
SPATIAL-TEMPORAL CONDITIONAL RANDOM FIELDS CROP CLASSIFICATION
FROM TERRASAR-X IMAGES

B. K. Kenduiywoa, ∗, D. Bargiela, U. Soergela

a Institute of Geodesy, Technische Universität Darmstadt, Germany - (kenduiywo, bargiel, soergel)@geod.tu-darmstadt.de

Commission III, WG III/7

KEY WORDS: Conditional Random Fields (CRF), phenology, conditional probability, spatial-temporal

ABSTRACT:

The rapid increase in population in the world has propelled pressure on arable land. Consequently, the food basket has continuously
declined while global demand for food has grown twofold. There is need to monitor and update agriculture land-cover to support food
security measures. This study develops a spatial-temporal approach using conditional random fields (CRF) to classify co-registered
images acquired in two epochs. We adopt random forest (RF) as CRF association potential and introduce a temporal potential for mutual
crop phenology information exchange between spatially corresponding sites in two epochs. An important component of temporal
potential is a transitional matrix that bears intra- and inter-class changes between considered epochs. Conventionally, one matrix has
been used in the entire image thereby enforcing stationary transition probabilities in all sites. We introduce a site dependent transition
matrix to incorporate phenology information from images. In our study, images are acquired within a vegetation season, thus perceived
spectral changes are due to crop phenology. To exploit this phenomena, we develop a novel approach to determine site-wise transition
matrix using conditional probabilities computed from two corresponding temporal sites. Conditional probability determines transitions
between classes in different epochs and thus we used it to propagate crop phenology information. Classification results show that
our approach improved crop discrimination in all epochs compared to state-of-the-art mono-temporal approaches (RF and CRF mono-
temporal) and existing multi-temporal markov random fields approach by Liu et al. (2008).

1. Introduction

To monitor and estimate food production, up-to-date precise crop
spatial information is required. Earth observing satellites have
undergone improved spatial, spectral, and temporal resolutions.
Changes in a scene can be monitored regularly and on demand.
Such trend favours development of novel image classification meth-
ods that can handle temporal data (Jianya et al., 2008). This is
especially true for radar sensors which overcome limitations of
optical sensors: their signals can penetrate clouds and are inde-
pendent of daylight (Gomez-Chova et al., 2006; Tupin, 2010).
Incorporating crop growing degree day information into multi-
temporal radar images from TerraSAR-X is likely to improve
crop classification. Thus, Synthetic Aperture Radar (SAR) tem-
poral data can be used to benefit crop classification given novel
spatial-temporal context methods.

Use of context (spatial and temporal) in image segmentation and
classification has recently gained popularity. Spatial context ac-
counts for similarities among pixels in regard to distance from
each other. It determines probability of a pixel or a group of pix-
els occurring at a given location based on nature of its neigh-
bourhood (Tso and Mather, 2009). Goodchild (1992) defines
spatial context as ”the propensity for nearby locations to influ-
ence each other and to possess similar attributes.” In contrast,
temporal context defines spectral similarities of pixels with re-
spect to different acquisition times. Use of images acquired at
different times has shown significant improvement in classifica-
tion e.g. in classification of crops and vegetation (Lu and Weng,
2007). However, complexity accompanying multi-temporal data
requires approaches that can effectively integrate spatial and tem-
poral data. More also, continuous increase in high temporal reso-
lution satellites has led to a ”Tsunami” of data in archives. There-
fore, spatial-temporal automated classification methods are nec-
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essary to bridge the gap between expensive data acquisition ef-
forts and actual beneficial data consumption.

Markov Random Fields (MRF) (Geman and Geman, 1984) have
widely been used to integrate spatial-temporal context in image
classification. Introduction of Bayesian concept by Swain (1978)
to classification of multi-temporal images motivated several MRF
temporal studies. Examples include: a MRF approach unidirec-
tionally passing temporal information from a classified image at
a given date to a subsequent image of the same area at a later
date by Jeon and Landgrebe (1992); Solberg et al. (1996) later
extended in (Melgani and Serpico, 2003) to allow bidirectional
exchange of temporal information. Liu et al. (2006) uses tempo-
ral correlation and temporal exclusion to control certain changes
in forest disease spread monitoring. In (Moser and Serpico, 2011)
MRF is applied for multi-scale multi-temporal high resolution
image classification with transitional matrix determined using Ex-
pectation Maximization (EM) algorithm. These studies, except
(Moser and Serpico, 2011), used one generalized class transi-
tion matrix in MRF determined heuristically. Leite et al. (2011)
used a combination of expert knowledge and training data. In
this approach, the matrix globally assumes stationary class tran-
sitions over all pixels neglecting changes that may exist in the
image (Liu et al., 2008). In addition, MRF’s assumption of condi-
tional independence in observed data adopted for computational
tractability neglect spatial context inherence in images (Lafferty
et al., 2001; Kumar, 2006; Zhong and Wang, 2007a; Parikh and
Batra, 2008). Remotely sensed images exhibit a coherent scene
because neighbouring sites are spatially correlated. This concept
is modelled by Conditional Random Fields (CRF) (Lafferty et al.,
2001) introduced for one-dimensional text classification and ex-
tended to two-dimensional image classification (Kumar, 2006).
The Framework provided by CRF integrates spatial context both
in class labels and data.

Conditional random fields ability to model context in class la-
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bels and data has triggered studies in several applications. So far
CRF has been used for: classification of settlements and urban ar-
eas (Zhong and Wang, 2007a,b; Hoberg and Rottensteiner, 2010;
Niemeyer et al., 2011, 2013; Kenduiywo et al., 2014), estimation
of ground heights from LiDAR data (Lu et al., 2009), building
extraction (He et al., 2008; Wegner et al., 2011b,a) and interpre-
tation of terrestrial images (He et al., 2004; Korc and Förstner,
2008; Gould et al., 2008). However, these are mono-temporal
CRF studies. Despite the benefits of multi-temporal images, a
few CRF studies exist: crop type classification using RapidEye
images by (Hoberg and Müller, 2011), land-cover classification
from IKONOS and RapidEye images (Hoberg et al., 2010) and
multi-scale multi-temporal study using IKONOS and Landsat im-
ages (Hoberg et al., 2011). The studies incorporate temporal con-
text by passing temporal information through empirically deter-
mined global transition probability matrix. However, the transi-
tion matrix does not optimally represent all site changes between
epochs. Hoberg et al. (2015) notes that incorrect determination
of transition matrix leads to erroneous transfer of information
into other epochs subsequently reducing classification accuracy.
Developing an approach of determining transition probabilities
for each site can minimize such errors. More also, according to
our knowledge, no studies have used multi-temporal radar data
for CRF classification of crops. We develop a spatial-temporal
CRF classification approach exploiting site-wise crop phenologi-
cal transitions from multi-temporal TerraSAR-X images.

Multi-temporal SAR images of a given season will improve crop
classification. Crops show varied backscatter radar signal in time
(at different epochs 1). We intend to maximize feature separation
by exploiting this temporal crop phenology. For instance, crops
that may not be resolved in one epoch spectrally can be resolved
in another. Notably crops undergo phenological changes between
different epochs resulting in varied spectral properties (Bargiel et
al., 2010). Integration of spatial-temporal crop phenology infor-
mation from different epochs of a vegetation season using site-
wise transition matrix between a pair of epochs in temporal po-
tential of CRF is the contribution of this study. In our study,
Terra-SAR images are acquired at different phenological stages
of a crop season. Therefore, we determine the site-wise transi-
tion matrix using Bayes’ theorem of conditional probability. The
conditional probability – representing class transitions in the ma-
trix – are computed from a pair of class probability vectors esti-
mated by random forest classifier at corresponding sites in differ-
ent epochs. We derive this approach from a MRF forest change
detection study using optical images in (Liu et al., 2008) and ex-
tend it to this study. So far no studies have considered incorpo-
rating phenology information into CRF classification using SAR
images in this manner.

The rest of the paper is organized as follows. Section 2 introduces
the approach we adopted and discusses how CRF is designed us-
ing site-wise conditional probabilities for bi-directional temporal
information flow. Section 3.4 describes classes (crop types), data
and features used, details of experiments conducted by our ap-
proach and other state-of-the-art methods and results obtained.
In Section 4 a discussion of results from our approach compared
to state-of-the-art is made leading to conclusions in Section 5.

2. Methods

2.1 Conditional random fields

A supervised image classification assigns class labels to image
sites given user defined examples known as training sites. Train-

1An epoch in this case corresponds to a particular image acquisition
date within a vegetation season.

ing sites, represented by a vector of features (numeric attributes
computed from user defined image sites), and corresponding class
labels serve as an input to an algorithm that infers labels of all
other image sites. Mono-temporal CRF classification aims to es-
timate an optimal label configuration ĉ of a vector of class labels
c = (c1, c2, . . . , cm)T where m is number of image sites, from
image data x, i.e. x = (x1, x2, . . . , xm)T , by maximizing pos-
terior probability P (c|x) thus ĉ = argmaxc P (c|x). A mono-
temporal CRF models P (c|x) with a graph structure in which
nodes are linked to image sites and edges bear relationships be-
tween a pair of adjacent sites. Thus, P (c|x) is modelled as CRF
as:

P (c|x) = 1

Z(x)
exp

{∑
i∈S

A(ci, x) +
∑
i∈S

∑
j∈N

I(ci, cj , x)

}
(1)

whereA denotes association potential, I is spatial interaction po-
tential, S is a set of all image sites, i is a site in the image, j is
a neighbour of site i, N is a set of neighbours of i and Z(x) is a
normalizing constant called partition function.

2.2 Spatial-temporal CRF: Problem formulation

In spatial-temporal contextual image classification, image sites
are dependent random variables that form a random field (region)
with correlated spatial and temporal neighbours. For computa-
tional tractability the spatial and temporal random fields are fac-
torized into neighbourhood systems (Li, 2009).

For spatial-temporal classification, we consider p co-registered
images with the same spatial resolution and extent acquired re-
spectively at epoch t ∈ T such that T = {t0, t1 . . . , tp}. As-
sume ct0 =

{
ct01 , . . . , c

t0
m

}
and ct1 =

{
ct11 , . . . , c

t1
n

}
where

m and n represent number of image sites, are a set of random
labels over a set of multispectral image features xt0 and xt1 cor-
responding to epochs t0 and t1 respectively. The set of classes
in any epoch can differ in both composition and number. For
instance, in multi-scale classification different number of land-
cover classes can be defined subject to image resolution. Nor-
mally the image of high resolution may contain sub-classes of a
class in the lower resolution image. In such a case the transi-
tion matrix would be rectangular. In our case, the image resolu-
tion and number of classes is the same within a season and thus
the transition matrix is square. To estimate P (c|x) in spatial-
temporal classification we extend Equation (1) as:

P (c|x) = 1

Z(xt0)
exp

{∑
i∈S

A(ct0i , x
t0) + λ1

∑
i∈S

∑
j∈N

I(ct0i , c
t0
j , x

t0) + λ2
∑
i∈S

∑
t∈T

∑
k∈K

TP (ct0i , c
t1
k , x

t0, xt1)
} (2)

where TP is temporal interaction potential, K is a set of im-
age sites in epoch t1 that are temporal neighbours of site i, i.e.
i is a spatial neighbour to j and a temporal neighbour to k in
epoch t1 (i and k correspond to the same ground location). Pa-
rameters λ1 and λ2 represents weights used to regulate spatial
and temporal information respectively. Equation (2) provides a
general spatial-temporal CRF classification framework (Hoberg
et al., 2015). However, our TP is developed on site-wise transi-
tion matrix computed using initial class probability estimates at
each site from training sites and data as opposed to an empirical
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Figure 1. Designed CRF graph structure; node links are edges.

stationary transition matrix by Hoberg et al. (2015) as explained
in subsequent sections.

Spatial-temporal CRF models posterior probability in Equation (2)
with a graph structure where nodes are connected to image sites
by A, I represent edges bearing relationships of adjacent sites
i and j in one epoch, and an additional potential, TP , repre-
senting edges containing relationships between temporal sites i
and k in different epochs as shown in Figure 1. In CRF frame-
work, A, I and TP can be regraded as arbitrary local classifiers.
This property enables use of domain-specific discriminative clas-
sifiers in structured data rather than restricting the potentials to a
certain form (Zhong and Wang, 2007a,b). We omit weight nota-
tions λ1 and λ2 in subsequent sections for clarity in CRF poten-
tial equations.

2.3 Association Potential

It determines how likely an image site i takes a label ct0i in epoch
t0 given the data xt0: A(ct0i , xt0) = P (ct0i |fi(x)t0), fi(xt0) is a
site-wise feature vector (Kumar, 2006). We adopt random forest
(RF) (Breiman, 2001) to determine A by independent classifica-
tion of different epochs assuming class conditional independence
in them. A RF conducts classification by casting votes from a
number of decision trees DT generated during training. If the
number of votes cast for a given class c by RF is Vc, then our A
is P (ct0i = c|fi(xt0) = Vc

DT
. We set DT = 200 because at that

value RF stabilizes (Hastie et al., 2011) and set tree depth as 25.

2.4 Interaction Potential

It measures the influence of data and neighbouring labels on site
i in epoch t0. It ensures that site i, as initially determined by
association potential, is labelled to its corresponding ”true class”
given data evidence xt0 and neighbourhood dependencyN where
j ∈ N . This study models I using contrast sensitive Potts model
designed based on Euclidean distance dij of adjacent node fea-
tures fi and fj :

dij =
||fi(xt0)− fj(xt0)||

R
(3)

where R is the number of features. Then, model of I is:

I(ct0i , c
t0
j , x

t0) =

{
β · exp

(
−η · d2ij

)
· h(ct0i , ct0j ) if ct0i = ct0j
h(ct0i , c

t0
j ) if ct0i 6= ct0j

(4)

where β is a spatial interaction parameter that regulates smooth-
ness, parameter η regulates the contrast-sensitive term and
h(ct0i , c

t0
j ) is a histogram matrix count bearing co-occurrence of

labels of neighbouring sites i and j. We normalize the histogram
by row in order to minimize bias of dominant classes in train-
ing data. Therefore, the model is different from contrast sensitive
Potts model because transitions of classes is now governed by
their frequency in training data (Kosov et al., 2013).

2.5 Temporal interaction potential

It models interactions between data xt0 and xt1 and labels ct0i , c
t1
k

of site i and k:

TP (ct0i , c
t1
k , x

t0, xt1) = P (ct0i , c
t1
k , x

t0, xt1) (5)

We consider crop classification within one season. Consequently,
spectral changes in classes at a given epoch are a result of phenol-
ogy rather than transitions to other classes in another epoch. This
is because a particular crop type is observed in the entire season
from planting to harvest. We exploit the fact that crop phenology
varies temporally and also spectrally to enhance crop discrimi-
nation. Spectral changes due to crop phenology is expressed by
joint probability in Equation (5).

Transitional probabilities between similar and different classes
can be represented in a transitional matrix Tik. The matrix can
be determined by expert opinion, empirically from existing data
sources or computed (Liu et al., 2008). We compute Tik for each
site in the image using conditional probability computed from
class membership probability vectors for node i and k estimated
by RF for each site based on spectral observation in training sites.
The matrix is then used to introduce a temporal directed edge
between node i and k as illustrated in Figure 1.

2.5.1 Site-wise transition probability matrix Conditional
probability expresses the likelihood of a class label to take up
a site i in epoch t0 given class label information from a site k
in epoch t1. It represents intra- and inter-class transitions. Con-
sider a set of classes a and b such that α ∈ α1, α2, . . . , αa and
ω ∈ ω1, ω2, . . . , ωb in epoch t0 and t1 respectively, using Bayes’
theory class transitions from t0 to t1, i.e. t0 ⇒ t1, can be ex-
pressed as:

P (ct1k = ω|ct0i = α) =
P (ct0i = α|ct1k = ω)P (ct1k = ω)

P (ct0i = α)
(6)

where prior probabilities P (ct0i = α) and P (ct1k = ω) are
marginal distributions in Table 1. From rules of probability, sum
rule

P (ct0i = α) =
∑
ω

P (ct0i = α, ct1k = ω) (7)

and product rule,

P (ct0i = α, ct1k = ω) = P (ct0i = α|ct1k = ω)P (ct1k = ω) (8)

Equation (6) can be transformed into:

P (ct1k = ω|ct0i = α) =
P (ct0i = α, ct1k = ω)∑
ω P (ct0i = α, ct1k = ω)

(9)

Similarly following Bayes’ theory transitions in the reverse direc-
tion, i.e. t1⇒ t0, are computed as:

P (ct0i = α|ct1k = ω) =
P (ct0i = α, ct1k = ω)∑
α P (ct0i = α, ct1k = ω)

(10)
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Therefore, from Equations (9) and (10) we compute site-wise
transition probability matrix by dividing the a × b joint proba-
bility matrix of joint distributions in Table 1 by row sum and col-
umn sum (marginal distributions) for crop phenology transitions
in t0⇒ t1 and t1⇒ t0 respectively.

2

3

ω1 ω2 . . . ωb Sum

ω1 P (α1, ω1) P (α1, ω2) P (α1, ωb) P (α1)

α2 P (α2, ω1) P (α2, ω2) P (α2, ωb) P (α2)
...
αa P (αa, ω1) P (αa, ω2) P (αa, ωb) P (αa)

Sum P (ω1) P (ω2) P (ωb) 1

Table 1. Computation of site-wise conditional probability matrix.

2.6 Training, Inference and parameter estimation

Solution to Equation (2) is obtained by maximizing probabilities,
spectral (A) , spatial (I) and temporal (TP ) using Bayes’ Max-
imum A Posterior (MAP) estimate. This requires an inference
algorithm and we employ sum-product Loopy Belief Propaga-
tion (LBP). The association potential probabilities used in both I
and TP are trained using RF implemented in OpenCV (OpenCV,
2014). We determine I parameters β and η with help of Powell’s
search method (Kramer, 2010) and set β = 5 and η = 1 in all
experiments. All potentials (A, I, and TP ) were given an equal
weight, i.e. λ1 = λ2 = 1.

3. Implementation

3.1 Study site and data

The study was conducted in northern Germany (52.26◦N,
9.84◦E) (Fig. 6). The region is characterized by intensive agri-
culture, with large field sizes. The average annual precipitation in
the area is 656 mm and the average annual temperature is 8.9◦C
(January 0.6◦C, July 17.5◦C) (Deutscher Wetterdienst, 2012).

´

0 450
Km

Legend
study site
agricultural areas
non agricultural areas ´

0 1 2 3 4
Kilometers

´

Figure 2. Location of the study site.

We use two dual polarized (HH and VV) TerraSAR-X High Res-
olution Spotlight images acquired on 11th March 2009 and 18th
June 2009 at an incidence angle of 34.75◦ with a ground resolu-
tion of 2.1 m in ground range direction and 2.4 m in azimuth
direction. The images were delivered as ground range prod-
ucts (MGD) with equidistant pixel spacing. All images are co-
registered to an extent of 7.1 × 11.8 km2 and projected to WGS
1984 UTM Zone 32N. Experiment site used covers an extent of
2.3 × 2 km2.

2P (ct1k = ω|ct0i = α)
3 P (ct0i = α|ct1k = ω)

Ground reference data campaign was conducted concurrently
with image acquisition. We divided ground reference polygons
for separate use in training and validation as shown in Table 2.
Separation of the ground reference polygons was done using
stratified random sampling in sampling design tool in ArcGIS
10.0 (Buja and Menza., 2013).

Class Validation (ha) Training (ha)

Grain 66.28 40.20
Broad Leaves 56.80 52.76
Unploughed 10.51 10.21

Table 2. Data used for validation and training in hectares (ha).

3.2 Classes

The study area has the following crops:

1. Grain: oat, barley, wheat and rye,

2. Broad leaved (BL) crops: maize, potatoes, canola and sugar
beets,

3. Unploughed (Unp): grassland, ruderal and hedges.

We adopt the three main classes for classification using our ap-
proach in Equation (2).

The listed crops go through different phases at different times a
fact that can enhance discrimination. A crop phenology calendar
is shown in Figure 3. Four phases, preparation, seeding, growing,
harvesting and post harvest, are considered. Preparation phase
involves ploughing and soil grooming processes before seeding.
In seeding phase, crop seeds are placed in the soil. Growing phase
includes the period between crop germination to ripening. After
ripening, harvesting starts where mature crops are gathered from
the fields using relevant methods. The last stage is post harvest
phase where the field could be fallow or with some remaining
ripe crops.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Maize

Potatoes

Canola

Sugar beets

Oat

Barley

Wheat

Rye

Unploughed

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

HarvestingGrowingSeedingPreparation Post Harvest

Figure 3. Phenology stages of crops considered for classification.

3.3 Features

Classification using Equation (2) requires definition of site-wise
feature vectors fi(xt0) used in both A and I . We compute eight
texture features (mean, variance, homogeneity, contrast, dissimi-
larity, entropy, second moment, and correlation) from Gray Level
Co-occurrence Matrix (GLCM) (Haralick et al., 1973) using a
3 × 3 window with 0◦ direction. The features were computed
from the dual polarized TerraSAR-X amplitude values in each
epoch. Thus fi(xt0) used in RF (association potential) is a 16 di-
mensional feature vector. We use the same features in I . Thus,
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the distance function, dij , in I is a 16 dimensional feature vector,
i.e. R = 16 in Equation (3). All the features were normalized
between 0 and 1 to minimize undue influence by features with
high values.

3.4 Experiments

To evaluate our approach we conducted experiments using the
test site and data described in Section 3.1. The experiments were
done using four approaches:

3.4.1 Approach 1 In this approach we use RF in Section 2.3
for mono-temporal classification of crops. Approach 1 also forms
A in CRF.

3.4.2 Approach 2 experiments are based on mono-temporal
CRF in Section 2.1. Basically, it considers spatial context only
with no temporal interactions hence ”mono-temporal”.

3.4.3 Approach 3 is an existing state-of-the-art spatial-
temporal MRF approach in (Liu et al., 2008). We implement
this approach for comparison with spatial-temporal CRF devel-
oped in the study. In the approach, site-wise transitional matrix
were determined using conditional probabilities described in Sec-
tion 2.5.1. To implement spatial-temporal MRF we set η = 0 in
Equation (2) but, other parameters remain as described in Sec-
tion 2.6. This eliminates data interaction in I reducing it to a
MRF Ising model:

P (c|x) = 1

Z(xt0)
exp

{∑
i∈S

A[λ1(ct0i , x
t0)] +

∑
i∈S

∑
j∈N

I[λ2(ct0i , c
t0
j )] +

∑
i∈S

∑
t∈T

∑
k∈K

TP [λ3(ct0i , c
t1
k , x

t0, xt1)]
}
(11)

where I:

I(ct0i , c
t0
j ) =

{
β · h(ct0i , ct0j ) if ct0i = ct0j
h(ct0i , c

t0
j ) if ct0i 6= ct0j

(12)

3.4.4 Approach 4 is the spatial-temporal CRF approach pre-
sented in this paper, where the site-wise transition matrix is com-
puted from conditional probabilities as shown in Section 2.5.1.
The approach is an extension of MRF forest change detection
method in (Liu et al., 2008) into CRF crop type classification us-
ing crop phenology informattion.

3.5 Results

In conducted experiments, we applied cross-validation based on
reference data in Table 2 to evaluate our approach (approach 4)
vis-à-vis approaches 1 to 3 in Section 3.4. Overall accuracy (OA),
kappa statistic, producer (Prod) and user (User) accuracy mea-
sures were computed from error matrices generated by comparing
classified pixels against validation set. These accuracy measures
are illustrated in Tables 3 to 10.

Tables 3 and 4 illustrate results of approach 1, RF, in both epochs
(June and March). Approach 1 considers no spatial-temporal in-
formation and thus accuracy values are low. Classification accu-
racy is particularly low in March with many pixels mislabeled as

shown in Figure 4 compared to June. This is because of different
phenological states of crops as demonstrated in Figure 3.

Class Prod User

Grain 59.7% 30.5%
BL 49.7% 49.2%
Unp 13.0% 53.8%
OA 40.3%
Kappa 10.8%

Table 3. Approach 1, March

Class Prod User

Grain 94.6% 72.2%
BL 95.3% 85.3%
Unp 18.8% 57.6%
OA 76.6%
Kappa 62.9%

Table 4. Approach 1, June

March Land-cover June Land-cover

Legend
Grain
Broad Leaves
Unploughed ±

Projection Information:
Datum:          WGS 84
Projection:     UTM
Zone             32N

500 0 500250
m

Figure 4. Approach 1, RF, classification used as baseline.

Introduction of spatial interaction by approach 2 using CRF im-
proves discrimination of crops as shown in Tables 5 and 6. The
OA improves by 3.2% and 11.7% in March and June respectively.

Class Prod User

Grain 78.8% 25.6%
BL 50.8% 61.0%
Unp 14.7% 61.3%
OA 43.5%
Kappa 16.5%

Table 5. Approach 2, March

Class Prod User

Grain 95.7% 91.0%
BL 97.5% 89.7%
Unp 36.9% 64.0%
OA 88.3%
Kappa 80.2%

Table 6. Approach 2, June

Results of addition of temporal potential using approach 3 in (Liu
et al., 2008) are shown in Tables 7 and 8. Approach 3 improved
classification OA by 48% and 12.8% in march and june when
compared to approach 1 in Tables 5 and 6. In comparison to
approach 2 OA improved by 45.1% and 1.1% in march and june
respectively. This depicts importance of temporal information.

Class Prod User

Grain 98.3% 86.8%
BL 95.6% 92.5%
Unp 39.2% 75.0%
OA 88.3%
Kappa 80.4%

Table 7. Approach 3, March

Class Prod User

Grain 95.89% 90.92%
BL 97.01% 92.48%
Unp 40.05% 63.25%
OA 89.4%
Kappa 81.9%

Table 8. Approach 3, June

Results of the new spatial-temporal method, approach 4, are il-
lustrated in Tables 9 and 10. The use of conditional probabilities
to determine the temporal transition matrix improved classifica-
tion accuracy significantly. Impact of this approach is evident
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compared to CRF mono-temporal classification in Tables 5 and 6
considering classification accuracy improved by 47.3% and 2.9%
in March and June respectively. In comparison with approach 3,
MRF spatial-temporal classification, approach still improved OA
by 2.5% and 1.8% in march and june respectively.

Class Prod User

Grain 97.5% 91.0%
BL 94.9% 94.9%
Unp 47.2% 67.1%
OA 90.8%
Kappa 84.1%

Table 9. Approach 4, March

Class Prod User

Grain 94.2% 94.7%
BL 96.2% 95.1%
Unp 46.7% 47.8%
OA 91.2%
Kappa 84.5%

Table 10. Approach 4, June

A comparison of performance of all methods using OA is de-
picted in Figure 5. The diagram shows that approach 4 generally
performs well in both epochs compared to other approaches.
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Figure 5. Overall accuracy summary of all approaches.
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Figure 6. Land-cover maps produced using approach 4.

4. Discussion

The aim of this study was to design a spatial-temporal approach
that exploits phenological changes within a vegetation season to
improve discrimination of crops. Random forest, approach 1,
used in A of CRF considers pixel-wise labelling by voting us-
ing decision trees. Results of this approach are characterized by
mislabeled pixels in the form of ”salt and pepper” as shown in
Figure 4 which impacts classification accuracy. This illustrates

significance of context in classification. We used RF as a base-
line to incorporate spatial and temporal context using CRF.

As demonstrated in Tables 5 and 6, spatial interaction introduced
by CRF significantly improved crop discrimination. The CRF
interaction potential models site dependencies in a statistically
sound manner in order to allocate a label to a given site. This min-
imizes ”salt and pepper” effect common in per pixel approaches
by ensuring that sites are labelled in regard to neighbouring labels
and data.

Addition of temporal term further enhanced crop discrimination
by exploiting crop phenology. Phenology enhanced class dis-
crimination because different crops vary spectrally in time. For
instance, the unploughed group of crops grow throughout the
year, Figure 3, and has higher accuracy in june when other crops
are in growing stage. Its spectral discrimination reduces later in
march when most crops are in preparation stage because they are
covered by similar land-cover. We incorporated this knowledge
into TP for classification using approaches 3 and 4.

Results from approach 3 and 4 indicate an increase in clas-
sification accuracy. The two approaches use site-wise condi-
tional probabilities to compute temporal transition matrix. Condi-
tional probabilities determine probability of inter- and intra-class
changes. During a vegetation season, observed spectral changes
are only within a class. Therefore, transition from class A to an-
other class B are minimal assuming no natural or artificial crop
interference. We use this fact to enhance discrimination of classes
that can not be separated easily, for instance in march epoch.
However, approach 3 is based on MRF which ignores spatial in-
teractions in data a fact that makes it perform lower than CRF.
We therefore implemented the approach in CRF, i.e. approach 4.

Observations from approach 3 led us to design a robust method
(approach 4) to incorporate phenology information in all epochs.
We use site-wise conditional probability to compute temporal
transition matrix. So far our approach demonstrates stable accu-
racy in considered epochs. This is because conditional probabil-
ity facilitate bi-directional exchange of temporal information in
form of probabilities thereby enhancing accuracy of a class with
low discrimination in either epoch. The approach is suitable for
seasonal crop classification since uncertainty in a class at a given
epoch is resolved in another. For instance, low accuracy in grain
and broad leaved classes in March, see Table 3, is improved by
our approach as shown in Table 9. Moreover, our temporal term
(TP ) is data dependent unlike in (Hoberg et al., 2015) where it
was determined by empirically.

5. Conclusion and outlook

Our study has demonstrated significance of spatial-temporal in-
formation for seasonal crop classification. Spatial interaction sig-
nificantly enhances spatial dependency minimizing ”salt and pep-
per” effect common in per pixel classifiers. The introduced tem-
poral potential resolved classes with low accuracy in March 2009
using information from June 2009 based on crop phenological
changes in time. Moreover, our approach outperforms existing
MRF state-of-the art spatial-temporal approach. Follow up stud-
ies will consider classification of sub-categories of crops and us-
ing images acquired at more than two epochs.
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