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ABSTRACT: 

 

Using LiDAR sensors for tracking and monitoring an operating aircraft is a new application. In this paper, we present data processing 

methods to estimate the heading of a taxiing aircraft using laser point clouds. During the data acquisition, a Velodyne HDL-32E laser 

scanner tracked a moving Cessna 172 airplane. The point clouds captured at different times were used for heading estimation. After 

addressing the problem and specifying the equation of motion to reconstruct the aircraft point cloud from the consecutive scans, three 

methods are investigated here. The first requires a reference model to estimate the relative angle from the captured data by fitting 

different cross-sections (horizontal profiles). In the second approach, iterative closest point (ICP) method is used between the 

consecutive point clouds to determine the horizontal translation of the captured aircraft body. Regarding the ICP, three different 

versions were compared, namely, the ordinary 3D, 3-DoF 3D and 2-DoF 3D ICP. It was found that 2-DoF 3D ICP provides the best 

performance. Finally, the last algorithm searches for the unknown heading and velocity parameters by minimizing the volume of the 

reconstructed plane. The three methods were compared using three test datatypes which are distinguished by object-sensor distance, 

heading and velocity. We found that the ICP algorithm fails at long distances and when the aircraft motion direction perpendicular to 

the scan plane, but the first and the third methods give robust and accurate results at 40m object distance and at ~12 knots for a small 

Cessna airplane. 

 

1. INTRODUCTION 

Monitoring aircraft parameters, such as position and heading, 

during take-off, landing and taxiing can improve airport safety, 

as modeling the trajectory helps understand and assess the risk of 

the pilot’s driving patterns on the runways and taxiways (e.g. 

centerline deviation, wingspan separation). This information can 

be used in aircraft and airport planning; e.g., whether the airport 

meets the standardized criteria or providing data for modification 

of airport standards and pilot education (Wilding et al., 2011).  

Extracting this information requires sensors which are able to 

capture these parameters. The on-the-board GPS/GNSS and IMU 

sensors could provide such data, but it is hard to assess, as these 

systems provide no interface and then due to varying aircraft 

specification, privacy and other issues. The radar systems, such 

as those applied by ILS (Instrument Landing System) are 

primarily used for aiding pilots and not for accurately tracking 

aircraft on the ground. Furthermore, the general safety, tracking 

and maintenance sensors, deployed at airports, usually cannot 

collect real-time 3D data from operating aircrafts. For this reason, 

other sensor types should be considered and, consequently, to be 

investigated. 

To study taxiing behavior, Chou et al. used positioning gauges to 

obtain data at the Chiang-Kai-Shek International Airport (Chou, 

2006). The gauges recorded the passing aircraft’s nose gear on 

the taxiway. Another study from FAA/Boeing investigated the 

747s’ centerline deviations at JFK and ANC airports (Scholz, 

2003a and 2003b). They used laser diodes at two locations to 

                                                                 
 

measure the location of the nose and main gears. Another report 

deals with wingspan collision using the same sensors (Scholz, 

2005). The sensors applied and investigated by these studies 

allow only point type data acquisition (light bar). 

LiDAR (Light Detection and Ranging) is a suitable remote 

sensing technology for this type of data acquisition, as it directly 

captures 3D data and is fast. In this study, we test profile 

laserscanners for aircraft body heading estimation; note that 

heading is an important parameter for estimating centerline 

deviation or for determining taxiing patterns. Although this study 

focuses on the heading estimation, with minor extensions, the 

presented methods are also able to obtain position and other 

navigation information from the measurements. This effort is a 

pioneer work, as no study or investigation has been conducted in 

connection with aircraft heading estimation using LiDAR profile 

sensors. 

2. PROBLEM DEFINITION 

Different types of laser sensors are able to produce various type 

of point clouds depending on the sensor’s resolution, range, field 

of view, etc. In this study, a 360º FOV Velodyne HDL-32E laser 

scanner with an angular resolution of 0.6º is used 

(http://velodyne.com). The scanner’s 32 sensors, arranged 

perpendicular to the main plane provide a FOV of +10 - -30º with 

1.33º separation. This sensor is very popular in autonomous 

robotics systems. The choice of the sensor was highly influenced 

by its relatively low cost.  
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Regarding the sensor arrangement, the horizontal installation is 

generally better for localization; for example, Huijing et al. 

presents a system for tracking pedestrians in a dense area 

(Huijing, 2005) and (Weiss, 2007) shows a navigation 

application. The vertical placement of the sensor is the typical 

mapping arrangement to support 3D model reconstruction. 

Rosell presents a method, where a horizontally placed sensor 

attached to the vehicle scanned tree orchards and the 3D model 

was reconstructed from the profiles. In the current study, the 

same 2D reconstruction method is applied; the 2D scanner will 

be placed next to the runway and taxiway and the 3D model will 

be created fusing the consecutive profiles. But, in contrast to the 

previous studies, where the sensor is moving, the scanner is fixed 

at certain positions and scans the aircraft’s move. The train 

profile validation system (PVS) from the Signal and System 

Technik Company uses a similar idea to validate train profiles to 

prevent damages and accidents 

(http://www.sst.ag/en/products/diagnostic-systems/profile-

validation-system-pvs/). Their system consists of a gate frame 

structure with laser scanners around the train cross-section. When 

the train passes under the gate, the sensors scan the vehicle, and 

the software creates a full 3D model. Note the train motion is 

confined to the track, so the reconstruction problem is simple. 

 

Comparing our task to mobile laser scanning (MLS), the key 

differences can be easily identified. First, in our case the object 

is moving, not the platform, and secondly, the goal is not the 

mapping of the entire environment, just observing and tracking a 

moving object and deriving some navigation parameters. In MLS 

studies, the segmentation of the scene generally poses big 

challenges, while in our case it is relatively simple, because the 

runaway area is easily determined/mapped from the static 

platform. Sample point clouds of a moving aircraft captured by 

the vertically installed Velodyne sensor at different times are 

shown in Figure 1.  

 

Figure 1. Scans of an aircraft, taken at different epochs 

(top view)  
 

These point clouds are the input for the algorithms to extract 

navigation information. In the subsequent discussion, the heading 

and velocity are assumed to be constant between the entering and 

leaving points of the scanned area. These assumptions are 

realistic, as the vehicle is moving relatively fast, thus it is not able 

to change its orientation in the short range covered by the sensor. 

 

At this point, we give the motion equations along the X and Y 

axes, for distance traveled, ∆𝑥 and ∆𝑦, respectively, between two 

consecutive scans, as the function of heading and velocity, 

assuming constant independent variables: 

 

∆𝑥 = 𝑣𝑥 ∗ ∆𝑡 = cos 𝛼 ∗ 𝑣 ∗ ∆𝑡 

∆𝑦 = 𝑣𝑦 ∗ ∆𝑡 = sin 𝛼 ∗ 𝑣 ∗ ∆𝑡 
(1) 

where  ∆𝑡 is the time difference between two scans, 

𝛼 is the unknown constant heading in the sensor 

coordinate system, 

𝑣 is the unknown constant speed of the aircraft, 

𝑣𝑥, 𝑣𝑦 are the 𝑥 and 𝑦 components of this velocity. 

 

This system is determined due to the fact of two unknowns 

belong to two equations. The examination of the error 

propagation of the Eq. 1 is important to estimate the accuracy 

level that has to be achieved to reach the required accuracy of the 

parameters (𝛼, 𝑣). The derived error propagation equation, see 

Appendix, gives us the error properties of the estimated 

parameters (𝜎𝛼 , 𝜎𝑣) as the function of the ∆𝑥, ∆𝑦, ∆𝑡, 𝜎∆𝑥 , 𝜎∆𝑦. 

For example, for  ∆𝑥 = ∆𝑦 = 0.5 𝑚, ∆𝑡 = 0.08 𝑠, and 𝜎∆𝑥 =
𝜎∆𝑦 are independent variables, Figure 2 shows the parameter 

estimation error. The graphs show linear connection between the 

accuracy of the displacement estimation and the parameters. The 

figure also indicates that 5 cm standard deviation of the 

displacements causes around 4˚ and 1.4 m/s error.  If we want to 

achieve less than 1˚ accuracy in the heading estimation, we have 

to obtain ∆𝑥, ∆𝑦 at 1.2 cm accuracy level or better.  

 

 

Figure 2. Estimating errors of the parameters 
 

Since the aircraft is moving, while the sensor scans the aircraft 

body, a full measurement is not happening instantaneously. In 

other words, the points from one rotation are collected at various 

times. The impact, so-called motion artefact error is dependent 

on the rotation frequency, the angular field of view and the speed 

of the aircraft. The maximum error caused by motion artefact can 

be estimated based on the distance difference between the first 

and last backscattered points from the aircraft body. Under our 

configuration circumstances, this deviation is about 3.5 cm at 12 

knots (22.2 km/h); at higher speed, for instance, at 50 knots (92.6 

km/h) it can achieve 15 cm. Although, the propagation model 

may require to consider this effect, the empirical results showed 

no impact on the results at the speed used in our testing, thus it is 

not taken into consideration at the moment. 

 

3. FIELD TEST AND DATA 

The first field test was conducted at the Don Scott Airport of OSU 

at October 24, 2014. The sensor was attached to the top of the 

sensor platform, the OSU GPSvan. The main plane of the sensor 

was oriented to be perpendicular to the earth surface. The target 

aircraft was a Cessna 172 that was moving at various speed up to 

12 knots and the sensor to aircraft range varied from 10 to 50 m. 

During the tests, the aircraft crossed the main plane 

perpendicularly and diagonally, see Figure 3. The entire 360º 

FOV was captured at around 12.5 Hz. The angular range, which 

covers the aircraft, is about 20 degree, and thus, this section of 

interest was windowed from the point cloud. Each 360º scan 

captured one snapshot of the moving aircraft at different epochs 

resulting a same point clouds that are presented in Figure 1.  
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Figure 3. Test arrangement 
 

4. HEADING ESTIMATION USING REFERENCE 

MODEL 

In this approach, a reference aircraft body model is used for 

estimating the heading of the aircraft body. The reference model 

was taken from a range of 10 m by the LiDAR sensor; note it 

could be provided by the blueprint of the aircraft too. After 

filtering the aircraft body points and removing non-aircraft points 

from the point cloud, four parallel planes are defined at -1, -0.5, 

0, and 0.5 m heights in the sensor coordinate system. These 

planes intersect the aircraft body, resulting in 2D points at four 

different sections. Using these sample points, we applied linear 

interpolation to approximate the aircraft horizontal body profiles. 

The reference model curves are shown in Figure 4. 

 
Figure 4. Aircraft point cloud (blue), the intersection 

planes (light red), and reference body curves marked by 

red lines 
 

In the tracking phase, when the moving aircraft heading has to be 

estimated, the body points are also selected by the parallel planes 

similarly as before. At this point, the reference body curve and 

the points of the moving aircraft are available at the same height. 

The heading is estimated using curve-to-point ICP: 

 

min
𝑀

∑((𝑀 ∗ 𝑠𝑖 − 𝑟𝑖) ∗ 𝑛𝑖)2

𝑁𝑝

𝑖=1

  

 

(2) 

where  𝑀 is the 3-by-3 transformation matrix, 

𝑠𝑖 = [𝑥𝑠,𝑖 , 𝑦𝑠,𝑖 , 1] is the 𝑖th point from the samples, 

𝑟𝑖 = [𝑥𝑟,𝑖 , 𝑦𝑟,𝑖 , 1] is the closest 𝑖th coordinates on the 

reference body curve, 

and  𝑛𝑖 is the unit normal vector at 𝑟𝑖 point. 

 

In this paper, the popular non-linear solver, the Levenberg-

Marquardt method was used for finding the unknown 

transformation matrix. 

Figure 5 shows a result of the curve-to-point ICP on one selected 

plane. The red line represents the reference body curve, and the 

green asterisks show the points of the body aircraft acquired in 

the tracking phase. The solid blue line is the fitted curve after 

ICP, using point-to-plane distance metric. The residuals between 

the points and the curve is due to the fact that the measurements 

are corrupted by error as well as the reference points are not 

acquired from the exactly the same points of the aircraft.  

 

 
Figure 5. Reference profile fitted to point cloud at one 

profile 
 

The same method can be applied to all of the consecutive scans 

resulting in a set of heading estimations. The results from a 

sample dataset, computed for every second scan, is shown in 

Figure 6. In this particular case, the mean and the median heading 

from these estimations are 41.5˚ and 41.7˚, respectively. The 

standard deviation of the heading is 1.9˚. Since 30% of the 

estimated orientations are not in the 1 range, removing these 

values, the mean orientation is 42.1˚ and the standard deviation 

is 0.7˚. These heading results are relative to the reference model, 

and thus have to be corrected by the absolute heading of the 

reference model to get the absolute heading.  

 
Figure 6. Fitted consecutive scans and orientations  

 

 

5. HEADING ESTIMATION USING ICP BETWEEN 

CONSECUTIVE SCANS 

The relative displacements of the consecutive scans can be used 

to estimate the heading based on the equations of motion. As 

stated above, because of the small scanned area and the steadily 

moving aircraft, the heading and velocity are assumed to be 

constant between the entering and leaving points of the scanned 

area. Furthermore, since the aircraft is moving on the taxiway, 

we also consider no vertical movements, thus the goal is to 

extract the 2D motion parameters of the aircraft.  
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5.1 Algorithm 

The following steps present the proposed algorithm for the 

derivation of the displacements and 𝛼, 𝑣. 

Step 1. To achieve better performance, the point clouds were 

filtered before running one of the ICP algorithms. The goal of the 

filtering is to select the most “nearest” points found to the sensor 

in the Y direction. For this reason the X-Z plane is decimated into 

a grid of 0.1 x 0.1 m. Those points remain in the cloud which 

have the smallest 𝑦 coordinates inside one of the bins: 

 

𝑃̂ = {𝑝 | min
𝑝𝑦

[𝑏𝑥𝑖
< 𝑝𝑥 < 𝑏𝑥𝑖+1

𝑎𝑛𝑑 𝑏𝑧𝑗
< 𝑝𝑧 < 𝑏𝑧𝑗+1

]} 

∀𝑖 = 1. . 𝑛, ∀𝑗 = 1. . 𝑚, 
(3) 

 

where  𝑃̂ is the filtered cloud 

 𝑝 = [𝑝𝑥, 𝑝𝑦 , 𝑝𝑧] is a point from the cloud 

 𝑏𝑥𝑖
, 𝑏𝑧𝑗

 boundary limits of the bin in X, Y directions 

 𝑏𝑥𝑖
− 𝑏𝑥𝑖+1

= 0.1, and 

 𝑏𝑧𝑖
− 𝑏𝑧𝑖+1

= 0.1. 

 

Step 2. In order to estimate the ∆𝑥𝑖,𝑖+1, ∆𝑦𝑖,𝑖+1 displacements, 

three implementations of ICP have been used (Rusinkiewicz, 

2001; Geiger, 2012): 

 

 3D ICP: The applied well-known 3D ICP minimizes 

the point-to-plane distance metric between the 

corresponding (closest) points. This version of ICP 

estimates the 6 degree-of-freedom (DoF) rigid-body 

motion. These parameters can be extracted using 

singular value decomposition (SVD) approach. 

 3-DoF 3D ICP: Considering that the aircraft moves on 

the taxiway, the vertical motion can be neglected, thus 

it can be represented as a 2D problem. Here the heading 

and the offset parameters between the two scans have 

to be estimated, thus it is a 3-DoF rigid-body motion. 

The equations can be also solved using point-to-plane 

distance metric by SVD. Regarding the cost function, 

despite to the fact that the motion is restricted to a 

plane, the residuals are measured as the L2-norm of the 

3D coordinates, and thus the objective function 

provides the total metric differences of the 3D points. 

 2-DoF 3D ICP: Under the assumptions that the heading 

and velocity are constant, only 2D displacements are 

estimated, and thus, the ICP has to provide only these 

parameters.  

Step 3. ∆𝑥𝑖,𝑖+1, ∆𝑦𝑖,𝑖+1 and ∆𝑡𝑖,𝑖+1 can be determined between all 

of the consecutive scans, which means 𝑛 − 1 equations of Eq. 1: 

 

cos 𝛼 ∗ 𝑣 ∗ ∆𝑡𝑖,𝑖+1 − ∆𝑥𝑖,𝑖+1 = 0 

sin 𝛼 ∗ 𝑣 ∗ ∆𝑡𝑖,𝑖+1 − ∆𝑦𝑖,𝑖+1 = 0. 
(4) 

 

Since errors are present, parameter estimation is required. 

Furthermore, robust estimation, such as RANSAC, is 

recommended to use in order to filter the outliers caused by failed 

ICP registrations.  

 

5.2 Comparison of ICP solutions 

To eliminate the errors caused by non-overlapping clouds, those 

full 360-degree scans were selected as input to the algorithm 

which contain at least the 80% of the aircraft body. The ICP 

registration algorithm provides the reconstructed plane. Figure 7 

shows the original point clouds and the reconstructed object from 

the 2-DoF ICP with green and red dots, respectively. Note the 

aircraft fuselage, the wings, even the blades are easily 

identifiable, as well as, the contours are sharp, which indicates 

the good performance of the ICP. The other types of ICP 

generated a slightly similar point clouds. 

 

 

Figure 7. Results of 2-DoF ICP 
 

Figure 8 presents the quantitative results. The three columns 

show the results of the three ICP versions for a sample dataset. In 

the plots, the upper row, the red lines present the trajectories 

derived from the ICP, and the green lines show the trajectory 

calculated from the estimated 𝛼, 𝑣. The circles of the lines present 

the positions at different scans. The results indicate that the 

individual ICPs and the estimated parameters provide the same 

solutions. In other words, the model nearly perfectly fits to the 

estimated values, and thus, the circles have to be at the same 

location. The differences between the circles can be interpreted 

as the residuals of the ∆𝑥, ∆𝑦. These differences are small 

between the solutions. The lower right corner in Figure 8 presents 

the changes of the heading. These heading values are between 

±1˚ and they seem to behave randomly; note no bias is 

recognizable. It means these heading discrepancies can be 

interpreted as error “corrections” determined by the 3D and 3-

DoF ICP. As stated before in the 2-DoF case, the heading is not 

estimated, thus Figure 8c does not show any changes. 

 

Also note the standard deviations of the heading predicted by 

error propagation equation is more than the realization in this 

dataset. It can be interpreted as this equation overestimates the 

heading error caused by ICP registration. In contrast, the 

accuracy of the velocity estimation follows the predicitions. Of 

course, the sample set is not sufficiently large to derive 

representative statistics regarding the validation of the error 

propagation model. 

 

The statistical results are presented in the lower row in Figure 8, 

listing the heading and velocity parameters and the samples 

(translations). The statistics are calculated from the results of the 

consecutive ICPs. The standard deviations of the heading in the 

case of 3D, 3-DoF and 2-DoF ICP are ±1.13˚, ±0.97˚, and 

±0.80˚, respectively. Note that the 2-DoF ICP solution has 

marginally better statistical properties in heading estimation. In 

contrary, the ±0.50 m/s standard deviation of the velocities is 

slightly better in the 3D ICP case, but the estimated velocity is 

almost the same (7.2 m/s). The standard deviations of the 

translations are between 2-3 cm in all of the three cases.   
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 Estimated σ 

α 40.7˚ ±1.13 ˚ 

𝑣 7.1 m/s ± 0.50 m/s 

∆𝑥 0.46 m ± 0.03 m 

∆𝑦 0.39 m ±0.03 m 
 

 Estimated σ 

α 40.1˚ ±0.97 ˚ 

𝑣 7.2 m/s ± 0.56 m/s 

∆𝑥 0.47 m ± 0.02 m 

∆𝑦 0.40 m ±0.02 m 
 

 Estimated σ 

α 40.2˚ ±0.80˚ 

𝑣 7.2 m/s ± 0.61 m/s 

∆𝑥 0.47 m ± 0.03 m 

∆𝑦 0.40 m ±0.02 m 
 

   

(a) 3D ICP  (b) 3DoF 3D ICP (c) 2DoF 3D ICP  

   

Figure 8. Estimated parameters  

 

Altough, no statistical differences can be detected on this dataset, 

2-DoF 3D ICP is recommended to use due to its robustness if the 

motion assumptions are valid. In the solution presented in Figure 

8, the overlapping between point cloud is provided. If the test 

sequence of the point clouds is extended with less overlapping 

clouds, the 3D ICP may fail; for instance, as shown in Figure 9. 

It is clearly seen that the 3D ICP (blue) detects a large pitch 

motion, and thus, the standard deviation of the heading drops 

down to ±10.57˚. In contrary, the 2-DoF 3D ICP depicted by red 

shows a better reconstructed plane shape, and the ±1.32˚ 

standard deviation of the heading estiamte is significatnly better.  

 

 
Figure 9. Comparing the robustness of the 3D (blue) and 

the 2-DoF 3D ICP (red). 
 

6. HEADING ESTIMATION WITH VOLUME 

MINIMIZATION 

The idea behind this method is to make the reconstructed scene 

or object point cloud consistent. This consistency or the 

“disorder” can be measured by the entropy as it was introduced 

by Saez et al. Their approach was successfully applied in 

underwater and stereo vision scenarios (Saez, 2005, 2006). In 

these studies, the entropy is used for measuring the scene 

consistency after the preliminary pose and scene estimation. 

They minimize this entropy by ‘shaking’ the three pose 

coordinates and the three rotation parameters at every positions 

quasi randomly. We use a similar approach, but in our case there 

are some constraints present, because all consecutive shots can 

be converted to the coordinate system of the first point cloud by 

assuming a certain 𝛼 and 𝑣 using the equation of motion (Eq. 1). 

In another words, the reconstructed plane can be determined if 𝛼 

and 𝑣 are known, meaning that problem space is just 2-

dimensional compared to Saez et al.,’s multidimensional space. 

 

Generally the entropy can be estimated with decimating the space 

to equal-sided boxes (bins, cubes), see example in Figure 10a. 

Here, we use a different approach, namely volume minimization 

instead of entropy minimization, because we experienced slightly 

better results using this metric. Nevertheless, the entropy metric 

is also able to give acceptable results. In case of volume 

minimization, the “goodness” of the reconstruction is measured 

in the number of the boxes wherein at least one point is found. 

This metric aims at minimizing the space volume that is occupied 

by the point cloud.  

 

See an example in Figure 10b, c. The left part shows the point 

cloud assuming 𝛼 = 0˚ heading, and the “reconstructed” cloud 

results 865 boxes, as well as, the plane is hardly recognizable. 

The right part presents a more interpreable cloud and it resuls 275 

boxes besides 𝛼 = 45˚. This example also proved that this metric 

can be good for measuring the registration error.  

 

The computational complexity of counting the occupied bins is 

linear to the number of the points, 𝑂(𝑁), where 𝑁 is the number 

of the points in the cloud. This complexity is significantly lower 

than that of the ICP’s objective function but the volume 

minimization is an ill-posed problem. In order to solve it, 

simulated annealing algorithm was used for finding the global 

minimum. The pseudo code of the algorithm is listed in Table 1. 

The simulated annealing is a stochastic optimization tool, which 

applies random numbers as heuristics. The cooling function, its 

parameterization, as well as, regulating the whole cooling process 

is important to get the right solution.  
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(a) Decimating the space into cubes 
(b) Point cloud at 𝛼 = 45˚ resulting in 

275 boxes and consistent cloud 

(c) Point cloud at 𝛼 = 0˚ resulting in 

865 boxes and uninterpretable cloud 

Figure 10. Examples for explaining the method of volume minimization 

Table 1. The implemented simulated annealing algorithm for finding the mimimum volume respect to the headin and 

velocity, the convergence of the parameters are in the right side. 

Input: 𝑃, 𝛼𝑖𝑛𝑖𝑡 ,  𝑣𝑖𝑛𝑖𝑡, 𝑟𝛼,𝑚𝑎𝑥, 𝑟𝑣,𝑚𝑎𝑥, 𝑡𝑚𝑖𝑛, 𝑛𝑛 

Initialize:  𝑖, 𝑖𝑚𝑎𝑥   
𝛼 ← 𝛼𝑖𝑛𝑖𝑡 ,  𝑣 ← 𝑣𝑖𝑛𝑖𝑡 

𝑒 ←  entropy(𝑃)  
while 𝑖 <  𝑖𝑚𝑎𝑥 and 𝑡 > 𝑡𝑚𝑖𝑛 

 

// Decreasing the temperature 

𝑡 ← 𝑐𝑖      

𝑟𝛼 = 𝑟𝛼,𝑚𝑎𝑥 * 𝑡 

𝑟𝑣 = 𝑟𝑣,𝑚𝑎𝑥 * 𝑡 
 

𝛼𝑏𝑒𝑠𝑡  ← 𝛼, 𝑣𝑏𝑒𝑠𝑡  ← 𝑣 
 

for 𝑝𝑡𝑠 = 1. . 𝑛𝑛 
 

// Pick a neighbor randomly 

𝛼𝑐𝑎𝑛𝑑  ← 𝛼𝑏𝑒𝑠𝑡 + 𝑟𝛼 𝑟𝑛𝑑() 

𝑣𝑐𝑎𝑛𝑑  ← 𝑣𝑏𝑒𝑠𝑡 + 𝑟𝑣 𝑟𝑛𝑑()           
 

// Calculate the cloud (dynamic model) 

𝑥′𝑖 ← 𝑥𝑖 + cos 𝛼𝑐𝑎𝑛𝑑 ∗ 𝑣𝑐𝑎𝑛𝑑 ∗ ∆𝑡0,𝑖  ∀𝑖

∈ [1; 𝑁], 𝑥𝑖 ∈ 𝑃 

𝑦′
𝑖

← 𝑦𝑖 + cos 𝛼𝑐𝑎𝑛𝑑 ∗ 𝑣𝑐𝑎𝑛𝑑 ∗ ∆𝑡0,𝑖  ∀𝑖 ∈

[1; 𝑁], 𝑦𝑖 ∈ 𝑃  

𝑒′ ← entropy(𝑥′𝑖 , 𝑦′𝑖) 
 

//  Update results 

if  𝑒′ < 𝑒 or exp (−(𝑒′ − 𝑒)) >  𝑟𝑛𝑑() 

𝛼 ← 𝛼𝑐𝑎𝑛𝑑, 𝑣 ← 𝑣𝑐𝑎𝑛𝑑 

𝑒 ←  𝑒′  
 

𝛼 ←  𝛼𝑏𝑒𝑠𝑡 , 𝑣 ←  𝑣𝑏𝑒𝑠𝑡 

𝑖 ← 𝑖 + 1 

Output: 𝛼, 𝑣 

 

(a) The convergence of the parameters  

 
(b) Convergence in the problem space 

Variables: 𝑃: point cloud, 𝑥𝑖 , 𝑦𝑖 ∈ 𝑃: 𝑖th point from the 𝑃 point cloud, 𝑟𝑛𝑑() ∈ [1; −1]: a random number, 𝑖𝑚𝑎𝑥: maximum iteration number 

(=150), 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(): the entropy of the point cloud, 𝛼𝑖𝑛𝑖𝑡,  𝑣𝑖𝑛𝑖𝑡: initial guesses for the heading and velocity (=0,0), 𝑟𝛼,𝑚𝑎𝑥, 𝑟𝑣,𝑚𝑎𝑥: searching 

boundaries for heading and velocity (=90, 30), 𝑡𝑚𝑖𝑛: temperature that has to be achieved before return (=0.001), 𝑛𝑛: number of neighbors to 

calculate at each iteration (=20), 𝛼, 𝑣: estimated heading and velocity (results), 𝑐𝑖: cooling schedule (geometric function), 𝑐 = 0.95, note that 𝑡 ∈
(0; 1], 𝑡: temperature, 𝑟𝛼 , 𝑟𝑣: radiuses for accessible neighbours  ∆𝑡0,𝑖: time between the 𝑖th and the first shot, 𝛼𝑏𝑒𝑠𝑡, 𝑣𝑏𝑒𝑠𝑡  best parameters among 

the neighbours, 𝛼𝑐𝑎𝑛𝑑, 𝑣𝑐𝑎𝑛𝑑 candidate parameters among the neighbors, 𝑥′𝑖 , 𝑦′𝑖: coordinates of the 𝑖th updated point 

 

In our dataset, the geometric function is experienced to be the 

best cooling procedure. In order to avoid getting stuck at a 

local minima, we use exponential function in the update step. 

The right side of the figure shows the convergence of the 

parameters, and the convergence in the problem space which 

proves that the convergence is feasible. On the other hand, the 

method is a stochastic algorithm, thus different runs results 

slightly different solutions. For this reason, at each case, we 

run the algorithm, at least, 10 times and we used the statistics 

of these results to estimate the “goodness” or the “uncertainty” 

of the method. Sometimes the algorithm gets stuck at a local 

minimum, say once in ten runs. These misidentifications are 

eliminated using sigma rule. 

 

7. COMPARISON AND DISCUSSION 

The comparison of the three different methods, namely, 

heading estimation using reference model, Method 1, 2-DoF 

ICP, Method 2, and volume minimization, Method 3, are 

illustrated by an example in Figure 11.  
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D
is

at
n

ce
: 

~
1

0
 m

  

H
ea

d
in

g
: 

~
4
0

˚ 

 
  

α = 41.6˚  α = 41.0˚, v =7.2 m/s α = 41.0˚, v =7.1m/s 

D
is

at
n

ce
: 

~
1

0
 m

  

H
ea

d
in

g
: 

~
0

˚ 

 
 

 

α = -0.7˚  α = -3.3˚, v =2.9 m/s α = -0.9˚, v =2.4m/s 

D
is

at
n

ce
: 

~
4

0
 m

  

H
ea

d
in

g
: 

~
0

˚ 

 
 

 

α = -1.7˚  α = 343.9˚, v =1.7 m/s α = -1.3˚, v =6.9m/s 

Figure 11. Comparison of the different solutions, top view 
 

Because Method 1 does not provide any velocity estimation, 

the velocity from Method 3 is used for the cloud visualization. 

The estimated values can be seen under the plots. Figure 11 

presents three datasets from three different object-sensor 

arrangements. The first dataset was captured at 10 m object 

distance with ~40˚ angle between the main scan plane and the 

motion direction. The second dataset shows a scenario at the 

same distance but with ~0˚ angle, and the last dataset was a 

challanging scenarios at 40 m object distance with ~0˚ angle 

and a realitively high velocity, ~ 7m/s, 12 knots, the maximum 

permitted at the test location.  

 

On the first dataset, it is clearly seen that the different 

algorithms create comparable point clouds and similar 

estimation results. This proves that all approaches are able to 

provide the correct solution and the right feedback without 

reference solutions, such as GPS. The second and third 

datasets show that the sensor-object arrangement and distance 

can have relevant impact on the accuracy of the derived 

parameters and the reliability on the chosen method. The first 

dataset is presumably closely ideal for ICP algorithms due to 

the nearly 45˚ angle between the main scan plane and the 

motion direction of the aircraft. In this case the sensor can 

capture the whole 2D dimensional extensions (body and the 

wingspan) of the moving body, while at 0˚ angle it just sees 

the body, a cylindrical shape. ICP failures were exprencied in 

the latter cases, as it can be seen in the middle row of the table. 

The ICP method also fails if not enough points are acquired 

from the aircraft because of the long sensor-object distance, 

see last row. On the other hand, bigger aircraft with longer 

sensor-object distance provides the same amount of points as 

smaller aircrafts in shorter range, thus in this case the ICP may 

be applicable. 

 

Surprisingly, the estimated heading parameter from Method 1 

is consistent with the parameters derived from Method 3, even 

at larger distances, and not just on these three datasets, but on 

other investigated ones as well. The drawback of Method 1 is 

the use of a reference model, the aircraft types has to be known. 

In summary, Method 3 is the most reliable method. The final 

point cloud produced by Method 3 at the highest permitted 

speed and at the longest distance can be seen in Figure 12. 

 

 
Figure 12. Point cloud from method 3 at ~7m/s velocity 

form 40 m object distance with ~0˚ 

In the future, we want to verify our methods with various types 

and sizes of aircraft operating at different distances. 

Additionally, more datasets are also essential to make the 

results statistically relevant. Installing multiple sensors are 

also able to improve the performance. On the other hand, the 

reference solutions are also required for comparative 

investigations. For this reason, we are planning to use GPS and 

IMU sensors on the airplane to compare the solutions.   
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8. CONCLUSION 

3D active remote sensing, such as LiDAR technology, is able 

to provide excellent sensing capability to monitor operating 

aircrafts at airports. In this paper we used laser scanners with 

narrow vertical field of view to observe taxiing aircraft, and all 

results are based on using a Velodyne’s HDL-32E, for 

estimating the heading of the aircraft body. We investigated 

three different algorithms: the first uses reference model, the 

second is based on ICP algorithm, and the last one minimizes 

the volume of the reconstructed point cloud. We found that the 

volume minimization provides the most reliable and accurate 

solution, although reference solution is needed to verify the 

results. 

 

Clearly, the LiDAR technology is able to sense aircraft body 

moving on the tarmac but during take-off and landing while in 

the air but close to the sensor. This solution opens new 

possibilities to centerline deviation monitoring and other 

safety studies. Furthermore, the fully reconstructed aircraft 

body can be used for determining other parameters, such as the 

aircraft type. These investigations are our middle/long term 

research plans. 
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APPENDIX 

Here we present the derivation of the error propagation 

functions from Equation 1. First, rearrange the equation 

system: 

 

𝛼 = arctan (
∆𝑥

∆𝑦
) , 𝑣 =

𝑑𝑦

sin (arctan (
∆𝑥
∆𝑦

)) 𝑑𝑡
. 

(5) 

 

Then calculate the partial derivatives: 

 
𝜕𝛼

𝜕∆𝑥
=

∆𝑦

∆𝑥2 + ∆𝑦2
,

𝜕𝛼

𝜕∆𝑦
= −

∆𝑥

∆𝑥2 + ∆𝑦2
, 

𝜕𝑣

𝜕∆𝑥
=  −

∆𝑦2

∆𝑡∆𝑥2√
∆𝑥2

∆𝑦2 + 1

, 

𝜕𝑣

𝜕∆𝑦
=

∆𝑥2 + 2∆𝑦2

∆𝑡∆𝑥∆𝑦√
∆𝑥2

∆𝑦2 + 1

. 

 

(6) 

Thus, the variances of the parameters as the functions of 

∆𝑥, ∆𝑦, ∆𝑡 are the following, assuming that ∆𝑥, ∆𝑦 are 

independent: 

𝜎𝛼 = √(
𝜕𝛼

𝜕∆𝑥
)

2

𝜎∆𝑥
2 + (

𝜕𝛼

𝜕∆𝑦
)

2

𝜎∆𝑦
2 , 

𝜎𝑣 = √(
𝜕𝑣

𝜕∆𝑥
)

2

𝜎∆𝑥
2 + (

𝜕𝑣

𝜕∆𝑦
)

2

𝜎∆𝑦
2 . 

 

(7) 
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