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ABSTRACT:

The automatic and accurate registration of terrestrial laser scanning (TLS) data is a topic of great interest in the domains of city
modeling, construction surveying or cultural heritage. While numerous of the most recent approaches focus on keypoint-based point
cloud registration relying on forward-projected 2D keypoints detected in panoramic intensity images, little attention has been paid
to the selection of appropriate keypoint detector-descriptor combinations. Instead, keypoints are commonly detected and described
by applying well-known methods such as the Scale Invariant Feature Transform (SIFT) or Speeded-Up Robust Features (SURF). In
this paper, we present a framework for evaluating the influence of different keypoint detector-descriptor combinations on the results of
point cloud registration. For this purpose, we involve five different approaches for extracting local features from the panoramic intensity
images and exploit the range information of putative feature correspondences in order to define bearing vectors which, in turn, may be
exploited to transfer the task of point cloud registration from the object space to the observation space. With an extensive evaluation of
our framework on a standard benchmark TLS dataset, we clearly demonstrate that replacing SIFT and SURF detectors and descriptors
by more recent approaches significantly alleviates point cloud registration in terms of accuracy, efficiency and robustness.

1 INTRODUCTION

In order to obtain a highly accurate and detailed acquisition of
local 3D object surfaces within outdoor environments, terrestrial
laser scanning (TLS) systems are used for a variety of applica-
tions in the domains of city modeling, construction surveying or
cultural heritage. Each captured TLS scan is represented in the
form of a point cloud consisting of a large number of scanned 3D
points and, optionally, additional attributes for each point such as
intensity information. In order to provide a dense and (almost)
complete 3D acquisition of interesting parts of a scene, typically,
multiple scans have to be captured from different locations and
– since the spatial 3D information is only measured w.r.t. the
local coordinate frame of the laser scanner – it is desirable to
automatically estimate the respective transformations in order to
align all captured scans in a common coordinate frame. The esti-
mation of these transformations is commonly referred to as point
cloud registration, and nowadays most approaches rely on spe-
cific features extracted from the point clouds instead of using the
complete point clouds.

Despite a variety of features which may be extracted from point
clouds and alleviate point cloud registration (e.g. planes or lines),
we focus on the use of keypoints, since these may efficiently be
extracted as local features. While approaches for detecting and
describing 3D keypoints have recently been involved for point
cloud registration (Theiler et al., 2013; Theiler et al., 2014), such
a strategy typically relies on a subsampling of the original point
(e.g. via voxel grid filtering) in order to get an approximately
homogeneous point density. The alternative of directly working
on the captured data consists of exploiting the discrete (spherical
or cylindrical) scan pattern and deriving 2D image representa-
tions for either range or intensity information. Particularly in the
intensity images, distinctive 2D keypoints may efficiently be de-
rived and – in case they are part of any feature correspondence
between different images – subsequently projected to 3D space
by exploiting the corresponding range information which, in turn,
yields sparse point sets of corresponding 3D points.

Concerning the use of 2D keypoints, those keypoint detectors
and descriptors presented with the Scale Invariant Feature Trans-
form (SIFT) and Speeded-Up Robust Features (SURF) are typi-
cally exploited. In the absence of noise, a low number of feature
correspondences may already be sufficient to obtain a suitable
estimate for the relative orientation between two 3D point sets.
However, the range measurements of a TLS system are typically
corrupted with a certain amount of noise which requires addi-
tional effort. Consequently, it has been proposed to increase the
reliability of the estimate by assigning each keypoint a quality
measure which indicates the reliability of the respective range
information and allows discarding unreliable keypoints (Barnea
and Filin, 2008; Weinmann and Jutzi, 2011). Furthermore, the
feature matching may result in a certain amount of wrong fea-
ture correspondences which may be identified by involving the
well-known RANdom SAmple Consensus (RANSAC) algorithm
(Fischler and Bolles, 1981) for robustly estimating a given trans-
formation model (Barnea and Filin, 2007; Boehm and Becker,
2007). However, little attention has been paid to the fact that more
recent approaches for extracting local features seem to overcome
the main limitations of SIFT and SURF by increasing compu-
tational efficiency and simultaneously delivering even more fea-
ture correspondences which are still reliable and thus may signif-
icantly contribute to obtain a suitable estimate.

In this paper, we present a framework involving different modern
2D keypoints detectors and descriptors for finding correspond-
ing image contents in the panoramic intensity images derived for
the single scans. The respective forward-projection to 3D space
yields sparse point sets of corresponding 3D points. Instead of
directly exploiting these corresponding 3D points for point cloud
registration, however, we exploit the bearing vectors defined by
the origin of the local coordinate frame and the sparse 3D point
sets, since these bearing vectors may be determined with a higher
reliability in comparison to range measurements. This allows us
to transfer the task of point cloud registration to the task of find-
ing the relative orientation between sets of bearing vectors which
may efficiently be handled by well-known algorithms for estimat-
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ing the pose of omnivision cameras. As main contributions,

• we involve different approaches for extracting local features
from the panoramic intensity images,

• we exploit the local features and the corresponding range
information to define the respective bearing vectors,

• we transfer the task of point cloud registration from the ob-
ject space (i.e. the direct alignment of 3D point sets) to the
observation space (i.e. the direct alignment of sets of bear-
ing vectors), and

• we investigate the influence of the feature extraction meth-
ods on the results of point cloud registration.

After briefly reviewing related work w.r.t. keypoint extraction
and matching and w.r.t. keypoint-based point cloud registration
in Section 2, we present the different methods involved in our
framework in Section 3. Subsequently, in Section 4, we provide
an extensive evaluation of our framework on a standard bench-
mark TLS dataset and discuss the derived results w.r.t. perfor-
mance, efficiency and robustness. Finally, in Section 5, we draw
conclusions and outline ideas for future research.

2 RELATED WORK

In our work, we focus on keypoint-based point cloud registra-
tion, where the keypoints are derived from 2D imagery. In the
following, we hence reflect different approaches to detect and de-
scribe such keypoints representing the basis for deriving sparse
3D point sets (Section 3.1) and, subsequently, we discuss how the
corresponding sparse 3D point sets may be aligned in a common
coordinate frame (Section 2.2).

2.1 Keypoint Extraction and Matching

Generally, different types of visual features may be extracted from
images in order to detect corresponding image contents (Wein-
mann, 2013). However, local features such as corners, blobs or
small image regions offer significant advantages. Since such local
features (i) may be extracted very efficiently, (ii) are accurately
localized, (iii) remain stable over reasonably varying viewpoints
and (iv) allow an individual identification, they are well-suited for
a variety of applications such as object recognition, autonomous
navigation and exploration, image and video retrieval, image reg-
istration or the reconstruction, interpretation and understanding
of scenes (Tuytelaars and Mikolajczyk, 2008; Weinmann, 2013).
Generally, the extraction of local features consists of two steps
represented by feature detection and feature description.

For feature detection, corner detectors such as the Harris cor-
ner detector (Harris and Stephens, 1988) or the Features from
Accelerated Segment Test (FAST) detector (Rosten and Drum-
mond, 2005) are widely used. The detection of blob-like struc-
tures is typically solved with a Difference-of-Gaussian (DoG) de-
tector which is integrated in the Scale Invariant Feature Trans-
form (SIFT) (Lowe, 1999; Lowe, 2004), or a Determinant-of-
Hessian (DoH) detector which is the basis for deriving Speeded-
Up Robust Features (SURF) (Bay et al., 2006; Bay et al., 2008).
Distinctive image regions are for instance detected with a Max-
imally Stable Extremal Region (MSER) detector (Matas et al.,
2002). Accounting for non-incremental changes between im-
ages with similar content and thus possibly significant changes
in scale, the use of a scale-space representation as introduced for
the SIFT and SURF detectors is inevitable. While the SIFT and
SURF detectors rely on a Gaussian scale-space, the use of a non-
linear scale-space has been proposed for detecting KAZE features

(Alcantarilla et al., 2012) or Accelerated KAZE (A-KAZE) fea-
tures (Alcantarilla et al., 2013).

For feature description, the main idea consists of deriving key-
point descriptors that allow to discriminate the extracted key-
points very well. Being inspired by investigations on biological
vision, the descriptor presented as second part of the Scale Invari-
ant Feature Transform (SIFT) (Lowe, 1999; Lowe, 2004) is one
of the first and still one of the most powerful feature descriptors.
Since, for applications focusing on computational efficiency, the
main limitation of deriving SIFT descriptors consists of the com-
putational effort, a more efficient descriptor has been presented
with the Speeded-Up Robust Features (SURF) descriptor (Bay et
al., 2006; Bay et al., 2008). In contrast to these descriptors con-
sisting of a vector representation encapsulating floating numbers,
a significant speed-up is typically achieved by involving binary
descriptors such as the Binary Robust Independent Elementary
Feature (BRIEF) descriptor (Calonder et al., 2010).

For many applications, it is important to derive stable keypoints
and keypoint descriptors which are invariant to image scaling and
image rotation, and robust w.r.t. image noise, changes in illu-
mination and small changes in viewpoint. Satisfying these con-
straints, SIFT features are commonly applied in a variety of ap-
plications which becomes visible in more than 9.2k citations of
(Lowe, 1999) and more than 29.5k citations of (Lowe, 2004),
while the use of SURF features has been reported in more than
5.4k citations of (Bay et al., 2006) and more than 5.9k citations
of (Bay et al., 2008).1 Both SIFT and SURF features are also
typically used for detecting feature correspondences between in-
tensity images derived for terrestrial laser scans. For each feature
correspondence, the respective keypoints may be projected to 3D
space by considering the respective range information. This, in
turn, yields sparse point sets of corresponding 3D points.

2.2 Keypoint-Based Point Cloud Registration

Once sparse point sets of corresponding 3D points have been de-
rived for two scans, the straightforward solution consists of es-
timating a rigid-body transformation in the least squares sense
(Arun et al., 1987; Umeyama, 1991). However, the two 3D point
sets may also contain some point pairs resulting from incorrect
feature correspondences and, consequently, it is advisable to in-
volve the well-known RANSAC algorithm (Fischler and Bolles,
1981) for obtaining an increased robustness (Barnea and Filin,
2007; Boehm and Becker, 2007).

In case of two coarsely aligned 3D point sets, the well-known
Iterative Closest Point (ICP) algorithm (Besl and McKay, 1992)
and its variants (Rusinkiewicz and Levoy, 2001; Gressin et al.,
2013) may be applied. The main idea of such an approach is
to iteratively minimize a cost function representing the differ-
ence between the respective sparse 3D point sets. However, if
the coarse alignment between the considered 3D point sets is not
good enough, the ICP algorithm may fail to converge or even
get stuck in a local minimum instead of the global one. Conse-
quently, such an approach is mainly applied for fine registration.

A further alternative consists of exploiting the spatial information
of the derived 3D point sets for a geometric constraint matching
based on the 4-Points Congruent Sets (4PCS) algorithm (Aiger et
al., 2008) which has recently been presented with the Keypoint-
based 4-Points Congruent Sets (K-4PCS) algorithm (Theiler et
al., 2013; Theiler et al., 2014). While the K-4PCS algorithm pro-
vides a coarse alignment which is good enough to proceed with an

1These numbers were assessed via Google Scholar on 30 April 2015.
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ICP-based fine registration, the processing time for the geomet-
ric constraint matching significantly increases with the number of
points in the 3D point sets due to an evaluation of best matching
candidates among point quadruples of both 3D point sets.

A different strategy has been presented by transferring the task of
point cloud registration to the task of solving the Perspective-n-
Point (PnP) problem which, in turn, may be achieved by intro-
ducing a virtual camera and backprojecting the sparse 3D point
sets onto its image plane (Weinmann et al., 2011; Weinmann and
Jutzi, 2011). Thus, 3D/2D feature correspondences are derived
and provided as input for an efficient RANSAC-based scheme
solving the PnP problem. Being robust due to accounting for
both 3D and 2D cues, and being efficient due to involving a non-
iterative method with only linear complexity, such an approach is
still among the most accurate and most efficient approaches for
registering sparse 3D point sets.

3 METHODOLOGY

As shown in Figure 1, our framework for automatically aligning
TLS point clouds consists of two major steps: (i) feature extrac-
tion and matching and (ii) point cloud registration. The respective
methods involved in these components are provided as well and
described in the following subsections.

3.1 Keypoint Extraction and Matching

Generally, the performance of keypoint matching is an interplay
of the applied keypoint detector and descriptor (Dahl et al., 2011).
Hence, different keypoint detector-descriptor combinations may
be applied and these may differ in their suitability, depending
on the requirements of the respective application. Focusing on
scan representations in the form of panoramic intensity images,
where keypoint descriptors have to cope with significant changes
in rotation and scale for changes in the scanner position, we only
involve scale and rotation-invariant keypoint representations as
listed in Table 1. More details on the respective keypoint detec-
tors and descriptors are provided in the following.

Variant Detector Detector Descriptor Descriptor
type size / type / information

1 SIFT Blobs SIFT 128 / float / gradient
2 SURF Blobs SURF 64 / float / gradient
3 ORB Corners ORB 32 / binary / intensity
4 A-KAZE Blobs M-SURF 64 / float / gradient
5 SURF∗ Blobs BinBoost 32 / binary / gradient

Table 1. The keypoint detector-descriptor combinations involved
in our framework.

3.1.1 SIFT: For keypoint detection, the Scale Invariant Fea-
ture Transform (SIFT) (Lowe, 1999; Lowe, 2004) relies on con-
volving the image I and subsampled versions of I with Gaussian
kernels of variable scale in order to derive the Gaussian scale-
space. Subtracting neighboring images in the Gaussian scale-
space results in the Difference-of-Gaussian (DoG) pyramid, where
extrema in a (3 × 3 × 3) neighborhood correspond to keypoint
candidates. These keypoint candidates are improved by an inter-
polation based on a 3D quadratic function in the scale-space in
order to obtain subpixel accurate locations in image space. Fur-
thermore, those keypoint candidates with low contrast which are
sensitive to noise as well as those keypoint candidates located
along edges which can hardly be distinguished from each other
are discarded.

In the next step, each keypoint is assigned its dominant orien-
tation which results for the respective scale by considering the
local gradient orientations weighted by the respective magnitude

as well as a Gaussian centered at the keypoint. Subsequently,
the local gradient information is rotated according to the domi-
nant orientation in order to achieve a rotation invariant keypoint
descriptor. The descriptor itself is derived by splitting the local
neighborhood into 4 × 4 subregions. For each of these subre-
gions, an orientation histogram with 8 angular bins is derived by
accumulating the gradient orientations weighted by the respec-
tive magnitude as well as a Gaussian centered at the keypoint.
The concatenation of all histogram bins and a subsequent nor-
malization yield the final 128-dimensional SIFT descriptor. For
deriving feature correspondences, SIFT descriptors are typically
compared by considering the ratio of Euclidean distances of a
SIFT descriptor belonging to a keypoint in one image to the near-
est and second nearest SIFT descriptors in the other image. This
ratio indicates the degree of similarity and thus the distinctiveness
of matched features.

3.1.2 SURF: Speeded-Up Robust Features (SURF) (Bay et
al., 2006; Bay et al., 2008) are based on a scale-space represen-
tation of the Hessian matrix which is approximated with box fil-
ters, so that the elements of the Hessian matrix may efficiently be
evaluated at a very low computational cost using integral images.
Thus, distinctive features in an image correspond to locations in
the scale-space where the determinant of the approximated Hes-
sian matrix reaches a maximum in a (3 × 3 × 3) neighborhood.
The detected maxima are then interpolated in order to obtain sub-
pixel accurate locations in image space.

Similar to SIFT, a dominant orientation is calculated for each
keypoint. For this purpose, the Haar wavelet responses in x-
and y-direction within a circular neighborhood are weighted by
a Gaussian centered at the keypoint and represented in a new 2D
coordinate frame. Accumulating all responses within a sliding
orientation window covering 60◦ yields a local orientation vec-
tor, and the orientation vector of maximum length indicates the
dominant orientation. For obtaining a rotation invariant keypoint
descriptor, the local gradient information is rotated according to
the dominant orientation. Then, the local neighborhood is di-
vided into 4 × 4 subregions and, for each subregion, the Haar
wavelet responses in x′- and y′-direction are weighted by a Gaus-
sian centered at the keypoint. The concatenation of the sum of
Haar wavelet responses in x′- and y′-direction as well as the sum
of absolute values of the Haar wavelet responses in x′- and y′-
direction for all subregions and a subsequent normalization yield
the final 64-dimensional SURF descriptor. The comparison of
SURF descriptors is the same as for SIFT descriptors.

3.1.3 ORB: The approach presented with the Oriented FAST
and Rotated BRIEF (ORB) detector and descriptor (Rublee et al.,
2011) represents a combination of a modified FAST detector and
a modified BRIEF descriptor.

The Features from Accelerated Segment Test (FAST) detector
(Rosten and Drummond, 2005) analyzes each pixel (x, y) of an
image I and takes into account those pixels located on a sur-
rounding Bresenham circle. The intensity values corresponding
to those pixels on the surrounding Bresenham circle are com-
pared to the intensity value I(x, y). Introducing a threshold t,
the investigated pixel (x, y) represents a candidate keypoint if a
certain number of contiguous pixels have intensity values above
I(x, y) + t or below I(x, y) − t. A subsequent non-maximum
suppression avoids keypoints at adjacent pixels. The modifica-
tion resulting in the ORB detector is based on employing a scale
pyramid of the image, producing FAST features at each level in
the pyramid and adding an orientation component to the standard
FAST detector.

The Binary Robust Independent Elementary Feature (BRIEF) de-
scriptor (Calonder et al., 2010) is derived by computing binary
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Figure 1. The proposed framework for keypoint-based point cloud registration and the involved methods for each component.

strings from image patches. In this context, the individual bits are
obtained from a set of binary tests based on comparing the inten-
sities of pairs of points along specific lines. The modification re-
sulting in the ORB descriptor consists of steering BRIEF accord-
ing to the orientation of keypoints and thus deriving a rotation-
aware version of the standard BRIEF descriptor. The similarity
of such binary descriptors can be evaluated by using the Ham-
ming distance, which is very efficient to compute.

3.1.4 A-KAZE and M-SURF: Instead of the Gaussian scale-
space of an image, using a non-linear scale-space may be fa-
vorable as Gaussian blurring does not respect the natural bound-
aries of objects and smoothes to the same degree both details and
noise, reducing localization accuracy and distinctiveness of fea-
tures (Alcantarilla et al., 2012). Such a non-linear scale-space
may for instance be derived by using efficient additive opera-
tor splitting (AOS) techniques and variable conductance diffusion
which have been employed for detecting KAZE features (Alcan-
tarilla et al., 2012). The nonlinear diffusion filtering, in turn,
makes blurring locally adaptive to the image data and thus re-
duces noise while retaining object boundaries. However, AOS
schemes require solving a large system of linear equations to ob-
tain a solution. In order to increase computational efficiency,
it has been proposed to build a nonlinear scale-space with fast
explicit diffusion (FED) and thereby embed FED schemes in a
pyramidal framework with a fine-to-coarse strategy. Using such
a non-linear scale-space, Accelerated KAZE (A-KAZE) features
(Alcantarilla et al., 2013) may be extracted by finding maxima of
the scale-normalized determinant of the Hessian matrix, where
the first and second order derivatives are approximated by means
of Scharr filters, through the nonlinear scale-space. After a subse-
quent non-maximum suppression, the remaining keypoint candi-
dates are further refined to subpixel accuracy by fitting a quadratic
function to the determinant of the Hessian response in a (3 × 3)
image neighborhood and finding its maximum.

In the next step, scale and rotation invariant feature descriptors
may be derived by estimating the dominant orientation of the key-
point in analogy to the SURF descriptor and rotating the local
image neighborhood accordingly. Based on the rotated neighbor-
hood, using the Modified-SURF (M-SURF) descriptor (Agrawal
et al., 2008) adapted to the non-linear scale-space has been pro-
posed which, compared to the original SURF descriptor, intro-
duces further improvements due to a better handling of descriptor
boundary effects and due to a more robust and intelligent two-
stage Gaussian weighting scheme (Alcantarilla et al., 2012).

3.1.5 SURF∗ and BinBoost: Finally, we also involve a key-
point detector-descriptor combination which consists of applying
a modified variant of the SURF detector and using the BinBoost
descriptor (Trzcinski et al., 2012; Trzcinski et al., 2013). In com-
parison to the standard SURF detector (Bay et al., 2006; Bay et
al., 2008), the modified SURF detector, denoted as SURF∗ in our

paper, iterates the parameters of the SURF detector until a desired
number of features is obtained2. Once appropriate parameters
have been derived, the dominant orientation for each keypoint is
calculated and used to rotate the local image neighborhood in or-
der to allow a scale and rotation invariant feature description.

As descriptor, the BinBoost descriptor (Trzcinski et al., 2012;
Trzcinski et al., 2013) is used which represents a learned low-
dimensional, but highly distinctive binary descriptor, where each
dimension (each byte) of the descriptor is computed with a binary
hash function that was sequentially learned using Boosting. The
weights as well as the spatial pooling configurations of each hash
function are learned from training sets consisting of positive and
negative gradient maps of image patches. In general, Boosting
combines a number of weak learners in order to obtain a single
strong classifier. In the context of the BinBoost descriptors, the
weak learners are represented by gradient-based image features
that are directly applied to intensity image patches. During the
learning stage of each hash function, the Hamming distance be-
tween image patches is optimized, i.e. it is decreased for positive
and increased for negative patches. Since, in our experiments,
the BinBoost descriptor with 32 bytes worked best, we only re-
port the results for this descriptor version.

3.2 Point Cloud Registration

Introducing a superscript j which indicates the respective scan Sj
and a subscript i which indicates the respective feature correspon-
dence, the forward-projection of n corresponding 2D keypoints
x1
i ↔ x2

i between the panoramic intensity images of two scans
S1 and S2 according to the respective range information yields
sparse point sets of corresponding 3D points X1

i ↔ X2
i . Classi-

cally, the task of keypoint-based point cloud registration is solved
by estimating the rigid Euclidean transformation between the two
sets of corresponding 3D points, i.e. a rigid-body transformation
of the form

X2
i ≈ X̂2

i = R2
1X

1
i + t2

1 (1)

with a rotation matrix R2
1 ∈ R3×3 and a translation vector t2

1 ∈
R3 (where the superscript indicates the target coordinate frame
and the subscript indicates the current coordinate frame). Accord-
ingly, the rigid-body transformation is estimated in object space.

As omnidirectional representations in the form of panoramic range
and intensity images are available, we propose to estimate the
transformation in observation space, i.e. we intend to find the
relative orientation between consecutive scans directly. For this
purpose, we apply a spherical normalization N(·) which normal-
izes 3D points Xj

i given in the local coordinate frame of scan Sj
to unit length and thus yields the so-called bearing vectors

vj
i = N(Xj

i ) =
Xj

i

‖Xj
i‖

(2)

2This modified version is part of OpenCV 2.4.
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that simply represent the direction of a 3D point Xj
i w.r.t. the

local coordinate frame of the laser scanner. Thus, the task of
point cloud registration may be transferred to the task of finding
the transformation of one set of bearing vectors to another. In
photogrammetry and computer vision, this is known as relative
orientation and the transformation is encoded both in the essen-
tial matrix E and the fundamental matrix F, respectively. The
relationship between both is given by:

F = K−TEK−1 = K−T [t]×RK−1 (3)

where [t]× denotes the skew symmetric matrix of the translation
and K represents a calibration matrix. For omnidirectional or
panoramic images, the standard fundamental matrix F cannot be
estimated, since it encapsulates the calibration matrix K which,
in turn, is based on perspective constraints that do not hold in the
omnidirectional case. The essential matrix E, however, is inde-
pendent of the camera type and may hence be used to estimate
the transformation between two panoramic images.

In general, at least five points are necessary to calculate a finite
number of solutions for E (Philip, 1998). Various algorithms
for the estimation of the essential matrix E exist, ranging from
the minimal five-point algorithms (Nistér, 2004; Stewénius et al.,
2006) to the six-point (Pizarro et al., 2003), the seven-point (Hart-
ley and Zisserman, 2008), and the eight-point (Longuet-Higgins,
1987) algorithms. As observed in seminal work (Stewénius et al.,
2006; Rodehorst et al., 2008) and verified by own experiments,
the five-point solver of (Stewénius et al., 2006) performs best in
terms of numerical precision, special motions or scene character-
istics and resilience to measurement noise. For this reason, we
focus on the use of this algorithm in our paper.

3.2.1 Coarse registration: The input to our registration pro-
cedure is represented by putative feature correspondences between
2D points xj

i that are subsequently transformed to bearing vectors
vj
i by exploiting the respective range information. Since the 2D

points xj
i are localized with subpixel accuracy, a respective bilin-

ear interpolation is applied on the 2D scan grid in order to obtain
the respective 3D coordinates Xj

i . Then, the essential matrix E is
estimated using Stewénius’ five-point algorithm (Stewénius et al.,
2006) and thereby involving the RANSAC algorithm (Fischler
and Bolles, 1981) for increased robustness. For this, we use the
implementation of OpenGV (Kneip and Furgale, 2014). A subse-
quent decomposition of E yields the rotation matrix R2

1 and the
translation vector t̂2

1 (Hartley and Zisserman, 2008). Since the es-
sential matrix E only has five degrees of freedom, the translation
vector t̂2

1 is only known up to a scalar factor s, which is indicated
by aˆsymbol. In order to recover the scale factor s, the following
is calculated over all inliers:

smedian = median
i

(
‖X2

i −R2
1X

1
i ‖
)

(4)

The median is used to diminish potential outliers that could still
reside in the data. Finally, the direction vector t̂2

1 is scaled by
smedian to get the final translation t2

1 = smediant̂
2
1.

3.2.2 Fine registration: In order to remove those 3D points
indicating potential outlier correspondences from the 3D point
sets, we apply a simple heuristic. First, the point set X1

i is trans-
formed to X̂2

i using Equation 1 and the coarse estimates for R2
1

and t2
1. Then, the Euclidean distance between all correspond-

ing 3D points is calculated and only those points with an Eu-
clidean distance below 1m are kept. To remove such heuristics,
one could employ iterative reweighted least squares techniques or
a RANSAC-based modification of the ICP algorithm.

The remaining 3D points of the sparse point sets are provided to a

standard ICP algorithm (Besl and McKay, 1992) which generally
converges to the nearest local minimum of a mean square distance
metric, where the rate of convergence is high for the first few
iterations. Given an appropriate coarse registration delivering the
required initial values for R2

1 and t2
1, even a global minimization

may be expected. In our experiments, we apply an ICP-based fine
registration and consider the result after 10 iterations.

4 EXPERIMENTAL RESULTS

In our experiments, we use a standard benchmark TLS dataset
(Section 4.1) and focus on the performance of different methods
for each component of the framework (Section 4.2). Additionally,
we discuss the derived results w.r.t. pros and cons of the involved
methods (Section 4.3).

4.1 Dataset

The involved TLS dataset3 has been captured with a Riegl LMS-
Z360i laser scanner in an area called “Holzmarkt” which is lo-
cated in the historic district of Hannover, Germany. Accord-
ing to (Brenner et al., 2008), the Riegl LMS-Z360i has a single
shot measurement accuracy of 12mm and its field-of-view covers
360◦ × 90◦, while the measurement range reaches up to 200m.
Furthermore, the angular resolution is about 0.12◦ and, thus, a
full scan results in 3000× 750 = 2.25M scanned 3D points.

In total, the dataset consists of 20 scans of which 12 were taken
with (approximately) upright scan head and 8 with a tilted scan
head. The single scan positions for the upright scans have been
selected systematically along a trajectory with a spacing of ap-
proximately 5m, whereas the scan positions for the tilted scans
almost coincide with the scan position for an upright scan, and
reference values for both position and orientation have been ob-
tained by placing artificial markers in the form of retro-reflective
cylinders in the scene and carrying out a manual alignment based
on these artificial targets. Thus, errors in the range of a few mil-
limeters may be expected. In our experiments, we consider the
similarity between upright and tilted scans acquired at almost the
same position as too high to allow a fair statement on the registra-
tion accuracy obtained with our framework (since the respective
errors w.r.t. the estimated scan position are significantly below
the measurement accuracy of 12mm), and hence we only use the
upright scans (Figure 2).

Since both range and intensity information are recorded for each
point on the discrete scan raster, we may easily characterize each
scan with a respective panoramic range image and a respective
panoramic intensity image, where each image has a size of 3000×
750 pixels. As the captured intensity information depends on the
device, we adapt it via histogram normalization to the interval
[0, 255] in order to obtain 8-bit gray-valued images.

4.2 Experiments

Our experiments focus on the successive pairwise registration of
scan pairs Pj = {Sj ,Sj+1} with j = 1, . . . , 11. For this pur-
pose, we apply the different methods for feature extraction as de-
scribed in Section 3.1 and the registration scheme as described in
Section 3.2. We use the implementations provided in OpenCV
2.4 for SIFT, SURF and ORB, while we use the implementations
provided with the respective paper for the other two keypoint
detector-descriptor combinations. An example showing feature
correspondences derived via the combination of an A-KAZE de-
tector and an M-SURF descriptor is provided in Figure 3.

3This dataset and others have been released at http://www.ikg.uni-
hannover.de/index.php?id=413&L=de (accessed: 30 April 2015)
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Figure 2. Map of the Hannover “Holzmarkt”: the position of
buildings is visualized in dark gray and the scan positions for
different scans Sj are indicated with red spots. The scan IDs are
adapted according to (Brenner et al., 2008).

For evaluating the performance of our framework, the respective
position and angle errors after coarse and fine registration are vi-
sualized in Figure 4 and Figure 5. Thereby, the position error
indicates the deviation of the estimated scan position from the
reference values, whereas the angle error has been determined
by transforming the estimated rotation matrix and the respective
reference to Rodrigues vectors which, in turn, allow to derive an-
gle errors as the difference of these Rodrigues vectors w.r.t. their
length (Kneip and Furgale, 2014). Furthermore, we provide the
number of correspondences used for coarse and fine registration
in Figure 6 in order to quantify differences between the different
methods for feature extraction and matching. For coarse regis-
tration, we further provide the ratio of inliers w.r.t. all feature
correspondences as well as the number of RANSAC iterations in
Figure 7. In order to obtain an impression on the computational
effort on a standard notebook (Intel Core i7-3630QM, 2.4Ghz,
16GB RAM), the average processing times for different subtasks
are provided in Table 2 as well as the expected time for the whole
process of aligning two scans. Finally, we also provide a visual-
ization of registered TLS scans in Figure 8.

Method tFEX [s] tFM [s] tCR [s] tFR [s] tΣ [s]
SIFT 3.055 10.479 0.084 0.012 16.684
SURF 0.644 0.414 0.081 0.022 1.805
ORB 0.138 2.023 0.015 0.021 2.336
A-KAZE + M-SURF 2.815 2.533 0.007 0.050 8.221
SURF∗ + BinBoost 2.423 0.067 0.025 0.013 4.950

Table 2. Average processing times tFEX for feature extraction,
tFM for feature matching, tCR for coarse registration, tFR for fine
registration and average total time tΣ required for automatically
aligning two scans.

4.3 Discussion

The results provided in Figure 4 and Figure 5 reveal that the posi-
tion errors after fine registration are less than 0.06m for almost all
keypoint detector-descriptor combinations when considering the
scan pairs P1, . . . ,P10, where the distance between the respec-
tive scan positions is between 4m and 6m. Since the respective
angle errors after fine registration are below 0.15◦ with only a
few exceptions, we may conclude that the presented method for
coarse registration represents a competitive method in order to
coarsely align the given scans, since a respective outlier rejection
based on 3D distances is sufficient for an ICP-based fine regis-
tration. The applicability of our method for coarse registration is
even further motivated by the fact that the respective processing

Figure 3. Feature correspondences between the panoramic inten-
sity images of scans S1 and S2 when using the combination of
an A-KAZE detector and an M-SURF descriptor: all correspon-
dences (top) vs. inlier correspondences (bottom).

time is less than 0.085s for the considered scan pairs (Table 2).
Thus, we reach a total time of less than 10s for the registration
of the considered scan pairs for four of the five tested keypoint
detector-descriptor combinations, and only the involved imple-
mentation for SIFT is not that efficient. Note that the time for
feature extraction is counted twice, since this task is required for
both scans of a scan pair.

Considering the five involved keypoint detector-descriptor com-
binations, we may state that A-KAZE + M-SURF and SURF∗ +
BinBoost tend to provide the best results after fine registration
(Figure 4 and Figure 5). Note that only these combinations are
also able to derive a suitable position and angle estimate for the
last scan pair P11 = {S11,S12}, where the distance between the
respective scan positions is approximately 12m. The respective
position errors for A-KAZE + M-SURF and SURF∗ + BinBoost
after fine registration are 0.054m and 0.085m, while the angle
errors are 0.056◦ and 0.083◦, respectively. In contrast, SIFT,
SURF and ORB provide a position error of more than 0.20m and
an angle error of more than 0.75◦ for that case.

In Figure 6, it becomes visible that the number of feature corre-
spondences used for coarse registration is similar for SIFT, ORB
and SURF∗ + BinBoost, while it tends to be higher for SURF.
For A-KAZE + M-SURF, even a significant increase of this num-
ber may be observed across all 12 scan pairs. The increase in the
number of involved feature correspondences for A-KAZE + M-
SURF compared to the other keypoint detector-descriptor combi-
nations is even more significant when considering fine registra-
tion, where it is partially even more than twice as much as for
the others. Based on these characteristics, an interesting trend
becomes visible when considering the respective ratio of inliers
during coarse registration. While the inlier ratio is comparable
for SIFT and SURF, it is better for SURF∗ + BinBoost, and it
is considerably better for ORB and A-KAZE + M-SURF (Fig-
ure 7, top). A high percentage of inliers, in turn, has a positive
impact on coarse registration by significantly reducing the num-
ber of RANSAC iterations (Figure 7, bottom). Consequently, the
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Figure 4. Position errors after the coarse registration (top) and af-
ter the fine registration (bottom) of scan pairs Pj = {Sj ,Sj+1}:
SIFT (violet), SURF (cyan), ORB (green), A-KAZE + M-SURF
(yellow), SURF∗ + BinBoost (red).

combination A-KAZE + M-SURF not only increases the number
of correspondences, but also the inlier ratio and, thus, the posi-
tion and angle errors across all scan pairs tend to be the lowest
for this combination (Figure 4 and Figure 5). For most of the
scan pairs, the respective position error is even close or below the
given measurement accuracy of 12mm.

Finally, we may state that our framework is suited for both urban
environments and scenes containing vegetation, and it does nei-
ther depend on regular surfaces nor human interaction. The only
limitation may be identified in the fact that feature correspon-
dences have to be derived between the panoramic intensity im-
ages derived for the respective scans. In this regard, we may gen-
erally observe that the total number of feature correspondences
decreases with an increasing distance between the respective scan
positions and, accordingly, the quality of the registration results
will decrease. However, this constraint holds for the other image-
based approaches as well and is not specific for our framework.

5 CONCLUSIONS

In this paper, we have presented a novel framework for evaluat-
ing the influence of different keypoint detector-descriptor combi-
nations on the results of point cloud registration. While we in-
volve five different approaches for extracting local features from
the panoramic intensity images derived for the single scans, the
registration process has been transferred from object space to ob-
servation space by considering the forward-projection of putative
feature correspondences and exploiting bearing vectors instead of
the corresponding 3D points themselves. Our results clearly re-
veal that replacing SIFT and SURF detectors and descriptors by
more recent approaches significantly alleviates point cloud regis-
tration in terms of accuracy, efficiency and robustness.

For future work, we plan to integrate more approaches for fea-
ture extraction as well as more approaches for keypoint-based
point cloud registration in our framework in order to objectively
evaluate their performance on publicly available benchmark TLS
datasets. In this context, it would also be desirable to point out
chances and limitations of the different approaches w.r.t. different
criteria specified by potential end-users, e.g. the spacing between
adjacent scans or the complexity of the observed scene. Promis-
ing results may be expected.
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Figure 5. Average angle errors after the coarse registration
(top) and after the fine registration (bottom) of scan pairs Pj =
{Sj ,Sj+1}: SIFT (violet), SURF (cyan), ORB (green), A-KAZE
+ M-SURF (yellow), SURF∗ + BinBoost (red).
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Figure 6. Number of feature correspondences used for the coarse
registration (top) and for the fine registration (bottom) of scan
pairs Pj = {Sj ,Sj+1}: SIFT (violet), SURF (cyan), ORB
(green), A-KAZE + M-SURF (yellow), SURF∗ + BinBoost (red).
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Figure 7. Inlier ratio (top) and number of RANSAC itera-
tions (bottom) for the coarse registration of scan pairs Pj =
{Sj ,Sj+1}: SIFT (violet), SURF (cyan), ORB (green), A-KAZE
+ M-SURF (yellow), SURF∗ + BinBoost (red).

Figure 8. Aligned point clouds when using A-KAZE + M-SURF:
the points belonging to different scans Sj are encoded with dif-
ferent color.
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