual depth
(short image distance bL) than in regions with a high virtual depth
(long image distance bL).

For a more detailed description on depth estimation and image
synthesis we refer to (Perwaß and Wietzke, 2012) and (Zeller et
al., 2014a).

3. MONOCULAR DIRECT SLAM

Monocular direct SLAM methods do not perform any feature ex-
traction on the recorded images, but work directly on the inten-
sity images recorded by a conventional camera. Based on the
recorded images such methods track the current camera posi-
tion and also build a 3D map of the environment. In the open
source project LSD-SLAM (Engel et al., 2014) a monocular di-
rect SLAM algorithm is implemented. Different from other di-
rect SLAM methods which used the complete image information
for tracking and mapping (Newcombe et al., 2011), LSD-SLAM
works only on image regions with sufficient contrast. This allows
to ignore homogeneous image regions which carry less informa-
tion suitable for pose and depth estimation. Working only on im-
age regions with sufficient contrast strongly reduces the amount
of data and consequently the complexity of the problem. Thus,
the complete algorithm is capable to run in real-time on a stan-
dard CPU.

In this article we are mainly interested in the tracking of new
frames and the depth estimation algorithm which we improve by
introducing light-field information. Thus, in this article we will
not discuss key-frame selection, global map optimization or other
aspects of SLAM algorithms.

The following paragraphs describe very briefly the probabilis-
tic depth model, the tracking and the depth estimation of LSD-

SLAM. For a more detailed explanation we refer to (Engel et al.,
2013, Engel et al., 2014).

3.1 Inverse Depth Map

In LSD-SLAM the depth map of a frame is not just defined as
a 2D map of depth values, but as a 2D map of random variables.
For the case that the camera rotation between two frames is small,
the estimated depth is approximately inverse proportional to the
estimated disparity. Since the disparity can be considered to be
disturbed by additive Gaussian noise, the inverse depth map is
also defined as a map of Gaussian distributed random variables.
Each pixel pi in the inverse depth map D is defined by the ex-
pected inverse depth value di = D(pi) and the corresponding
inverse depth variance σ2

di = V (pi). The inverse depth map D
is continuously refined when new images are added. Thus, with
each new observation the inverse depth variance σ2

di decays and
the inverse depth becomes more reliable.

3.2 Tracking

For each new frame its pose with respect to a reference frame has
to be estimated. The transform between a reference coordinate
system xR (camera coordinates of the reference frame) and the
camera coordinates of the new frame xC is defined by a rigid
transform G ∈ SE(3), as given in eq. (4).

xC =


xC
yC
zC
1

 = G · xR = G ·


xR
yR
zR
1

 (4)

The rigid transform G is defined as the combination of a rotation
and a translation in 3D space, as given in eq. (5).

G =

(
R t
0 1

)
with R ∈ SO(3) and t ∈ R3. (5)

The Matrix G has six degrees of freedom which have to be esti-
mated. Those are the three rotation angles φ, ω, and κ as well
as the coefficients of the translation vector tx, ty , and tz . In
LSD-SLAM those six degrees of freedom are estimated based
on the intensity images by minimizing the photometric error. The
minimization is done based on a weighted Gauss-Newton opti-
mization. In the algorithm, the Gauss-Newton optimization is
performed iteratively on different pyramid levels, starting from
very low image resolution up to full image resolution.

Because of the scale-ambiguity of the monocular SLAM scale-
drifts can occur during tracking. To handle such drifts the camera
pose between reference frames (x(1)

R and x
(2)
R ) is represented as

a scale-aware 3D similarity transform S ∈ Sim(3) instead of a
rigid transform, as defined in eq. (6) and (7).

x
(2)
R = S · x(1)

R (6)

S =

(
sR t
0 1

)
with R ∈ SO(3), t ∈ R3 and s ∈ R+. (7)

Since this definition of the pose between two camera position
results in an additional degree of freedom, the average inverse
depth map is set to one for each reference frame.

3.3 Depth Estimation

The inverse depth map D is updated based on each new frame
which was successfully tracked. Therefore, for each pixel with
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sufficient contrast, stereo-matching along the epipolar line is per-
formed. If there does not already exist a depth hypothesis for the
current pixel, searching is performed over the full disparity range.
Otherwise, if there exist a hypothesis for the pixel, the search in-
terval is limited to di ± 2σdi. Here di is the mean of the inverse
depth pixel and σdi the corresponding standard deviation. Lim-
iting the search interval for stereo-matching to ±2σdi prevents
the algorithm from finding multiple matched when the baseline
increases.

In LSD-SLAM the error of an observed disparity is modeled by
two different error sources. One error source is the geometric er-
ror, which results from noise on the estimated camera pose and
the intrinsic camera parameters, and affects the position and ori-
entation of the epipolar line. The second error source is the pho-
tometric error, which results from noise in the intensity image. It
is considered that both errors are Gaussian distributed and addi-
tively interfere the observed disparity and thus the observed in-
verse depth. Thus, based on both error sources the variance of
the inverse depth observation is defined. For a detailed definition
of the two error sources we refer to (Engel et al., 2013).

The obtained observation of the inverse depth is incorporated into
the already existing inverse depth hypothesis as known from the
update step of a Kalman filter, as given in eq. (8) and (9).

d
(n+1)
i =

(
σ
(n)
di

)2
· do + σ2

o · d
(n)
i(

σ
(n)
di

)2
+ σ2

o

(8)

(
σ
(n+1)
di

)2
=

(
σ
(n)
di

)2
· σ2

o(
σ
(n)
di

)2
+ σ2

o

(9)

In eq. (8) and (9) d(n)
i is the expected value of the inverse depth

after n incorporated observations and σ(n)
di the corresponding stan-

dard deviation. do and σo are the inverse depth and standard de-
viation of the new observation.

4. PLENOPTIC CAMERA BASED
VISUAL ODOMETRY

A plenoptic camera seems to be perfectly suited for visual odom-
etry since it supplies much more information about the recorded
scene than just a standard camera. Even though a plenoptic cam-
era gathers more information of a scene than a standard cam-
era, both cameras are similarly in size. From the 4D light-field
recorded by a plenoptic camera depth information can be ob-
tained for regions with sufficient contrast.

In consideration of the capabilities of a plenoptic camera it is
worthwhile to run a direct SLAM with additional light-field infor-
mation. Here, it has to be investigated if tracking of the SLAM al-
gorithm as well as the depth map accuracy of the focused plenop-
tic camera can both be improved.

In the case of LSD-SLAM the algorithm starts from a completely
random depth map. Here two problems arise. On one hand for
an accurate tracking of new camera poses a depth map is already
needed. Since the depth map is initially random, it can last for
many frames until tracking converges. On the other hand accu-
rate depth from two images can only be estimated when the cor-
responding camera position is known with sufficient precision.
This is quite a vicious circle.

Cameras with a wide FOV gather much more of a scene in their
images compared to cameras with a narrow FOV. Due to this,

for wide angle cameras the tracking of the monocular SLAM al-
gorithm converges even without an accurate depth map after a
reasonable amount of translation. However, this is not the case
for narrow FOV cameras, for which the SLAM algorithm does
not reach convergence.

Our approach is to overcome this issue by performing visual odom-
etry and SfM based on a focused plenoptic camera. The method
we present is basically divided into two steps. In a first step
metric depth is calculated only based on light-field information
(Section 4.1). Afterwards, this depth map is improved by visual
odometry, which benefits from the larger baseline compared to a
single light-field image (Section 4.2).

4.1 Depth and Image Synthesis from Light-Field

For each recorded frame the virtual depth map is calculated solely
based on the light-field information. Using the virtual depth map
for each frame a central perspective totally focused image is cal-
culated.

To calculate the totally focused image all pixels on the sensor cor-
responding to a virtual image point have to be combined. There-
fore, based on the virtual depth v of a virtual image point a radius
R can be defined, as given in eq. (10). Here DM is the diameter
of a micro lens and B the distance between MLA and sensor (see
Figure 2).

R =
|v| ·DM

2 ·B (10)

The radius R defines a circular area around the orthogonal pro-
jection of a virtual image point on the sensor plane. This area
comprises all micro images in which the virtual image point ac-
tually occurs. Besides, from the virtual depth value v it is known
in which of the three types of micro lenses the virtual image point
occurs focused. The resulting intensity value of the virtual image
point finally is calculated as a weighted mean of all corresponding
pixels in the selected micro images (Perwaß and Wietzke, 2012).
The weights in the mean calculation balance the vignetting of the
micro lenses.

Since the main lens of the plenoptic camera does not perform an
perfect central projection, but adds distortion, during an image
calibration the intrinsic camera parameters as well as distortion
parameters have to be estimated. For the experiments presented
in Section 5 a camera model consisting of a camera constant f ,
the principal point (cx, cy), three radial symmetric and two ra-
dial asymmetric distortion parameters was defined. Based on this
model the totally focused image as well as the virtual depth map
are rectified.

After the image rectification, the virtual depth map is further pro-
cessed to result in a metric depth map by using the camera pa-
rameters obtained in a prior depth map calibration. As transform
from virtual depth v to object distance aL, the behavioral model
as described by (Zeller et al., 2014b) and defined in eq. (11) is
used.

aL =
v · c1 + c2
1− v · c0

(11)

Thus, additionally to a central perspective intensity image, for
each frame a rough metrical depth map is available.

4.2 Improving Depth with visual odometry

Due to the small baseline between the micro images of the plenop-
tic camera the metric depth estimated only based on light-field in-
formation is not accurate enough for certain applications (Zeller
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Figure 3. For the shown scene an image sequence of 400 frames
was recorded by the Raytrix R5 camera and evaluated by visual
odometry.

et al., 2014c). Hence, we improve the depth accuracy by applying
visual odometry to a sequence of light-field images.

4.2.1 Initializing Inverse Depth For initialization of the light-
field based visual odometry the first frame of the sequence is set
as reference frame. Different from LSD-SLAM, where the in-
verse depth map D of this frame is initialized randomly, D is
initialized by the inverse metric depth map calculated from the
light-field information of this frame. Here only the pixels with
sufficient contrast are initialized. Besides, the inverse depth map
variance V is initialized by the mean square error of the inverse
metric depth map of the plenoptic camera. The mean square error
is defined as a function of the inverse depth and is obtained arith-
metically from the data recorded during the depth calibration.

4.2.2 Updating Inverse Depth For all pixels in the totally fo-
cused image, which have sufficient contrast and for which a cor-
respondence in the next frame has been established, a new in-
verse metric depth observation is received. The new observation
is incorporated into the existing inverse depth hypothesis using
an algorithm similar to (Engel et al., 2014), as described in Sec-
tion 3.3. At one point, according to the increasing baseline, the
depth accuracy received from stereo-matching outperforms the
one received from light-field information.

For pixels which appear for the first time in the image sequence
(e.g. due to occlusion or changed viewport) no correspondence
can be established and thus, no depth hypothesis exists. These
pixels are initialized with the light-field based inverse depth and
are treated like other depth pixels in the following frames. Thus,
different from LSD-SLAM, never an exhaustive search along the
complete epipolar line has to be performed and hence, ambiguous
pixel correspondences can be prevented.

4.3 Benefits

Due to the light-field information an inverse depth map is avail-
able already with the first recorded frame and therefore from the
very beginning of a sequence robust tracking is possible. Thus,
the light-field based algorithm converges faster than monocular
SLAM. Furthermore, as the experiments will reveal, in some ap-
plications, SLAM is possible even for images with narrow FOV,
for which monocular SLAM fails. Nevertheless, here it has to
be guaranteed that between consecutive frames the viewport does
not change to much. Since the plenoptic camera has a very large
DOF and supplies rough depth information for each pixel, lost or
inconsistent pixels immediately can be newly initialized. Thus,

Figure 4. Setup to measure depth accuracy. A chessboard target
in a defined distance is recorded by the Raytrix camera. A laser
range finder measures the distance to the target for reference.

the light-field based SLAM can handle strong occlusions in the
scene between consecutive frames quite well.

Besides, by taking advantage of the larger baseline between con-
secutive images a more accurate depth value can be calculated
than from the light-field information.

5. EXPERIMENTS

To evaluate the method for visual odometry based on a focused
plenoptic camera several experiments were performed. In these
experiments we focused on measuring the accuracy of recorded
objects in 3D space. Besides, we want to demonstrate the capabil-
ities of the plenoptic camera based visual odometry in a sample
scene compared to the monocular approach. Since our interest
lies in the depth map of the scene, we did not measure a ground
truth for the performed trajectories and thus, the tracking itself
was not evaluated explicitly.

All our experiments were performed by using a Raytrix R5 cam-
era with a focal length of the main lens of 35mm. This results in
a FOV of approximately 18◦ horizontally as well as vertically.

5.1 3D Reconstruction

As a proof for the improved tracking capabilities of our method
compared to the monocular case, we recorded an image sequence
composed of 400 frames by the Raytrix camera. This corresponds
to a video length of approximately 8 s in which the camera was
moved free hand by roughly 3m. As will be seen, this short se-
quence is enough to estimate a 3D point cloud of the scene with
good accuracy.

The sequence is evaluated once by applying the standard monoc-
ular LSD-SLAM algorithms only to the sequence of totally fo-
cused images and once using our approach with additional depth
information from the light-field. An image of the recorded scene
is shown in Figure 3.

5.2 Depth Accuracy

Two experiments were performed to evaluate the depth accuracy
of our method. We evaluate the depth over time as well as over
distance. For both experiments the same setup was used as pre-
sented in the following paragraph.
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Figure 5. 3D point cloud of a sample scene recorded by a
Raytrix R5 camera after applying the LSD-SLAM algorithm to
the recorded sequence totally focused images without using the
light-field based depth information.

5.2.1 Measurement Setup The setup we used to measure the
depth accuracy is shown in Figure 4. Here the Raytrix camera is
assembled on a tripod. Parallel to the image plane of the camera a
chessboard target is placed in a certain distance. Besides, a laser
range finder is placed close to the camera to measure a reference
distance.

In the experiments not only the accuracy of the depth map re-
ceived from the Raytrix camera itself has to be evaluated. Also
the depth calculated by visual odometry will be measured. Thus,
an image sequence is recorded, while the camera is translated in
vertical direction. For each object distance a vertical movement
of 20 cm was performed while recording the image sequence.

5.2.2 Accuracy as Function of Sequence Length In the first
experiment the depth accuracy over a sequence of images, while
the camera is moving in vertical direction, is evaluated for ob-
ject distances from approx. 2.6m to 5.3m with a spacing of
30 cm. Exemplary we present the results for an object distance
of 3.183m. The calculated metric depth map at each frame is
read out and analyzed. Since the camera is moved more or less
uniformly over time, this evaluation is equivalent to measuring
the accuracy as function of baseline distance.

5.2.3 Accuracy as Function of Object Distance The second
experiment is performed to evaluate the depth accuracy improve-
ment of the light-field based visual odometry compared to the
depth calculated from pure light-field information of a single im-
age of the plenoptic camera. For the pure light-field based depth,
the standard deviation of the Raytrix camera was measured for
object distances from 1m to 5.3m. For our visual odometry
based approach, the standard deviation of the depth was evalu-
ated for the 10 object distances in the range from 2.6m to 5.3m,
after a vertical translation of 20 cm.

6. RESULTS

This section presents and discusses the results of the experiments
described in Section 5.

Figure 6. 3D point cloud of a sample scene recorded by a Raytrix
R5 camera after applying our light-field based visual odometry
method to the recorded light-field sequence.

6.1 3D Reconstruction

Figure 5 shows the 3D point cloud of the sample scene (Figure 3)
which was calculated when applying the monocular LSD-SLAM
algorithm (i.e. without using light-field information) to the se-
quence of totally focused images. Figure 6 shows the corre-
sponding results when applying our light-field based approach.
Of course, those two point clouds give only a qualitative measure
for the two approaches. Nevertheless, in the point cloud received
from the light-field based approach one can see, that the rectan-
gular shape of the table is kept as well as the straight edges of the
wall in the back. Besides, the objects on the table are modeled
quite well.

For the pure monocular case, where tracking starts from a totally
random inverse depth map, the algorithm is not capable to track
the camera pose appropriately. This is quite obvious since accord-
ing to the narrow FOV, the camera captures only a small section
of the scene. This section is not sufficient to find the correct cam-
era pose without any depth information. Since for the light-field
based visual odometry each new depth hypothesis is initialized
by its inverse metric depth calculated from the light-field infor-
mation, tracking is much more robust and stable.

6.2 Depth Accuracy

6.2.1 Accuracy as Function of Sequence Length Figure 7
shows the course of the depth’s standard deviation over all frames
in the recorded sequence and thus as a discrete function over time.
Since the sequence was recorded for a more or less homogeneous
movement in vertical direction, the standard deviation can also be
considered as a function of the baseline distance to the first frame.
As already mentioned, the baseline between the first and the last
frame is 20 cm in length. Besides, in Figure 7 the indices of the
start and end frame of the movement are marked. Those frames
were detected visually from the complete sequence of images

One can see from Figure 7 that the curve has approximately 1/x
behavior. This conforms to the theoretical depth accuracy of a
pair of stereo images recorded for the simplified case. Here one

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W4, 2015 
PIA15+HRIGI15 – Joint ISPRS conference 2015, 25–27 March 2015, Munich, Germany

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-II-3-W4-285-2015

 
290



100 200 300 400
0

20

40

60

frame index

st
an

da
rd

de
vi

at
io

n
σ

[m
m

]
depth error

start of movement
end of movement

Figure 7. Standard deviation of the measured depth for a chess-
board target in 3.183m distance to the camera. From the first
to the last frame the camera was translated by 20 cm in vertical
direction.

can derive the depth accuracy based on the theory of propagation
of uncertainty, as given in eq. (12).

σZ =
f ·B
p2x
· σpx =

Z2

f ·B · σpx (12)

In eq. (12) f represents the camera constant, B the baseline dis-
tance, Z the object distance and px the measured parallax. The
standard deviation of the parallax σpx can be considered as con-
stant.

After the first moving frame there is still a range of about eight
frames where the standard deviation does not decay. In this range
the baseline to the first frame is too short to improve the depth
of the Raytrix camera and thus, no improvement in the depth ac-
curacy is achieved here. Thereafter, the larger baseline built by
subsequent frames leads to a quite steep descent of the depth’s
standard deviation. After approximately 200 frames, correspond-
ing to as low as approx. 10 cm of movement, the standard devia-
tion asymptotically reaches its minimum value. Thus, our visual
odometry algorithm considerably improves the depth calculated
solely from light-field information. This will be analyzed in more
detail in the next paragraph. However, one has to mention that
the monocular SLAM (i.e. without light-field information) does
not converge in this measurement setup. The reason therefore
is, that the FOV for a main lens with a focal length of 35mm is
too narrow to reach convergence in tracking without any depth
information.

6.2.2 Accuracy as Function of Object Distance Figure 8
shows the results for the chessboard plane recorded for different
object distances aL. Here the blue asterisks show the standard
deviation of the depth received from a rigid Raytrix R5 cam-
era without any SfM. Those measurements conform quite well
to previously made measurements in (Zeller et al., 2014a). The
red crosses show the depth standard deviation after the light-field
based visual odometry with a translation of 20 cm. Here the mea-
sured standard deviation at an object distance of aL = 3.79m
represents an outlier where the tracking did not work perfectly.
This can be assumed when looking at the depth map behavior
over the sequence of frames, as shown in Figure 9. Here, the
standard deviation is not a constantly descending function, but
has maximums and minimums in between which probably come
from imperfect tracking.

Nevertheless, the graph in Figure 8 shows, that the depth accu-
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Figure 8. Standard deviation measured over object distance. Blue
asterisk: Standard deviation measured by a Raytrix R5 camera.
Red cross: Calculated standard deviation of light-field based vi-
sual odometry after a translation of 20 cm. Red dashed line: Stan-
dard deviation for a stereo camera pair with baseline distance of
20 cm, intrinsic parameters similar to the Raytrix camera, at a
disparity standard deviation of 0.3 pixel.

racy of a focused plenoptic camera can be extremely improved by
SfM. The red dashed line represents the theoretical depth stan-
dard deviation for a stereo camera pair with baseline distance of
20 cm, intrinsic parameters similar to the Raytrix camera, and a
disparity standard deviation of 0.3 pixel. This curve can be cal-
culated from eq. (12). Thus, the measured values conform to the
theoretical limits.

A clear description for the good measurements at object distances
of around 5m could not be found. One explanation might be, that
the effective spatial resolution in the image for far away objects
is higher than for close objects and thus the disparity can be mea-
sured more accurate.

7. CONCLUSION

In this paper we improved the accuracy of depth information
by adapting a monocular visual odometry algorithm to work on
image sequences of a focused plenoptic camera. We achieve
considerable improvements both with respect to 3D data from
light-field only and 3D data from visual odometry only. The
main improvement compared to monocular visual odometry is
that we were able extend operability of SLAM algorithms to-
wards smaller FOVs and respectively larger focal lengths. Fur-
thermore, tracking is more stable and the depth estimation con-
verges faster. Another main improvement is that our plenoptic
camera based visual odometry also measures scale and thus met-
ric tracking and mapping is possible.

Compared to a static plenoptic camera the depth accuracy could
be increased by an order of magnitude. Especially for large ob-
ject distances the improvement is such that depth information can
now reliably be used for object segmentation. By this we were
able to extend the range of operation of a plenoptic camera to-
wards larger object distances.

Compared to a standard camera, the hardware effort stays pretty
much the same, since the plenoptic camera differs only by the
MLA in front of the sensor. The computational effort however
increases compared to visual odometry since light-field process-
ing has to be done. However, since GPUs are already capable to
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Figure 9. Standard deviation of measured depth for a chessboard
target in 3.79m distance to the camera. Tracking errors resulted
in an not constantly descending standard deviation.

calculate depth from light-field images with high frame rates, it is
already possible to have plenoptic camera based SLAM systems
which run in real time.
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