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ABSTRACT:

The availability of 3D environment models enables many applications such as visualization, planning or simulation. With the use of
current mobile laser scanners it is possible to map large areas in relatively short time. One of the emerging problems is to handle the
resulting huge amount of data. We present a fast and adaptive approach to represent connected 3D points by surface patches while
keeping fine structures untouched. Our approach results in a reasonable reduction of the data and, on the other hand, it preserves details
of the captured scene. At all times during data acquisition and processing, the 3D points are organized in an octree with adaptive
cell size for fast handling of the data. Cells of the octree are filled with points and split into subcells, if the points do not lie on one
plane or are not evenly distributed on the plane. In order to generate a polygon model, each octree cell and its corresponding plane
are intersected. As a main result, our approach allows the online generation of an expandable 3D model of controllable granularity.
Experiments have been carried out using a sensor vehicle with two laser scanners at an urban test site. The results of the experiments
show that the demanded compromise between data reduction and preservation of details can be reached.

1. INTRODUCTION

3D environment models are required for multiple purposes in the
area of planning and simulation. One of the established ways to
generate dense 3D models is the usage of laser scanners for the
direct acquisition of 3D point clouds. In this paper we are espe-
cially interested in 3D models of urban environments. Vehicle-
borne mobile laser scanning (MLS) and direct georeferencing are
well suited for fast and fine-grained acquisition of 3D data of ur-
ban areas, which can be performed independent of lighting con-
ditions (e.g., even at night). The availability of such data is espe-
cially useful for the support of short-term operations. Examples
can be found in the on-site acquisition, transmission and visual-
ization of up-to-date 3D information to support rescue missions,
emergency services, or disaster management.

In the last decade, mobile 3D laser scanners became available
which provide billions of points in relatively short time. How-
ever, due to this large amount of data, current state of the art
computer workstations are not even capable to visualize the re-
sulting point clouds, not to mention the impossibility to transmit
the raw data via a radio link. But at the same time, many of the
measured data points are redundant, since they can be ascribed
to common surfaces. Our approach aims at representing groups
of points by planes, since planes are considered to be the typical
geometric primitive occuring in urban areas. In combination with
the plane-based representation, an octree data structure is used to
handle the huge amount of data.

2. RELATED WORK

The surface reconstruction from point clouds is a long standing
problem with different solutions. An overview is given e.g. in
(Remondino, 2003). A related problem is the (iso)surface extrac-
tion from volumetric data (for example generated by computer
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tomographs). One class of surface reconstruction algorithms gen-
erates a mesh to connect the points of the point cloud (e.g. (Mar-
ton et al., 2009)). Another way is to generate an implicit function
and to use a surface extraction method afterwards, like march-
ing cubes (Lorensen and Cline, 1987). A similar approach is de-
scribed in (Hoppe et al., 1992).

A different solution is the grouping of points, which have some-
thing in common, like forming a geometric primitive (e.g. plane
or sphere), cf. (Vosselman et al., 2004). A region growing ap-
proach for plane extraction and a subsequent convex hull deter-
mination for polygon generation is presented in (Vaskevicius et
al., 2007). To speed up the plane extraction, the methods in the
following papers separate the points into cells, either grid or oc-
tree, and try to extract a plane per cell: A grid approach with
RANSAC plane extraction is shown in (Hansen et al., 2006). Two
similar solutions using an octree data structure are presented in
(Wang and Tseng, 2004) and (Jo et al., 2013). Both try to extract
a plane in one cell and divide the cell, until a sufficient solution
is found. In (Wang and Tseng, 2004) least square plane fitting
is used, followed by a merge-strategy during postprocessing. (Jo
et al., 2013) exploit the regular pattern of the TOF camera for
“microplane” estimation and check if all “microplanes” in a cell
match, given an error bound.

2.1 Contribution

The approach presented in this paper combines and extends the
ideas of methods listed in the previous section: It uses an octree as
data structure and it combines the octree with a robust RANSAC
plane extraction. This results in multiple benefits: The data struc-
ture can be dynamically increased and it adapts to local details.
There is no need to assume a specific scan pattern since the ap-
proach is designed to handle each measured point independently.
For this reason, new data can be entered into an existing model
during the data acquisition. Additionally, an important feature of
the approach is its adjustable high compression rate with moder-
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ate loss of information. This adjustability is achieved by setting
an error bound for the local point-to-plane distance.

3. METHOD

At first an overview of our approach is given. Then the different
parts are described in more detail.

3.1 Overview

The input to our method consists of directly georeferenced point
clouds (single scans), where each cloud covers a part of the scene.
Neither the size of the scene nor the number of point clouds need
to be known. This is achieved by using a dynamically growing
data structure and a method which handles every cloud in the
same way. The main result is a polygon model, which represents
the input points lying on planar surfaces. Also points not repre-
sented by the polygon model are given. This is the case if they
cannot be represented by a plane (e.g. vegetation) or their neigh-
borhood is too sparse.

The main data structure is an octree, which allows to be increased
dynamically if needed. Its cell size has a lower bound, e.g., de-
fined in accordance with the accuracy of the laser scanner or the
positioning errors. It also permits a computationally cheap plane
extraction. For every cell of the octree, the goal of our approach is
to have either none or exactly one plane as a representative. The
plane fitting is carried out by using a RANSAC (cf. (Fischler and
Bolles, 1981)) approach including a refinement based solely on
the set of inliers. If mainly outliers are found, that cell is further
divided in eight subcells until a certain level of detail is reached
(the minimal octree cell size). In case a representing plane can
be determined, the data points should additionally be uniformly
distributed among this plane. In our approach this test is done
after a cell is kept untouched for a certain time.

The polygon model itself is created by computing the intersection
of each cube (octree cell) with the plane assigned to it. This step
can be done at any time.

In the next subsection we describe the details of the point hand-
ling. Afterwards the test of uniform distribution is explained. The
section ends with a list of the involved parameters and a descrip-
tion of some implementation details.

3.2 Point handling

Our approach handles every point on its own, so there is no need
to have the points organized in larger data chunks. However, in
our experiments we always used point clouds representing single
scans (rotations of the scanner head).

Assuming that a plane was already fitted to an octree cell, then
all points in this cell are divided in a RANSAC manner into sup-
port (S) and contradiction set (C). If a new point is added to this
cell, its destination set is determined based on the point-to-plane
distance. In case of too many outliers, a new plane fit is carried
out or finally, if there are still too many outliers, the octree cell is
divided.

In case of a previously empty cell or a cell without plane (w.p.),
the new point is added to a single set until enough points are
collected in this cell. Then a plane fit is performed, and if it suc-
ceeded, the two sets (support and contradiction) are determined.
Otherwise more points are collected in this cell and the plane fit-
ting is retried. However, if a certain number of points is reached
without successful plane fitting, the octree cell is divided.

The details are given as pseudo-code in Algorithm 1.

Algorithm 1 Point handling

1: procedure POINTHANDLING(p)
2: determine octree cell ¢ of p (create, if not existing)

3: if ¢ has plane then
4 if p supports plane then
5: add p to support set (S) of ¢
6: else
7: add p to contradiction set (C) of ¢
8: if #C > f x #S then
9: calculate plane
10: if !planeFitSuccess then
11: divide ¢
12: end if
13: end if
14: end if
15: else
16: add p to point set (P) of ¢
17: if #P > k then
18: calculate plane
19: if !planeFitSuccess then
20: if £ < Kkmax then
21: k< 2xk
22: else
23: divide ¢
24: end if
25: else
26: determine S and C
27: end if
28: end if
29: end if

30: end procedure

3.3 Test for point-plane coverage

This section describes the method that we use to test if the points
in a given octree cell are uniformly distributed among the plane
assigned to this cell. The reason to perform this test is to guar-
antee that the resulting planar patch will be a best possible repre-
sentative of the points it is supposed to replace afterwards. If this
constraint is violated, then the cell is further divided into eight
subcells. To avoid too early cell subdivisions, each cell is tested
only after a reasonable amount of time, in which it was no longer
modified, e.g., if the cell received no more points for several rota-
tions of the scanner head. As a “‘side-effect”, a better estimation
of the plane parameters is obtained.

The analysis of the point distribution is carried out using the prin-
cipal component analysis (PCA) (e.g. (Hoppe et al., 1992)). It is
only applied to the support set. Assuming that these points lie on
a plane, then the two larger eigenvalues (\; and A2) represent the
variance of the point distribution along the two major axes of the
plane. The square root of the eigenvalues yields the correspond-
ing standard deviation.

In case of a one-dimensional uniform distribution, the standard-
deviation in the interval [a,b] is (b—a)/(2v/3). Applied to
our problem and under the assumption of nearly uniformly dis-
tributed points, {/(2v/3) & 0.28 - | (where [ stands for the cell
side length) is an upper bound for the square root of the two big-
ger eigenvalues. To allow some variation, a smaller threshold is
used as a test criterion (v/A1 > ¢ and /A2 > t). This threshold ¢
is called minimal variation.

3.4 Parameters

The approach presented here incorporates eight parameters. The
following list explains these parameters:
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allowed distance Maximal allowed point-to-plane distance for
both the point handling and the RANSAC plane fitting.

proportion of outliers Maximal allowed proportion of outliers
for both the point handling (cf. f in Algorithm 1) and the
RANSAC plane fitting.

RANSAC iterations Number of RANSAC iterations during the
plane fitting.

minimal cell size The minimal octree cell size.

Kstart Minimal number of points needed in a cell before starting
plane fitting (cf. k in Algorithm 1).

kmax Upper bound for k (cf. kmax in Algorithm 1).

minimal variation This value ¢ is the criterion for uniform dis-
tribution of points (see section 3.3 for details) .

test delay The number of scans (full rotations of the scanner
head) with no modification of the specific octree cell. After
that time the plane assigned to that cell is tested for uniform
distribution of points.

3.5 Details of the implementation

All parts of our implementation take advantage of the freely avail-
able Point Cloud Library (PCL, http://pointclouds.org/)
(Rusu and Cousins, 2011). Especially its octree implementation
was used and extended where needed. The PCL itself uses the Vi-
sualization Toolkit (VTK, http://vtk.org/) for visualization
purposes. We additionally utilize the VTK to calculate the in-
tersection between an octree cell and a plane in order to get the
resulting polygon.

4. EXPERIMENTS

4.1 Experimental setup

Figure 1. Sensor vehicle used for the experiments.

The data used for the experiments were recorded with a GNSS/-
INS augmented sensor vehicle (cf. Figure 1). On this vehicle,

two Velodyne HDL-64E laser scanners are located over the front
corners of the vehicle roof, and are positioned on a wedge with a
25 degree angle to the horizontal. This configuration guarantees
a good coverage of the roadway in front of the car and allows
scanning of building facades alongside and behind it. For direct
georeferencing an Applanix POS LV inertial navigation system is
built into the van. It comprises the following sensor components:
an IMU (inertial measurement unit), two GNSS antennas and a
DMI (distance measuring indicator).

Each one of the laser scanners has a rotation rate of 10 Hz and
a data rate of approximately 1.3 million points per second. The
navigation system has a data rate of 200 Hz.

4.2 Data acquisition

GNSS (e.g., GPS) signals are — among other things — influenced
by atmospheric and multipath effects. Within our experiments,
we used additional GNSS data of nearby reference stations to
reduce the impact of atmospheric effects. This can be done in
realtime (RTK) as well as during postprocessing, and it results
in a more accurate and precise position estimation. In this pa-
per, the inclusion of precise GNSS reference data allowed us to
focus on the model generation without having to deal with local-
ization and data alignment issues. However, in future work, the
presented methods for model generation will be supplemented by
simultaneous localization and mapping (SLAM) techniques.

Prior to the actual measurements, the two laser scanners have
been calibrated by a procedure presented in (Gordon and Mei-
dow, 2013) to achieve best possible precise point measurements.
The transformation between the coordinate systems of the two
scanners was determined by using the ICP algorithm (Besl and
McKay, 1992). The relative orientation and position of the laser
scanners with respect to the navigation system was calculated by
using the approach presented in (Levinson and Thrun, 2010). For
each single laser range measurement, the position and orienta-
tion of the vehicle was calculated by linear interpolation from the
200 Hz navigational data.

4.3 Test site

Figure 2. Aerial view of the test site'

The data acquisition took place at a small test site, which is the
outside area around our institute building, partly shown in Fig-
ure 2. The main part of the scene is a big building surrounded
by neighboring structures and some trees. The path driven dur-
ing the measurements is shown in Figure 3. The data acquisition
took about 2.5 minutes and resulted in approximately 250 mil-
lion 3D points. This value is smaller than the actual data rate of

LEttlingen, Fraunhofer Institut IOSB by Wolkenkratzer http://
commons .wikimedia.org/wiki/File:Ettlingen, Fraunhofer_
Institut_IOSB.JPG  under  http://creativecommons.org/
licenses/by-sa/3.0

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-1I-3-W4-41-2015 43



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume 11-3/W4, 2015
PIA15+HRIGI15 — Joint ISPRS conference 2015, 25-27 March 2015, Munich, Germany

the laser scanners, since some points measured in close vicinity
of the sensors (e.g., the vehicle roof) were filtered out during the
point generation process.

Google é4i

Figure 3. Path driven by the sensor vehicle during the data ac-
quisition (Image data: Google Earth, Image (©) 2014 GeoBasis-
DE/BKG).

A part of the measured points is shown in Figure 4.

Z

Figure 4. Plotted accumulated 3D data after reduction to a voxel
grid (for visualization).

5. RESULTS AND DISCUSSION

The previous section described the experimental setup and the ac-
quisition of data used for the experiments. We carried out differ-
ent runs of the algorithms with these data to investigate, analyze
and validate our approach. In each run one of three parameters
was altered. For the other parameters a default value was set. Ta-
ble 1 lists the default values for all parameters. The evaluated
three parameters are the allowed distance, the proportion of out-
liers and the minimal variation. The reconstruction error is not
considered for the evaluation, because it is directly linked to the
allowed distance-parameter, which is an upper bound for the re-
construction error.

parameter value
allowed distance 0.25m
proportion of outliers 0.2
RANSAC iterations 100
minimal cell size 0.1m
Estart 50
Kmax 201
minimal variation 0.2
test delay 10 scans

Table 1. Default values for the parameters.

Figure 5(a) shows a part of the polygon model (without the re-
maining single points), which resulted from applying our method

with the default parameter settings to the acquired data set. It
is visualized from the same viewpoint as Figure 4. Most of the
polygons have a quadratic shape. After applying our approach,
the surface of the model is not continuous, because there typi-
cally is a small gap between neighboring polygons. Especially
the trees lead to many small and unconnected polygons, which
have a nearly random orientation.

(b) Zoomed area

Figure 5. Polygon model generated with the default parameter
settings. The content of the area marked in Figure (a) is shown
zoomed in by Figure (b).

5.1 Variation of the allowed distance

In the first experiment the allowed point-to-plane distance was
altered in the range from 1 cm to 100 m. The resulting space sav-
ings are shown in Figure 6. Here the term space savings means
the proportion of saved data to the original amount of data and
is calculated with equation (1). Throughout this paper, the terms
space savings and compression rate are used synonymously.

#points mesh + #C + #points in cells w. p.

##points M

s=1-—

In Figure 6 the abscissa is plotted with a logarithmic scale. The
compression rate obviously increases up to 90% until an allowed
distance of 0.1 m. For higher values the compression rate keeps
nearly stable, between an allowed distance of 0.5 m and 100 m
there is only little change.

The point handling (cf. Algorithm 1) and the test for uniform
distribution (cf. section 3.3) are the most time consuming parts.
Therefore the calculation of the intersection between octree cells
and their associated planes is excluded from the runtime assess-
ment. Figure 7 depicts the measured runtimes. The graph shows a
nearly opposite behavior when compared to that of the data com-
pression rate: First the runtime clearly decreases until an allowed
distance of 0.25 m, followed by a parameter range with nearly
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Figure 6. Resulting space savings for different allowed point-to-
plane distances.
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Figure 7. Runtime for different allowed distances.

stable runtime values. The plotted time for an allowed distance
of 0.01 m equals to approximately 3 hours, followed by 18 min-
utes for 0.25 m and 5 minutes for 100 m. However, these values
are specific to our (still not optimal) implementation, the methods
are appropriate to run in realtime on an operational system.

The results show a close relation between computation time and
data compression rate. The reason for the high computation time
in case of small values for the allowed distance is the frequent
need for plane fitting and octree cell division. With a higher
bound, the points can simply be added to existing planes. This
reduces the number of octree cells without plane and therefore
results in better compression rates. However, this also leads to a
higher loss of details. In an extreme case (e.g., allowed distance
of 100 m) nearly all points of the data set are represented by only
one plane, which of course is not the desired result.

If the scene contains a lot of planes, the precision and accuracy of
the point positioning have a significant influence on the compres-
sion rate, given a certain allowed distance. If the allowed distance
is too small, most measured 3D points remain untouched and the
compression rate is poor. In our case, the precision and accuracy
of the point positioning process are in a combined magnitude of
approximately 20 cm.

For the following experiments a tradeoff between space savings,
runtime behavior and level of detail is needed. We decided to set
the allowed distance to 0.25 m for all other experiments.

5.2 Variation of the proportion of outliers

For the second experiment, the maximum allowed proportion of
outliers was varied between 1% and 90%.

The resulting proportion of the different point sets is shown in
Figure 8. If a cell contains a plane, the number of points in each

100%
90% - | [ . .
80%
70%
60%
50%
40%
30%
20%
10%
0%
0.01 0.05 0.1 0.2 0.5 0.9

proportion of outliers

M support M contradiction without plane

Figure 8. Proportion of the different point sets.

set (support set, contradiction set) is counted. In case of an octree
cell without plane, its number of points increases the “without
plane” counter. The average proportion of support sets is an in-
dicator for the possible space savings, since the associated points
are supposed to be represented by planes.

In the case of only one percent of allowed outliers, there are vir-
tually no outliers and over 10 percent of the points lie in cells
without plane. On the other hand, with 90 percent allowed out-
liers, there are (on an average) about 20 percent outliers and only
very little points in cells without plane. With the data used in our
experiments, the optimum value of the average support set size
was reached with a proportion of outliers of 5 percent.

2500
2000
1500
1000

500

0 0.2 0.4 0.6 0.8 1
proportion of outliers

Figure 9. Runtime for different proportions of outliers.

Obviously there is a negative correlation between runtime and
the setting of the proportion of outliers (cf. Figure 9). The curve
has a higher slope between 1% and 20% proportion of outliers
and a smaller slope between 20% and 90%. The runtime in our
experiments varied between 35 minutes and 10 minutes.

The compression rate decreases with higher outlier rate, since the
outlying points represent 3D details in the scene and only the
support set points can be replaced by planes. If the space savings
and the runtimes are compared, the proportion of outliers has a
higher influence on the runtime. It decreases from 35 minutes to
9 minutes, which is a reduction of 75%. The compression rate
only shows a reduction of 15%.

5.3 Changing parameter setting of minimal variation

To show the impact of the test for point-plane coverage, the model
was created with the minimal variation setting varied between 0.1
and 0.25. Figure 10(a) and 10(b) show screenshots of parts of the
resulting polygon model. One clearly visible difference between
these figures is: in Figure 10(a) there is a big polygon marked
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in red with points only on 70% of its right side. In Figure 10(b)
this big polygon is missing and its area is instead represented by
smaller ones, which are nearly totally filled with points. In addi-
tion, there are areas where no polygon was assigned to the points.
These areas are shown as black parts in Figure 10(b). An excep-
tion are the window areas of the building facades, that are covered
by polygons. Presumably these areas are too small and only have
a minor impact on the standard deviations (cf. subsection 3.3). In
summary, with a higher value for the minimal variation the point
variation test reduces the cell size down to its minimal allowed
setting, so that the points are nearly spread over the whole plane
or polygon, respectively.

X

(b) 0.25

Figure 10. Parts of the polygon models and the points in the sup-
port sets (thinned for visualization) for different minimal varia-
tions (points of the same cell have the same color).

6. CONCLUSIONS AND FUTURE WORK

We have presented an approach for adaptive and fast surface re-
construction based on MLS data acquired in urban areas. It takes
points as input and tries to represent them by planes, which results
in a lossy but efficient data compression. Especially the influence
of the two parameters allowed distance and proportion of out-
liers was analyzed. Both parameters have an important influence
on the computation time. The data compression rate is influenced
by both, but the allowed distance showed a more important influ-
ence. In combination with the minimal allowed cell size, these
parameters control the level of detail of the resulting (polygon)
model. This allows the usage for the intended application: The
polygon model can be rendered in real-time and therefore allows
the inspection e.g. by emergency services. The compression rate
of more than 90% enables an easier and faster transmission.

Future work will focus on different areas: Vegetation in the scene
results in many small and randomly orientated polygons (cf. sec-
tion 4.). A better representation could consist of thinned points
which are marked as vegetation. In some cases the possibility of
cell fusion could gain better space savings. The implementation

of the approach needs to be optimized. In this context, we plan to
implement parts of the algorithms (e.g., the test of uniform distri-
bution) to run on multiple CPUs. Texturing the model with RGB
data will be an additional extension.

We will supplement the 3D model generation with realtime 3D-
SLAM techniques, which will especially be useful for indoor ap-
plications where no GNSS-signals are available. Even in the out-
door case, we observed inaccurate GNSS data due to multipath
effects. So we expect to clearly benefit from SLAM techniques
even in that case, which will result in a better model accuracy and
precision.
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