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ABSTRACT:

Using LiDAR sensors for tracking and monitoring an operating aircraft is a new application. In this paper, we present data processing
methods to estimate the heading of a taxiing aircraft using laser point clouds. During the data acquisition, a Velodyne HDL-32E laser
scanner tracked a moving Cessna 172 airplane. The point clouds captured at different times were used for heading estimation. After
addressing the problem and specifying the equation of motion to reconstruct the aircraft point cloud from the consecutive scans, three
methods are investigated here. The first requires a reference model to estimate the relative angle from the captured data by fitting
different cross-sections (horizontal profiles). In the second approach, iterative closest point (ICP) method is used between the
consecutive point clouds to determine the horizontal translation of the captured aircraft body. Regarding the ICP, three different
versions were compared, namely, the ordinary 3D, 3-DoF 3D and 2-DoF 3D ICP. It was found that 2-DoF 3D ICP provides the best
performance. Finally, the last algorithm searches for the unknown heading and velocity parameters by minimizing the volume of the
reconstructed plane. The three methods were compared using three test datatypes which are distinguished by object-sensor distance,
heading and velocity. We found that the ICP algorithm fails at long distances and when the aircraft motion direction perpendicular to
the scan plane, but the first and the third methods give robust and accurate results at 40m object distance and at ~12 knots for a small

Cessna airplane.

1. INTRODUCTION

Monitoring aircraft parameters, such as position and heading,
during take-off, landing and taxiing can improve airport safety,
as modeling the trajectory helps understand and assess the risk of
the pilot’s driving patterns on the runways and taxiways (e.g.
centerline deviation, wingspan separation). This information can
be used in aircraft and airport planning; e.g., whether the airport
meets the standardized criteria or providing data for modification
of airport standards and pilot education (Wilding et al., 2011).

Extracting this information requires sensors which are able to
capture these parameters. The on-the-board GPS/GNSS and IMU
sensors could provide such data, but it is hard to assess, as these
systems provide no interface and then due to varying aircraft
specification, privacy and other issues. The radar systems, such
as those applied by ILS (Instrument Landing System) are
primarily used for aiding pilots and not for accurately tracking
aircraft on the ground. Furthermore, the general safety, tracking
and maintenance sensors, deployed at airports, usually cannot
collect real-time 3D data from operating aircrafts. For this reason,
other sensor types should be considered and, consequently, to be
investigated.

To study taxiing behavior, Chou et al. used positioning gauges to
obtain data at the Chiang-Kai-Shek International Airport (Chou,
2006). The gauges recorded the passing aircraft’s nose gear on
the taxiway. Another study from FAA/Boeing investigated the
747s’ centerline deviations at JFK and ANC airports (Scholz,
2003a and 2003b). They used laser diodes at two locations to

measure the location of the nose and main gears. Another report
deals with wingspan collision using the same sensors (Scholz,
2005). The sensors applied and investigated by these studies
allow only point type data acquisition (light bar).

LiDAR (Light Detection and Ranging) is a suitable remote
sensing technology for this type of data acquisition, as it directly
captures 3D data and is fast. In this study, we test profile
laserscanners for aircraft body heading estimation; note that
heading is an important parameter for estimating centerline
deviation or for determining taxiing patterns. Although this study
focuses on the heading estimation, with minor extensions, the
presented methods are also able to obtain position and other
navigation information from the measurements. This effort is a
pioneer work, as no study or investigation has been conducted in
connection with aircraft heading estimation using LiDAR profile
Sensors.

2. PROBLEM DEFINITION

Different types of laser sensors are able to produce various type
of point clouds depending on the sensor’s resolution, range, field
of view, etc. In this study, a 360° FOV Velodyne HDL-32E laser
scanner with an angular resolution of 0.6° is used
(http://velodyne.com). The scanner’s 32 sensors, arranged
perpendicular to the main plane provide a FOV of +10 - -30° with
1.33° separation. This sensor is very popular in autonomous
robotics systems. The choice of the sensor was highly influenced
by its relatively low cost.
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Regarding the sensor arrangement, the horizontal installation is
generally better for localization; for example, Huijing et al.
presents a system for tracking pedestrians in a dense area
(Huijing, 2005) and (Weiss, 2007) shows a navigation
application. The vertical placement of the sensor is the typical
mapping arrangement to support 3D model reconstruction.
Rosell presents a method, where a horizontally placed sensor
attached to the vehicle scanned tree orchards and the 3D model
was reconstructed from the profiles. In the current study, the
same 2D reconstruction method is applied; the 2D scanner will
be placed next to the runway and taxiway and the 3D model will
be created fusing the consecutive profiles. But, in contrast to the
previous studies, where the sensor is moving, the scanner is fixed
at certain positions and scans the aircraft’s move. The train
profile validation system (PVS) from the Signal and System
Technik Company uses a similar idea to validate train profiles to
prevent damages and accidents
(http://www.sst.ag/en/products/diagnostic-systems/profile-
validation-system-pvs/). Their system consists of a gate frame
structure with laser scanners around the train cross-section. When
the train passes under the gate, the sensors scan the vehicle, and
the software creates a full 3D model. Note the train motion is
confined to the track, so the reconstruction problem is simple.

Comparing our task to mobile laser scanning (MLS), the key
differences can be easily identified. First, in our case the object
is moving, not the platform, and secondly, the goal is not the
mapping of the entire environment, just observing and tracking a
moving object and deriving some navigation parameters. In MLS
studies, the segmentation of the scene generally poses big
challenges, while in our case it is relatively simple, because the
runaway area is easily determined/mapped from the static
platform. Sample point clouds of a moving aircraft captured by
the vertically installed Velodyne sensor at different times are
shown in Figure 1.
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Figure 1. Scans of an aircraft, taken at different epochs
(top view)

These point clouds are the input for the algorithms to extract
navigation information. In the subsequent discussion, the heading
and velocity are assumed to be constant between the entering and
leaving points of the scanned area. These assumptions are
realistic, as the vehicle is moving relatively fast, thus it is not able
to change its orientation in the short range covered by the sensor.

At this point, we give the motion equations along the X and Y
axes, for distance traveled, Ax and Ay, respectively, between two
consecutive scans, as the function of heading and velocity,
assuming constant independent variables:

Ax = v, * At = cosa * v x At
Ay = vy, * At =sina * v x At

)

where At is the time difference between two scans,

a is the unknown constant heading in the sensor
coordinate system,

v is the unknown constant speed of the aircraft,

vy, Uy are the x and y components of this velocity.

This system is determined due to the fact of two unknowns
belong to two equations. The examination of the error
propagation of the Eq. 1 is important to estimate the accuracy
level that has to be achieved to reach the required accuracy of the
parameters (a, v). The derived error propagation equation, see
Appendix, gives us the error properties of the estimated
parameters (o4, 0,,) as the function of the Ax, Ay, At, opy, 0ay.
For example, for Ax = Ay = 0.5m, At = 0.08s, and gy, =
oay are independent variables, Figure 2 shows the parameter
estimation error. The graphs show linear connection between the
accuracy of the displacement estimation and the parameters. The
figure also indicates that 5 cm standard deviation of the
displacements causes around 4° and 1.4 m/s error. If we want to
achieve less than 1° accuracy in the heading estimation, we have
to obtain Ax, Ay at 1.2 cm accuracy level or better.
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Figure 2. Estimating errors of the parameters

Since the aircraft is moving, while the sensor scans the aircraft
body, a full measurement is not happening instantaneously. In
other words, the points from one rotation are collected at various
times. The impact, so-called motion artefact error is dependent
on the rotation frequency, the angular field of view and the speed
of the aircraft. The maximum error caused by motion artefact can
be estimated based on the distance difference between the first
and last backscattered points from the aircraft body. Under our
configuration circumstances, this deviation is about 3.5 cm at 12
knots (22.2 km/h); at higher speed, for instance, at 50 knots (92.6
km/h) it can achieve 15 cm. Although, the propagation model
may require to consider this effect, the empirical results showed
no impact on the results at the speed used in our testing, thus it is
not taken into consideration at the moment.

3. FIELD TEST AND DATA

The first field test was conducted at the Don Scott Airport of OSU
at October 24, 2014. The sensor was attached to the top of the
sensor platform, the OSU GPSvan. The main plane of the sensor
was oriented to be perpendicular to the earth surface. The target
aircraft was a Cessna 172 that was moving at various speed up to
12 knots and the sensor to aircraft range varied from 10 to 50 m.
During the tests, the aircraft crossed the main plane
perpendicularly and diagonally, see Figure 3. The entire 360°
FOV was captured at around 12.5 Hz. The angular range, which
covers the aircraft, is about 20 degree, and thus, this section of
interest was windowed from the point cloud. Each 360° scan
captured one snapshot of the moving aircraft at different epochs
resulting a same point clouds that are presented in Figure 1.
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Figure 3. Test arrangement

4. HEADING ESTIMATION USING REFERENCE
MODEL

In this approach, a reference aircraft body model is used for
estimating the heading of the aircraft body. The reference model
was taken from a range of 10 m by the LiDAR sensor; note it
could be provided by the blueprint of the aircraft too. After
filtering the aircraft body points and removing non-aircraft points
from the point cloud, four parallel planes are defined at -1, -0.5,
0, and 0.5 m heights in the sensor coordinate system. These
planes intersect the aircraft body, resulting in 2D points at four
different sections. Using these sample points, we applied linear
interpolation to approximate the aircraft horizontal body profiles.
The reference model curves are shown in Figure 4.

Figure 4. Aircraft point cloud (blue), the intersection
planes (light red), and reference body curves marked by
red lines

In the tracking phase, when the moving aircraft heading has to be
estimated, the body points are also selected by the parallel planes
similarly as before. At this point, the reference body curve and
the points of the moving aircraft are available at the same height.
The heading is estimated using curve-to-point ICP:

Np

min Z((M *5;—1y) *my)? )

where M is the 3-by-3 transformation matrix,

S; =[x, ¥s,i, 1] is the ith point from the samples,

7, = [%,1, ¥y 1] is the closest ith coordinates on the
reference body curve,

and n; is the unit normal vector at r; point.

In this paper, the popular non-linear solver, the Levenberg-
Marquardt method was used for finding the unknown
transformation matrix.

Figure 5 shows a result of the curve-to-point ICP on one selected
plane. The red line represents the reference body curve, and the
green asterisks show the points of the body aircraft acquired in
the tracking phase. The solid blue line is the fitted curve after
ICP, using point-to-plane distance metric. The residuals between
the points and the curve is due to the fact that the measurements
are corrupted by error as well as the reference points are not
acquired from the exactly the same points of the aircraft.
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Figure 5. Reference profile fitted to point cloud at one
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The same method can be applied to all of the consecutive scans
resulting in a set of heading estimations. The results from a
sample dataset, computed for every second scan, is shown in
Figure 6. In this particular case, the mean and the median heading
from these estimations are 41.5° and 41.7°, respectively. The
standard deviation of the heading is 1.9°. Since 30% of the
estimated orientations are not in the 1o range, removing these
values, the mean orientation is 42.1° and the standard deviation
is 0.7°. These heading results are relative to the reference model,
and thus have to be corrected by the absolute heading of the
reference model to get the absolute heading.
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Figure 6. Fitted consecutive scans and orientations

5. HEADING ESTIMATION USING ICP BETWEEN
CONSECUTIVE SCANS

The relative displacements of the consecutive scans can be used
to estimate the heading based on the equations of motion. As
stated above, because of the small scanned area and the steadily
moving aircraft, the heading and velocity are assumed to be
constant between the entering and leaving points of the scanned
area. Furthermore, since the aircraft is moving on the taxiway,
we also consider no vertical movements, thus the goal is to
extract the 2D motion parameters of the aircraft.
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5.1 Algorithm

The following steps present the proposed algorithm for the
derivation of the displacements and «, v.

Step 1. To achieve better performance, the point clouds were
filtered before running one of the ICP algorithms. The goal of the
filtering is to select the most “nearest” points found to the sensor
in the Y direction. For this reason the X-Z plane is decimated into
a grid of 0.1 x 0.1 m. Those points remain in the cloud which
have the smallest y coordinates inside one of the bins:

= {p ’n;iyn [bx, < px < by, and b, < p, < sz+1]} .
Vi=1.n,Vj=1..m,

P is the filtered cloud

p = [Px Dy, p,] is a point from the cloud

by, sz boundary limits of the bin in X, Y directions
by, — by, = 0.1,and

b, — by, =0.1.

where

Xit+1

Zi+1

Step 2. In order to estimate the Ax;;yq,Ay; ;41 displacements,
three implementations of ICP have been used (Rusinkiewicz,
2001; Geiger, 2012):

e 3D ICP: The applied well-known 3D ICP minimizes
the point-to-plane distance metric between the
corresponding (closest) points. This version of ICP
estimates the 6 degree-of-freedom (DoF) rigid-body
motion. These parameters can be extracted using
singular value decomposition (SVD) approach.

e  3-DoF 3D ICP: Considering that the aircraft moves on
the taxiway, the vertical motion can be neglected, thus
it can be represented as a 2D problem. Here the heading
and the offset parameters between the two scans have
to be estimated, thus it is a 3-DoF rigid-body motion.
The equations can be also solved using point-to-plane
distance metric by SVD. Regarding the cost function,
despite to the fact that the motion is restricted to a
plane, the residuals are measured as the L2-norm of the
3D coordinates, and thus the objective function
provides the total metric differences of the 3D points.

e  2-DoF 3D ICP: Under the assumptions that the heading
and velocity are constant, only 2D displacements are
estimated, and thus, the ICP has to provide only these
parameters.

Step 3. Ax; 41, Ay; i1 and At; ;11 can be determined between all
of the consecutive scans, which means n — 1 equations of Eq. 1:

cosa *v*At; ;1 —Ax;;1 =0
sina*v*Atjjp 1 — Ayiip1 =0 “)

Li+1 Vii+1 = U
Since errors are present, parameter estimation is required.
Furthermore, robust estimation, such as RANSAC, is
recommended to use in order to filter the outliers caused by failed
ICP registrations.

5.2 Comparison of ICP solutions

To eliminate the errors caused by non-overlapping clouds, those
full 360-degree scans were selected as input to the algorithm
which contain at least the 80% of the aircraft body. The ICP
registration algorithm provides the reconstructed plane. Figure 7
shows the original point clouds and the reconstructed object from

the 2-DoF ICP with green and red dots, respectively. Note the
aircraft fuselage, the wings, even the blades are easily
identifiable, as well as, the contours are sharp, which indicates
the good performance of the ICP. The other types of ICP
generated a slightly similar point clouds.
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Figure 7. Results of 2-DoF ICP

Figure 8 presents the quantitative results. The three columns
show the results of the three ICP versions for a sample dataset. In
the plots, the upper row, the red lines present the trajectories
derived from the ICP, and the green lines show the trajectory
calculated from the estimated a, v. The circles of the lines present
the positions at different scans. The results indicate that the
individual ICPs and the estimated parameters provide the same
solutions. In other words, the model nearly perfectly fits to the
estimated values, and thus, the circles have to be at the same
location. The differences between the circles can be interpreted
as the residuals of the Ax,Ay. These differences are small
between the solutions. The lower right corner in Figure 8 presents
the changes of the heading. These heading values are between
+1° and they seem to behave randomly; note no bias is
recognizable. It means these heading discrepancies can be
interpreted as error “corrections” determined by the 3D and 3-
DoF ICP. As stated before in the 2-DoF case, the heading is not
estimated, thus Figure 8c does not show any changes.

Also note the standard deviations of the heading predicted by
error propagation equation is more than the realization in this
dataset. It can be interpreted as this equation overestimates the
heading error caused by ICP registration. In contrast, the
accuracy of the velocity estimation follows the predicitions. Of
course, the sample set is not sufficiently large to derive
representative statistics regarding the validation of the error
propagation model.

The statistical results are presented in the lower row in Figure 8,
listing the heading and velocity parameters and the samples
(translations). The statistics are calculated from the results of the
consecutive ICPs. The standard deviations of the heading in the
case of 3D, 3-DoF and 2-DoF ICP are +1.13°, +£0.97°, and
+0.80°, respectively. Note that the 2-DoF ICP solution has
marginally better statistical properties in heading estimation. In
contrary, the £0.50 m/s standard deviation of the velocities is
slightly better in the 3D ICP case, but the estimated velocity is
almost the same (7.2 m/s). The standard deviations of the
translations are between 2-3 cm in all of the three cases.
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Figure 8. Estimated parameters

Altough, no statistical differences can be detected on this dataset,
2-DoF 3D ICP is recommended to use due to its robustness if the
motion assumptions are valid. In the solution presented in Figure
8, the overlapping between point cloud is provided. If the test
sequence of the point clouds is extended with less overlapping
clouds, the 3D ICP may fail; for instance, as shown in Figure 9.
It is clearly seen that the 3D ICP (blue) detects a large pitch
motion, and thus, the standard deviation of the heading drops
down to £10.57°. In contrary, the 2-DoF 3D ICP depicted by red
shows a better reconstructed plane shape, and the +1.32°
standard deviation of the heading estiamte is significatnly better.

Z [m]

Y [m]
Figure 9. Comparing the robustness of the 3D (blue) and
the 2-DoF 3D ICP (red).

6. HEADING ESTIMATION WITH VOLUME
MINIMIZATION

The idea behind this method is to make the reconstructed scene
or object point cloud consistent. This consistency or the
“disorder” can be measured by the entropy as it was introduced
by Saez et al. Their approach was successfully applied in
underwater and stereo vision scenarios (Saez, 2005, 2006). In
these studies, the entropy is used for measuring the scene
consistency after the preliminary pose and scene estimation.
They minimize this entropy by ‘shaking’ the three pose
coordinates and the three rotation parameters at every positions

quasi randomly. We use a similar approach, but in our case there
are some constraints present, because all consecutive shots can
be converted to the coordinate system of the first point cloud by
assuming a certain @ and v using the equation of motion (Eqg. 1).
In another words, the reconstructed plane can be determined if a
and v are known, meaning that problem space is just 2-
dimensional compared to Saez et al.,’s multidimensional space.

Generally the entropy can be estimated with decimating the space
to equal-sided boxes (bins, cubes), see example in Figure 10a.
Here, we use a different approach, namely volume minimization
instead of entropy minimization, because we experienced slightly
better results using this metric. Nevertheless, the entropy metric
is also able to give acceptable results. In case of volume
minimization, the “goodness” of the reconstruction is measured
in the number of the boxes wherein at least one point is found.
This metric aims at minimizing the space volume that is occupied
by the point cloud.

See an example in Figure 10b, c. The left part shows the point
cloud assuming a = 0° heading, and the “reconstructed” cloud
results 865 boxes, as well as, the plane is hardly recognizable.
The right part presents a more interpreable cloud and it resuls 275
boxes besides a = 45°. This example also proved that this metric
can be good for measuring the registration error.

The computational complexity of counting the occupied bins is
linear to the number of the points, O(N), where N is the number
of the points in the cloud. This complexity is significantly lower
than that of the ICP’s objective function but the wvolume
minimization is an ill-posed problem. In order to solve it,
simulated annealing algorithm was used for finding the global
minimum. The pseudo code of the algorithm is listed in Table 1.
The simulated annealing is a stochastic optimization tool, which
applies random numbers as heuristics. The cooling function, its
parameterization, as well as, regulating the whole cooling process
is important to get the right solution.
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(a) Decimating the space into cubes

(b) Point cloud at @ = 45° resulting in
275 boxes and consistent cloud

865 boxes and uninterpretable cloud

Figure 10. Examples for explaining the method of volume minimization

Table 1. The implemented simulated annealing algorithm for finding the mimimum volume respect to the headin and
velocity, the convergence of the parameters are in the right side.

InpUt: P' Xinit> Vinit» Ta,maxr To,max» tmin: Ny
Initialize: i, iqy

@ < Ainit, V < Vinge

e « entropy(P)

while i < ipg, and t > tpin

/I Decreasing the temperature
t «ct

Ta = Ta,max *t

Ty = Tymax *t

Apest < A, Vpest <V

for pts = 1..n,

/I Pick a neighbor randomly
Acand < Xpest + Ta md()
VUcand < Vbest + Ty Tnd()

/I Calculate the cloud (dynamic model)
X'y & x; 4 COSUcana * Veana * At Vi
€[1;N],x; €P
y,i < Yi + €OSQcana * Veana * Ao Vi €
[1; N]r Vi EP
e' « entropy(x';, y';)
/I Update results
if e’ <eorexp(—(e' —e)) > rnd()
a < ac,andr VU < Vcana
e e

A < QpestsV < Vpest
i—i+1
Output: a, v

10 100
8
- — 50
Es =
- 0
4
2 -50
1 0.5 0 1 0.5 0
temp [-] temp [-]

(2) The convergence of the parameters

* 1000
e
= 500
0
0 100
5 0
10 -100
v [m/s] a[°]

(b) Convergence in the problem space

Variables: P: point cloud, x;, y; € P: ith point from the P point cloud, rnd() € [1; —1]: a random number, i,,,,: maximum iteration number
(=150), entropy(): the entropy of the point cloud, @;,;;, Vi, : initial guesses for the heading and velocity (=0,0), 7, max» vmax- S€ArChing
boundaries for heading and velocity (=90, 30), t,,;,: temperature that has to be achieved before return (=0.001), n,,: number of neighbors to
calculate at each iteration (=20), a, v: estimated heading and velocity (results), c: cooling schedule (geometric function), c = 0.95, note that t €
(0; 1], t: temperature, 1, 7;,: radiuses for accessible neighbours At ;: time between the ith and the first shot, a,,es., Vs best parameters among
the neighbours, @cqna, Veana Candidate parameters among the neighbors, x';,y';: coordinates of the ith updated point

In our dataset, the geometric function is experienced to be the
best cooling procedure. In order to avoid getting stuck at a
local minima, we use exponential function in the update step.
The right side of the figure shows the convergence of the
parameters, and the convergence in the problem space which
proves that the convergence is feasible. On the other hand, the
method is a stochastic algorithm, thus different runs results
slightly different solutions. For this reason, at each case, we
run the algorithm, at least, 10 times and we used the statistics
of these results to estimate the “goodness” or the “uncertainty”

of the method. Sometimes the algorithm gets stuck at a local
minimum, say once in ten runs. These misidentifications are
eliminated using sigma rule.

7. COMPARISON AND DISCUSSION

The comparison of the three different methods, namely,
heading estimation using reference model, Method 1, 2-DoF
ICP, Method 2, and volume minimization, Method 3, are
illustrated by an example in Figure 11.
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Method 1 (using reference model)

Disatnce: ~10 m
Heading: ~40

a=41.6°

Disatnce: ~10 m
Heading: ~0

a=-0.7° a=-3.3v=2.9m/s

Disatnce: ~40 m
Heading: ~0°

a=-1.7° a=343.9°v=1.7m/s

Method 2 (2-DoF ICP)

NI

Method 3 (volume minimization)

a=-0.9°,v=2.4m/s

: T e DA
R A i

a=-1.3°v=6.9m/s

Figure 11. Comparison of the different solutions, top view

Because Method 1 does not provide any velocity estimation,
the velocity from Method 3 is used for the cloud visualization.
The estimated values can be seen under the plots. Figure 11
presents three datasets from three different object-sensor
arrangements. The first dataset was captured at 10 m object
distance with ~40° angle between the main scan plane and the
motion direction. The second dataset shows a scenario at the
same distance but with ~0° angle, and the last dataset was a
challanging scenarios at 40 m object distance with ~0° angle
and a realitively high velocity, ~ 7m/s, 12 knots, the maximum
permitted at the test location.

On the first dataset, it is clearly seen that the different
algorithms create comparable point clouds and similar
estimation results. This proves that all approaches are able to
provide the correct solution and the right feedback without
reference solutions, such as GPS. The second and third
datasets show that the sensor-object arrangement and distance
can have relevant impact on the accuracy of the derived
parameters and the reliability on the chosen method. The first
dataset is presumably closely ideal for ICP algorithms due to
the nearly 45° angle between the main scan plane and the
motion direction of the aircraft. In this case the sensor can
capture the whole 2D dimensional extensions (body and the
wingspan) of the moving body, while at 0° angle it just sees
the body, a cylindrical shape. ICP failures were exprencied in
the latter cases, as it can be seen in the middle row of the table.
The ICP method also fails if not enough points are acquired
from the aircraft because of the long sensor-object distance,
see last row. On the other hand, bigger aircraft with longer
sensor-object distance provides the same amount of points as

smaller aircrafts in shorter range, thus in this case the ICP may
be applicable.

Surprisingly, the estimated heading parameter from Method 1
is consistent with the parameters derived from Method 3, even
at larger distances, and not just on these three datasets, but on
other investigated ones as well. The drawback of Method 1 is
the use of a reference model, the aircraft types has to be known.
In summary, Method 3 is the most reliable method. The final
point cloud produced by Method 3 at the highest permitted
speed and at the longest distance can be seen in Figure 12.

Figure 12. Point cloud from method 3 at ~7m/s velocity
form 40 m object distance with ~0°

In the future, we want to verify our methods with various types
and sizes of aircraft operating at different distances.
Additionally, more datasets are also essential to make the
results statistically relevant. Installing multiple sensors are
also able to improve the performance. On the other hand, the
reference solutions are also required for comparative
investigations. For this reason, we are planning to use GPS and
IMU sensors on the airplane to compare the solutions.
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8. CONCLUSION

3D active remote sensing, such as LiDAR technology, is able
to provide excellent sensing capability to monitor operating
aircrafts at airports. In this paper we used laser scanners with
narrow vertical field of view to observe taxiing aircraft, and all
results are based on using a Velodyne’s HDL-32E, for
estimating the heading of the aircraft body. We investigated
three different algorithms: the first uses reference model, the
second is based on ICP algorithm, and the last one minimizes
the volume of the reconstructed point cloud. We found that the
volume minimization provides the most reliable and accurate
solution, although reference solution is needed to verify the
results.

Clearly, the LiDAR technology is able to sense aircraft body
moving on the tarmac but during take-off and landing while in
the air but close to the sensor. This solution opens new
possibilities to centerline deviation monitoring and other
safety studies. Furthermore, the fully reconstructed aircraft
body can be used for determining other parameters, such as the
aircraft type. These investigations are our middle/long term
research plans.
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APPENDIX
Here we present the derivation of the error propagation

functions from Equation 1. First, rearrange the equation
system:

" (Ax) dy
a = arctan|—),v = .
’ 5
Ay sin (arctan (2—;)) dt ®)
Then calculate the partial derivatives:
da Ay da Ax
dAx  Ax? + Ay?’ Ay Ax? +Ay?
v Ay?
aAx ’
2
AtAx? /2—;2 +1
(6)
v Ax?+2Ay?
dAy
Ax?
AtAxAy |—=+1
y AyZ

Thus, the variances of the parameters as the functions of
Ax,Ay,At are the following, assuming that Ax,Ay are
independent:

da \? ) da \? )
a = (m) e+ (m) Thy»

2 U]
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