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ABSTRACT: 

Recently multispectral LiDAR became a promising research field for enhanced LiDAR classification workflows and e.g. the 
assessment of vegetation health. Current analyses on multispectral LiDAR are mainly based on experimental setups, which are often 
limited transferable to operational tasks. In late 2014 Optech Inc. announced the first commercially available multispectral LiDAR 
system for airborne topographic mapping. The combined system makes synchronic multispectral LiDAR measurements possible, 
solving time shift problems of experimental acquisitions. This paper presents an explorative analysis of the first airborne collected 
data with focus on class specific spectral signatures. Spectral patterns are used for a classification approach, which is evaluated in 
comparison to a manual reference classification. Typical spectral patterns comparable to optical imagery could be observed for 
homogeneous and planar surfaces. For rough and volumetric objects such as trees, the spectral signature becomes biased by signal 
modification due to multi return effects. However, we show that this first flight data set is suitable for conventional geometrical 
classification and mapping procedures. Additional classes such as sealed and unsealed ground can be separated with high 
classification accuracies. For vegetation classification the distinction of species and health classes is possible. 

 

1. INTRODUCTION 

Commercial airborne laser scanning (ALS) systems are 
commonly monochromatic systems recording either discrete 
echoes or the full waveform (FWF) of the reflected laser beam. 
Accordingly to multispectral and hyperspectral remote sensing 
using passive optical sensors there have already been several 
studies conducted making use of multiple wavelengths for 
topographic LiDAR mapping..Recent studies present 
experimental multispectral or hyperspectral LiDAR systems, 
which are used for specific tasks in laboratories or as terrestrial 
laser scanning (TLS) platforms.  

Many studies use systems for vegetation analysis. Danson et al. 
(2014) present the capabilities of the Salford Advanced Laser 
Canopy Analyser (SALCA), which is a hemispherical dual-
wavelength full-waveform TLS. The scanner operates in near- 
and middle infrared (1063 and 1545 nm) and is designed for 
field experiments i.e. outdoor applications.  SALCA is tested 
for forest understory mapping by comparing raw and 
normalized intensities. A derived normalized ratio index is 
calculated from both wavelengths and shows promising results 
for applications such as analysis of biophysical variables of 
forests and water stress monitoring. Hakala et al. (2012) 
differentiate tree trunks from tree tops of norway spruce (Picea 
abies) with a TLS FWF hyperspectral LiDAR operating in the 

wavelength domain from 480 nm to 1,000 nm. In a laboratory 
test they compare the reflectance behavior to passive 
spectrometer measurements showing good correlation of 
backscatter reflectance curves between sensors. Additionally 
high separability between trunk and tree crown is given. 
Douglas et al. (2015) apply the so called dual wavelength 
Echidna LiDAR (DWEL), which is a TLS scanner operating 
with 1,064 nm and 1,548 nm wavelengths. They use the system 
for an outdoor experiment separating canopy (leafs) from tree 
trunks calculating a normalized difference of channel intensity. 
Shi et al. (2015) develop an intensity calibration strategy for 
multiwavelength LiDAR operating with four wavelengths (556, 
670, 700, and 780 nm) considering incidence angle and surface 
roughness improving classification using vegetation indices. 
The approach is a laboratory setup for scanning single leafs. 
Puttonen et al. (2015) present a study on an outdoor scanning 
experiment with different high vegetation species. They 
calculate several vegetation indices relating them to leaf area 
index, chlorophyll in leafs and biomass estimates. The 
hyperspectral LiDAR emits white laser pulses in the wavelength 
domain from 420 to 2,100 nm with a channel width of 20 nm. In 
a time series experiment of 26h, selected channels (545.5, 
641.2, 675.0, 711.0, 741.5, 778.4, 978.0) are used to investigate 
the influence of sunlight on spectral and geometrical properties 
and the normalized difference vegetation index (NDVI).  
  

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W5, 2015 
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
Editors: S. Oude Elberink, A. Velizhev, R. Lindenbergh, S. Kaasalainen, and F. Pirotti 

doi:10.5194/isprsannals-II-3-W5-113-2015

 
113



 

First operational systems using different wavelengths in ALS 
were developed for coastal areas and surface mapping in 
shallow water. One example is the Scanning Hydrographic 
Operational Airborne LiDAR Survey (SHOALS) System (e.g. 
Irish and Lillycrop, 1999) combining lasers operating in 
infrared 1,064 nm and blue-green 532 nm. The combination of a 
red and green laser with different beam divergence allows the 
measurement of the water surface and the penetration of the 
water surface to a certain depth. The potential of multispectral 
full waveform ALS for forest structure analysis has been 
investigated in a detailed study by Morsdorf et al. (2009) 
simulating waveforms, NDVI, backscatter energy distributions 
and comparing these to canopy volume distributions along tree 
canopies making use of virtual 3D tree models. A 
comprehensive overview on the concept of multiwavelength 
ALS has been presented by Pfennigbauer and Ullrich (2011). 
Based on this study, one of the first multiwavelength LiDAR 
ALS experiments for topographic land surface and object 
differentiation has been conducted by Briese et al. (2012, 2013). 
They assemble FWF ALS point clouds from three independent 
flight missions using RIEGL scanners operating in different 
wavelengths (532 nm, 1,064 nm, 1,550 nm). After radiometric 
calibration composites of amplitudes are generated. In Briese et 
al. (2013) multiwavelength LiDAR amplitudes are used for 
archeological prospection on grass vegetated terrain. A 
classification study of land cover (roads and gravel, bare soil, 
low vegetation, high vegetation, roofs, and water bodies) is 
presented by Wang et al. (2014). They combine surveys from an 
Optech ALTM Pegasus HD400 (1,064 nm) and a Riegl LMS-
Q680i (1,550 nm). The features amplitude, echo width and 
surface height are the input for a support vector machine 
classification. 

Within this study, we use a data set from a prototype of the 
Optech Titan ALTM system, the first commercial system 
combining three wavelengths (532, 1,064 and 1,550 nm) in a 
single sensor system. After a short introduction to the data set, 
we describe a first approach to process such data and present 
results on spectral pattern analysis and point cloud classification 
opportunities for topographic mapping and land cover 
classification. 
The main aims of this work are: 

The exploration of characteristic surface class spectral 
signatures and LiDAR specific implications. 

The evaluation of the suitability of the data set for state-of-the-
art geometrical LiDAR classifications. 

The evaluation of spectral signature based classifications as 
improvements to conventional, only geometry based LiDAR 
classifications. 

 

2. DATASET 

A single flight strip of 3 km2 (4 km in length and 600 m wide) 
covering the city of Oshawa (Ontario, Canada) was captured 
with a prototype of the airborne multispectral LiDAR System 
Optech Titan in September 2014. The system works with three 
independent active imaging channels at 1,550 (C1), 1,064 (C2) 
and 532 nm (C3). Laser pulses of the three channels are sent to 
the same oscillating mirror with individual deflecting angles for 
each channel. This leads to separate optical light paths for each 
channel: C2 0° nadir looking, C1 3.5° forward looking, and C3 
7° forward looking. The system has a maximum laser 
measurement rate of 300 kHz per channel (900 kHz in total) and 
provides three independent point clouds, one for each channel. 

The data was acquired during leave-on conditions to optimize 
the geometrical properties of the system, operating at 980 m 
above ground with a field of view (FOV) of +/-20 degree. The 
point clouds are geometrically registered, but provide only raw 
intensity values. The three point clouds have the following 
properties: 

- C1: 11,573,302 points with an average point density of 
4 pts/m2 (stddev. 4 pts/m2) and an average point distance of 
0.32 m (stddev. 0.27 m) 

- C2: 12,262,554 points with an average point density of 
5 pts/m2 (stddev. 4 pts/m2) and an average point distance of 
0.32 m (stddev. 0.29 m) 

- C3: 9,966,192 points with an average point density of 4 pts/m2 
(stddev. 4 pts/m2) and an average point distance of 0.29 m 
(stddev. 0.14 m) 

The point cloud which resulted from merging the three channels 
has 33,802,048 points with an average point density of 
11 pts/m2 (stddev. 8 pts/m2) and an average point distance of 
0.20 m (stddev. 0.21 m). 

 

3. METHODS 

The methodical approach is adapted to meet the limited 
information available for this prototype data set. As no 
sufficient meta data (e.g. flight trajectory or atmospheric 
conditions) and ground truth data are available, no detailed 
analysis on beam incidence angle effects as presented by Jutzi 
and Gross (2010) or radiometric calibration approaches (e.g. 
Briese et al., 2012) could be conducted. All processing is done 
with the System for Automated Geoscientific Analysis (SAGA, 
Conrad et al., 2015) and the extension Laserdata Information 
System (LIS, Laserdata, 2015, Rieg et al., 2014).  

In order to avoid gridding and to preserve the 3-dimensionality 
of the input data the three independent point clouds of each 
channel are merged into a single point cloud by a nearest 
neighbor approach. As the laser beams of channel C1 and C3 
are tilted by +3.5 and +7 degree from the nadir direction, it is 
not possible to use the GPS time to assign the intensity values. 
Therefore a tool was developed, which merges the channels 
geometrically by assigning to each point the intensity value of 
the nearest neighbor point found in each other channel point 
cloud. This results in a point cloud containing all points of the 
independent point clouds, with each point having the three 
channel intensities attached (its own intensity and two assigned 
intensities). The nearest neighbor search is limited by a 
maximum distance of 1 m to a neighboring point in order to 
prevent the grouping of points which are located on different 
objects. This should help to avoid mixed signal effects. In case 
there is no point found within 1 m distance, we assume a drop-
out in this channel and assign an intensity value of zero 
(complete absorption). 

Besides point cloud merging and intensity grouping, the tool 
performs additional point feature calculations and attaches the 
results as attributes to each point. This includes the channel 
number of the point itself and a binary encoding of the 
availability of each channel within the search distance. The 
latter allows analyzing the spatial occurrence of drop-outs later. 
Additionally, the geometric distances between the points used 
for each channel combination are calculated. For this 
calculation also points outside the maximum nearest neighbor 
search distance of 1 m, and thus classified as drop-outs, are 
included. These distances are used to calculate a mean distance, 
which is used as quality measure of the channel grouping. 
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Due to the limited availability of meta data, we apply basic 
image processing strategies (e.g. contrast stretching, Lillesand 
and Kiefer, 1999) to the raw intensity values. For each channel, 
the 99.99th percentile is computed and used as intensity cutoff 
threshold. This way, outliers from specular reflections are 
eliminated. Visual inspection of these points revealed that such 
outliers occur on moving objects like cars and other man-made 
objects like building facades. Finally, a histogram stretch to 
twice the standard deviation is computed for each channel, 
resulting in value ranges from 0 to 255. 

 

 

Figure 1. Merged point cloud coloured as false-colour 
composite (red=C2, green=C3 and blue=C1) 

 

The scaled intensity values are used to create false color 
composites for each point. The combination red=C2, green=C3 
and blue=C1 is used to simulate a CIR (color infrared) similar 
visual appearance, and the combination red=C1, green=C2 and 
blue=C3 for a true color similar appearance. The channels C2 
and C3 are used to calculate a pseudo NDVI (Eq. 1): 

 

 pseudo NDVI = 
�����

�����
   (1) 

 

where  pseudo NDVI  =  

 pseudo normalized difference vegetation index 

 C2 = near infrared channel (1,064 nm) 

 C3 = green channel (532 nm) 

 

Finally, the point cloud is classified into the main classes 
‘unsealed ground’, ‘sealed ground’, ‘buildings’, ‘mid 
vegetation’, ‘high vegetation’, ‘water surface’ and ‘water body / 
bottom’ and for some small training areas into the subclasses 
‘green grass’, ‘dried up grass’, ’sand / bare soil’, ’wetlands’, 
‘darker asphalt’ and ‘lighter asphalt’. The classification is done 
by a two stage approach consisting of automatic and semi-
automatic classification. First the point cloud is automatically 
classified into ‘ground’, ‘buildings’, and ‘mid vegetation’ and 
‘high vegetation’ classes by a “geometrical classification” using 
information about x,y,z coordinates and neighborhood 
exclusively. Ground points are classified using a hybrid 
approach of progressive TIN densification (Axelsson, 2000) and 

RANSAC-based point cloud segmentation. The latter is also 
used (together with other point cloud features such as 
eigenvalue based omnivariance, Mallet et al., 2011) to 
differentiate the remaining non-ground points into buildings and 
vegetation. For the accuracy assessment of the automatic 
classification, two test areas, each 600 x 600 m, were selected 
and manually revised. In a second semi-automatic step, the 
ground class is further subclassified by introducing three 
additional classes: (i) ‘sealed ground’  (e.g. roads), (ii) ‘water 
surface’, and (iii) ‘water body / bottom’. For further analysis of 
small training samples the heterogeneous classes of ‘sealed’ and 
‘unsealed ground’ were semi-automatically classified into 
‘green grass’, ‘dried up grass’, ’sand / bare soil’, ’wetlands’, 
‘darker asphalt’ and ‘lighter asphalt’.  

For each channel, histograms showing the intensity value 
distribution for the seven classes are calculated and analyzed in 
order to evaluate the potential of extending the geometrical 
classification approaches currently available for airborne 
LiDAR mapping. 

Because of their heterogeneity, the ground classes 'unsealed' and 
'sealed' are examined in greater detail. Therefore, training areas 
composed of different materials are manually selected and again 
histograms are calculated for each sub-class. The channel peak 
values of each sub-class are then used for a supervised 
classification by pattern matching based on the Mahalanobis 
distance. 

4. RESULTS 

For the merged channel datasets we computed false color 
composite point clouds as shown in Fig. 1. Based on the manual 
classification of the datasets, we looked at the 8 bit scaled 
channel histograms and the pseudo NDVI for the main classes. 
As the majority of the data showed only a spread of 201, 167 
and 133 integer values for the channels C1, C2 and C3, the 8 bit 
scaled histograms contain data gaps (Fig. 2,3 and 5,6). 

 

4.1 Spectral patterns of main classes 

Looking at the two subareas, a set of separated peaks is visible 
in the histograms of the three channels. This indicates 
heterogeneity of spectral patterns within one object class (Fig. 2 
and 3). The subareas are decomposed into the classes ‘unsealed 
ground’, ‘sealed ground’, ‘buildings’, ‘mid vegetation’, ‘high 
vegetation’, ‘water surface’ and ‘water body / bottom’. Except 
for the class ‘unsealed ground’, these classes show single peak 
distributions. The sealed ground contains a peak at low 
intensities (~50) for C2 and a peak at medium intensities for C1 
and C3 (~100, 120). The peaks in the ‘buildings’ class show 
low intensities for all channels (~50, 25, 50). For both classes 
this is in agreement with corresponding low pseudo NDVI 
values. The distributions of ‘mid vegetation’ and ‘high 
vegetation’ exhibit also peaks at low intensities (~100, 50, 40 / 
~50, 25, 40) with slightly higher intensities in the mid 
vegetation. Except for the ‘buildings’ class all classes show a 
larger spread of intensity values. Besides the main peak, a 
second peak of drop-outs (intensity is zero) is observable in all 
channels. Looking at the ‘water body / bottom’ class a unique 
pattern with two drop-out channels (C1 and C2) and the third 
channel (C3) with wide spread intensities can be observed. 
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Figure 2. Class specific 8 bit scaled channel histograms for 
1,550 nm and 1,064 nm wavelength laser signals (counts/bin) 

The ‘unsealed ground’ includes a variety of sub-classes 
representing ground vegetation of varying health and density. 
This is most obvious in C2 showing multiple peaks. C2 shows 
the best contrast to the ‘sealed ground’ class, while C1 and C3 
show distributions very similar to the ‘sealed ground’ 
distributions. The pseudo NDVI also shows a good 
discrimination between ‘sealed ground’ (low NDVI) and 
‘unsealed ground’ (high NDVI). The suitability of the different 
channels for the separation of ‘sealed ground’ and ‘unsealed 
ground’ is shown in Fig. 4. 

 

4.2 Spectral patterns of ground sub-class 

For manually selected small training areas within the sealed and 
unsealed ground class we created also channel histograms for 
the subclasses ‘green grass’, ‘dried up grass’,’sand / bare soil’, 
’wetlands’, ‘darker asphalt’, and ‘lighter asphalt’ (Fig. 5 and 6). 
This was supported by the inspection of ortho images from web 
mapping services. 

For the sealed classes ‘lighter asphalt’ and ‘darker asphalt’ a 
clear separation is possible due to intensity differences in all 
channels. The ‘darker asphalt’ (~50, 25, 70) shows lower 
intensities than the ‘lighter asphalt’ (~110, 50, 140). Looking at 
single channels, the discrimination from unsealed classes is 
difficult. 

In C1 ‘darker asphalt’ shows the same peak as ‘wetlands’ and 
‘lighter asphalt’ is very similar to ‘dried up grass’. In C2 ‘lighter 
asphalt’ shows the same peak as ‘wetlands’ and ‘dried up 
grass’. In C1 ‘darker asphalt’ shows the same peak as ‘dried up 
grass’ and ‘lighter asphalt’ is very similar to ‘sand / bare soil’. 

The unsealed group of classes shows fluent transitions from 
‘wetlands’ (~50,50,40) to ‘green grass’ (170,200,110), to ‘dried 
up grass’ (110,60,75) and ‘sand / bare soil’ (210,130,140). This 
is visible in the histogram of ‘green grass’ including different 
species and all states of health. In theory, the moisture and 
vegetation density is increasing with channel intensity.  

 

Figure 3. Class specific 8 bit scaled channel histograms for 
532 nm wavelength laser signals and pseudo NDVI (counts/bin) 

Combining all three channel intensities for a pattern matching 
classification (Fig. 7) leads to a good agreement with the visual 
inspection obtained from the false colour coded point cloud. 
Besides, the pseudo NDVI as a two channel ratio shows a good 
contrast between sealed and unsealed surface classes. 

 

 

Figure 4. Contrast between sealed and unsealed classes: a) low 
contrast for channel C1; b) high contrast for channel C2; c) 
moderate contrast for channel C3 (inverse to C1 and C2); d) 
high contrast for the pseudo NDVI 
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Figure 5. Class specific 8 bit scaled channel histograms for 
1,550 nm and 1,064 nm wavelength laser signals (counts/bin) 

An exception is the wrong classification of second, third and 
last returns as ‘wetlands’. Aggregating the group of sealed 
classes and the group of unsealed classes leads to high 
classification accuracies compared to the manually revised 
classes ‘sealed ground’ and ‘unsealed ground’. The user 
accuracy for the ‘unsealed ground’ class is 0.95 and the 
producer accuracy is 0.94. The user accuracy for the sealed 
class is 0.74 and the producer accuracy 0.77 (Table 1). 

 
reference data 

/ unsealed sealed SUM 

sealed 1763442 95717 1859159 

unsealed 83710 284536 368246 

SUM 1847152 380253 2227405 

Table 1. Confusion matrix of the pattern based classification of 
sealed and unsealed 

 

Figure 7. Channel pattern sub classification of the geometrically 
derived ground class. red = ‘darker asphalt’ and ‘lighter 
asphalt’, yellow= ‘sand / bare soil’, light green = ‘wetlands’, 
light blue = ‘dried up grass’, dark blue = ‘green grass’  

 

Figure 6. Class specific 8 bit scaled channel histograms for 
532 nm wavelength laser signals and pseudo NDVI (counts/bin) 

In this case, the main reason for a wrong classification is the 
fluent transition between ‘lighter asphalt’ and ‘sand / bare soil’. 
As some fine gravel parking lots and pedestrian walkways occur 
in the data set, the separation of ‘lighter asphalt’ becomes 
unclear. 

reference data 

/ undefined ground mid veg. high veg. building SUM 

undefined 67230 1130 642 1608 275 70885 

ground 3121 2225995 21 210 27 2229374 

mid veg. 2262 36 158383 1583 91 162355 

high veg. 3335 0 58 898010 5172 906575 

building 138 244 2070 4084 258007 264543 

SUM 76086 2227405 161174 905495 263572 3633732 

Table 2. Confusion matrix of the automatic geometrical 
classification 

4.3 Geometrical Classification 

Looking at the potential of multispectral LiDAR processing, it 
is important to evaluate the geometrical suitability of the data 
set for conventional processing workflows. Due to the setup of 
the technical system it can be observed that e.g. the standard 
deviation of the point densities doubles with the merge of the 
three individual channel point clouds (see section 2). Therefore 
we tested, whether the geometrical representation meets the 
quality of state-of-the-art single wavelength data sets. 

Evaluating the confusion matrix (Table 2) of the automatic 
geometrical classification shows sufficient results, compared to 
single wavelength systems. The overall accuracy is 0.99. Higher 
numbers of wrong classifications (User’s Accuracy of 0.88, 
Table 3) can be observed for the ‘undefined’ class.  

Here, 3,335 points of 76,086 reference points are falsely 
labelled as ‘high vegetation’, this is mainly due to cabels that 
are not addressed in detail within the applied classification 
approach. 3,121 points are wrongly labelled as ground, mainly 
due to moving objects and other smaller structures.  
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Class  User’s Accuracy Producer’s Accuracy 

undefined  0.88  0.95 

ground  1.00  1.00 

mid vegetation  0.98  0.96 

high vegetation  0.99  0.99 

building  0.98  0.98 

Table 3. User’s and Producer’s accuracy of the automatic 
geometrical classification 

A remarkable error is the wrong classification of 2,070  ‘mid 
vegetation’ points as buildings, which is due to the planar 
appearance of hedges in the data set.  

 

5. DISCUSSION 

The class specific spectral patterns observed in the dataset show 
similarities to those found in optical imagery. One example is 
given by the low reflectance values of moist surfaces and 
increasing reflectance values with increasing dryness of 
surfaces. However, the representation as a point cloud and the 
acquisition technique include additional signatures interfering 
with the spectral ones. This can be explained especially for the 
classes ‘high’ and ‘mid vegetation’.  

 

5.1 Multi return effects 

As known from optical imagery, lower reflectance values for 
the 532 and 1,550 nm wavelength are expected for vegetation 
cover, while higher reflectance values are expected for the 
wavelength of 1,064 nm (Lillesand and Kiefer, 1999). This is 
the case for the class ‘green grass’ showing good agreement 
with this assumption. However, as a ground class, it shows a 
high planarity and homogeneity. With increasing roughness of 
the surfaces and decreasing size of single targets (getting 
smaller than the laser beam cross-section), the geometrical 
effect is intensified. For ‘high vegetation’ and ‘mid vegetation’ 
the classical spectral pattern of vegetation is altered by splitting 
the emitted signal into multiple echoes and the convolution of 
the original signal at rough surfaces. Thereby the signal 
intensity becomes distributed over a varying number of returns, 
leading to lowered intensities for each single point of a multi 
return shot. In high vegetation, the single points represent only 
small targets such as leaf clumps and thus are supporting the 
effect of lowered intensities. In combination, the spectral and 
geometrical properties decrease the intensity values of high 
vegetation in all channels, making the separation from e.g. 
buildings difficult. However, as all channels are affected by 
return modification effects, the normalized ratio of the NDVI 
shows a good potential for the discrimination of vegetation and 
sealed surfaces. 

In comparison to ‘high vegetation’ the signature of ‘mid 
vegetation’ shows slightly higher reflectance values. This can 
also be explained by geometrical effects. As most of the ‘mid 
vegetation’ in the given residential area are well trimmed 
hedges showing dense and almost planar surfaces, the reflected 
signals are less effected by signal split-up and modification. 
Besides, using e.g. the NDVI for the classification of these 
features can lead to improved results compared to pure 
geometrical classifications, where a planar surface might be 
interpreted as man-made object (see section 4.3). 

Multi echoes also affect the distinction of ground classes. 
Ground points below vegetation cover or close to buildings 
share their corresponding shot intensities with additional points 

in the canopy or on a building. Thus, the expected range of 
intensity values cannot be reached for these points and leads to 
altered spectral patterns. The most obvious example is the false 
classification of multi echoes from ‘green grass’ into the rarely 
reflecting ‘wetlands’ class. To manage the effects of signal 
modification, a strategy for return number normalization should 
be developed. 

 

5.2 Drop-out effects 

A typical feature introduced during the geometrical channel 
merging approach are points for which no corresponding point 
in another channel can be found. Here, we call these missing 
points a ‘drop-out’ in this channel. Drop-outs can have several 
reasons (Höfle et al., 2009), including i) complete absorption, ii) 
too low reflection values because of strong scattering, iii) 
specular reflection away from the sensor and iv) no laser shot of 
this channel hitting a target within the search distance. The most 
obvious example is the channel pattern for ‘water body / 
bottom’, showing strong agreement with the principles used for 
bathymetric LiDAR. Here, the point distribution of C3, which is 
able to penetrate shallow water bodies, allows detecting water 
points in the data set. Drop-outs can also be observed for ‘mid 
vegetation’ and ‘high vegetation’. Besides a complete 
absorption because of the material properties, the complex 
geometrical distribution of targets and the target sizes can result 
in strong scattering. The proportion of light reflected by smaller 
targets might become too small to be detected by the sensor. C3 
shows a higher probability for drop-outs, which can be 
explained by wavelength and the larger footprint compared to 
the other channels. The emitted energy becomes distributed 
over a larger cross-sectional area. Thus, the ratio of target area 
and cross-sectional area becomes smaller, leading to even 
smaller proportions reflected from a small scatterer. Because of 
the tilt (looking forward) of channel C1 and C3, the lines of 
sight of the three emitted laser beams are different. Larger and 
smaller targets are hit by chance by the three lasers, causing 
random drop-outs on each channel. 

 

5.3 Implications for classification approaches 

As shown in section 4, a pattern based classification of ground 
classes, such as ‘green grass’, ‘wetlands’ or ‘asphalt’ provide 
promising results. Combined with conventional geometrical 
classification workflows it can improve the information 
extraction from LiDAR data. However, multi echo effects have 
to be taken into account in order to stabilize classification 
results. Without consideration, points with higher return 
numbers are prone to classification errors. As these points 
contain underestimated reflectance values, they tend to be 
grouped to classes with low reflectance values such as 
‘wetlands’ or ‘darker asphalt’. Drop-outs are an advantage for 
classification approaches, giving additional information onto 
object heterogeneities and the occurrence of water surfaces. 

 

6. CONCLUSION 

In the presented paper an explorative analysis of class specific 
spectral signatures is conducted for the first commercial 
multispectral LiDAR system Optech Titan. Spectral patterns are 
used for a classification approach and evaluated. Typical 
spectral patterns comparable to optical imagery could be 
observed for homogeneous and planar surfaces. LiDAR specific 
signatures introduced through multiple echo detection and the 
separate optical light paths of the channels, lead to 
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underestimations of channel intensities and channel drop-outs. 
While drop-outs might improve the possibility to detect water 
and vegetation, intensity underestimations are confusing class 
signatures and classification results. Here, a strategy for return 
number normalization of the intensities has to be developed in 
the future.  

We also looked at the geometrical suitability of the data set for 
conventional LiDAR classification workflows. Although the 
data acquisition technique of the system has to manage the time- 
and orientation-shifted scan pattern, the geometrical 
characteristics of the given dataset are sufficient for geometry-
based processing workflows. Thus, while additionally providing 
spectral information, the system maintains the geometrical 
characteristics of single wavelength LiDAR systems. 

As the test data set does not provide a complete set of meta data, 
all the described processing is done on raw intensity data. In 
future, capturing a dataset including the full range of input meta 
data and ground truth data sets, would allow for a complete 
radiometric calibration. In practise, most of the information 
necessary for a radiometric calibration will not be available in 
most cases. Therefore approaches using raw intensity values in 
a stable manner would be welcome. 

The simultaneous recording of geometrical and spectral 
information with an active sensor has advantages compared to 
classical monochromatic laser scanning systems and optical 
imagery: 

- almost no time gap between the acquisition of geometrical 
information per channel (potential for the classification of e.g. 
moving objects). 

- almost no time gap between geometrical and spectral 
information, which is an important improvement to 
experimental approaches, such as the merging of separate flight 
missions (e.g. Briese et al., 2012, 2013), or the merging of ortho 
photos to the point cloud acquired at different time steps. 
Compared to optical imagery, it is also influenced by 
comparable effects such as mixed pixels (geometrical channel 
grouping) or sun illumination (surface roughness and laser beam 
interaction). 
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