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ABSTRACT: 
 

The application of terrestrial laser scanners (TLSs) on construction sites for automating construction progress monitoring and 

controlling structural dimension compliance is growing markedly. However, current research in construction management relies on 

the planned building information model (BIM) to assign the accumulated point clouds to their corresponding structural elements, 

which may not be reliable in cases where the dimensions of the as-built structure differ from those of the planned model and/or the 

planned model is not available with sufficient detail. In addition outliers exist in construction site datasets due to data artefacts 

caused by moving objects, occlusions and dust. In order to overcome the aforementioned limitations, a novel method for robust 

classification and segmentation of planar and linear features is proposed to reduce the effects of outliers present in the LiDAR data 

collected from construction sites. First, coplanar and collinear points are classified through a robust principal components analysis 

procedure. The classified points are then grouped using a robust clustering method. A method is also proposed to robustly extract the 

points belonging to the flat-slab floors and/or ceilings without performing the aforementioned stages in order to preserve 

computational efficiency. The applicability of the proposed method is investigated in two scenarios, namely, a laboratory with 30 

million points and an actual construction site with over 150 million points. The results obtained by the two experiments validate the 

suitability of the proposed method for robust segmentation of planar and linear features in contaminated datasets, such as those 

collected from construction sites. 
 

 

                                                                 
*  Corresponding author 

 

1. INTRODUCTION 

Construction project progress monitoring and deviation control 

are essential to allow decision makers to identify discrepancies 

between the planned and the as-built states of a project in order 

to take timely measures where required (Maalek and 

Sadeghpour, 2012). In practice, monitoring is performed 

manually, a time consuming, error-prone and labour-intensive 

task particularly on large scale projects (Golparvar-Fard et al. 

2009). To reduce the time and cost associated with such manual 

approaches, a limited (and/or frequency) of onsite data are 

collected, which diminishes the ability of the project manager to 

identify the causes of delays and cost overruns on time. 

  

In addition, the reliable determination of project performance is 

highly dependent on the accuracy of the data collected during 

the monitoring process (Saadat and Cretin, 2002). Currently, 

site supervisory personnel spend 30-50% of their time manually 

inspecting and controlling the quality of the manually 

accumulated onsite data (Golparvar-Fard et al. 2009). 

Reduction of this time by means of a novel approach to onsite 

data collection and analysis suggests that more time can be 

allocated towards improving vital construction related concerns 

such as safety, as well as workforce productivity and 

communications. In order to help overcome the aforementioned 

limitations of current manual practices, automating the 

monitoring and control processes on construction sites has been 

proposed in recent years. 

 

2. LITERATURE REVIEW 

2.1 State-of-the-Art in Construction Management 

In current practices, the time of completion of an activity is 

recorded in order to measure the potential deviations between 

the planned and the actual states of the project (Cox et al. 2003, 

Golparvar-Fard et al. 2015). However, this metric does not 

provide sufficient information to determine: i) the compliance 

of the dimensions of the as-built structures to those of the 

planned; and ii) the schedule delays throughout the progression 

of an activity (Maalek et al. 2014). In order to help improve 

these limitations, the “scope of work performed” should be 

determined by means of a remote sensing technology (Maalek et 

al. 2014). Terrestrial laser scanners (TLS) are widely used to 

measure the 3D coordinates of the structural elements. 

 

Current research in construction management is devoted to the 

automatic extraction the “scope of the work performed” for each 

structural element from the accumulated TLS point clouds. 

However, most object-based recognition models use the 

planned 4D model as a priori knowledge to assign the collected 

3D point clouds to their corresponding structural elements 

(Golparvar-Fard et al. 2009, 2015; Bosché et al. 2015). This 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W5, 2015 
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
Editors: S. Oude Elberink, A. Velizhev, R. Lindenbergh, S. Kaasalainen, and F. Pirotti 

doi:10.5194/isprsannals-II-3-W5-129-2015

 
129

mailto:idowman@ge.ucl.ac.uk


 

approach may not be reliable in cases where the location of the 

as-built structure differs from that of the planned (Shahi et al. 

2013) or the issued-for-construction (IFC) plan with sufficient 

detail is not readily available.  

 

In order to reduce this dependency on the planned model, it is 

proposed to generate the 3D/4D as-built model using only the 

geometric primitives of the accumulated points. Since the most 

generic building elements as well as most man-made objects are 

constructed from the intersection of planar (columns, beams) 

and linear (reinforcement bar) features (Nunnally, 2010; 

Vosselman et al. 2004), the classification and segmentation of 

planar and linear features are the major focus of this study. 

 

2.2 Point Cloud Classification and Segmentation 

As mentioned, the automatic detection of planar surfaces from 

TLS point clouds is the initial step to identify the most 

important structural elements. In order to extract features from 

point clouds, the initial step is devoted to labelling and 

grouping of the point clouds with similar physical attributes, 

also known as the classification and segmentation processes 

respectively (Rabbani et al. 2006). 

 

2.2.1 PCA-based Point Cloud Classification: There are two 

commonly-used methods to classify point clouds into planar 

surfaces, namely, 3D Hough transform and principal 

components analysis (PCA). Vosselman et al. (2004) use the 3D 

Hough transform to define every point in space with a plane in 

the parameter space, which allows the determination of planar 

surfaces without the estimation of the normal vectors. However, 

the use of Hough transformation for planar classification is 

computationally expensive and the results are highly affected by 

outliers (Lari, 2014). Therefore, special consideration is given 

to the use of PCA for the classification of point cloud. 

 

PCA is the eigenvalue decomposition of the covariance matrix 

of a multivariate data set. It is used to summarize the variation 

of the data set in independent (orthogonal) axes (Johnson and 

Wichern, 2007). In the case of a three-dimensional point cloud, 

three orthogonal axes can be determined. Many researchers 

have used PCA for the classification of planar surfaces (Tovari 

and Pfeifer, 2005; Rottensteiner et al., 2005; Rabbani et al. 

2006; Pu and Vosselman, 2006; Belton and Lichti, 2006; Filin 

and Pfeifer, 2006; Kim et al. 2007; Bremer et al. 2013; Lari, 

2014). First, for each point cloud, a neighbourhood is defined. 

The PCA is performed on the pre-defined neighbourhood of 

each point. For coplanar points, the variation of a noise-free 

dataset in the direction of the surface normal is equal to zero. If 

the pattern of the neighbourhood of the desired point forms a 

planar surface, the point is classified as a plane. 

 

Currently, there are methods available to classify points to 

planar/linear surfaces for datasets with no data contamination 

(i.e. no outliers). However, the classification of a dataset 

affected by outliers1 using the classical PCA method is highly 

affected by the presence of outlying points (Serneels and 

Verdonck, 2008, Hubert et al. 2012). In order to improve the 

classification results for contaminated data sets, Nurunnabi et 

al. (2012a, b) proposed the use of robust PCA, which 

incorporates a robust estimate of the covariance matrix called 

the fast minimum covariance determinant (Fast-MCD) proposed 

by Rousseeuw and Driessen (1999). Their proposed robust PCA 

method for planar classification and segmentation showed 

                                                                 
1 Which is the case on construction sites. 

significant improvement in contaminated data sets. Their 

comparison to the random sample consensus (RANSAC) 

method indicated that the robust PCA is better able to detect 

more outliers (Nurunnabi et al., 2013, 2014). In order to 

determine the most efficient robust covariance matrix estimate, 

a review of the current state of robust dispersion (covariance) 

estimates is given in the following sub-section. 

 

2.2.2 Robust Dispersion Estimates: Robust statistics are 

methods of estimating models of contaminated data by reducing 

the effect of the outliers (Maronna et al. 2006). The breakdown 

value is the measure of robustness of an estimator with respect 

to the outlying observations (Hampel, 1971). It indicates the 

smallest fraction of contaminants in a sample that causes the 

estimator to break down (i.e. to take on values that are 

arbitrarily meaningless). An estimate with a breakdown point of 

50% is ideal since it is able to detect the pattern of the majority 

of the uncontaminated data with up to 50% data contamination. 

There are currently two well-known multivariate dispersion 

estimates with high breakdown values (i.e. 50%), namely, the 

minimum volume ellipsoid (MVE) and the MCD.  

 

The MVE is the smallest ellipsoid that covers a subset of h data 

points out of a set of n observations. The (n-h) points left are 

the outliers of the dataset. The MCD is concerned with selecting 

h points out of n for which the covariance matrix has the lowest 

determinant. The MCD has the same breakdown point as the 

MVE except that it is asymptotically normal (Butler et al. 1993) 

and has a higher convergence rate (Davies, 1992). In the study 

conducted by Jensen et al. (2007), it was concluded that the 

MCD is more suitable for larger sample sizes with a large 

percentage of data contamination. Therefore, an estimator of the 

MCD is preferred for the processing of point clouds in highly 

occluded areas such as a construction site. 

 

There are currently two well-known MCD estimators namely, 

the fast-MCD (Rousseeuw and Driessen, 1999) and 

deterministic-MCD (Det-MCD; Hubert et al. 2012). Compared 

to the fast-MCD, deterministic Det-MCD is permutation 

invariant (i.e. the outcome of the estimator is not a function of 

the order of the observations). This is of great importance since 

the reordering of the point cloud samples does not affect the 

result of the robust covariance estimation subset. In addition, 

the computation time of the Det-MCD is much lower than that 

of Fast-MCD (Hubert et al. 2012). Therefore, in this study, the 

Det-MCD proposed by Hubert et al. (2012) is used to improve 

the classification of point clouds. 

 

2.2.3 Point Cloud Segmentation: Two methods are 

generally used to segment the classified planar/linear point 

clouds, namely, region growing and clustering. Region growing 

methods are widely implemented (Tovari and Pfeifer, 2005; 

Rottensteiner et al., 2005; Rabbani et al. 2006; Pu and 

Vosselman, 2006; Belton and Lichti, 2006; Belton, 2008; 

Nurunnabi et al. 2012a; 2012b; 2013; 2014) due to their 

computational efficiency. However, since the result of the 

segmentation is a function of the selected seed point/region (i.e. 

not permutation invariant), it is not considered as a robust 

method (Wang and Shan, 2009). Therefore, particular interest is 

given to segmentation procedures using cluster analysis. 

 

In cluster analysis, an n-dimensional array of attributes is first 

defined. The points sharing similar attributes are then 

segmented into the same cluster. In the research carried out by 

Song and Feng (2008) and Shi et al. (2011), the k-means 
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clustering algorithm was used to group point clouds with 

similar attributes. However, a k-means clustering approach 

requires a priori knowledge of the number of clusters and hence 

is not suitable for applications when this is unknown. In the 

work of Filin and Pfeifer (2006), clustering of the point clouds 

was carried out by seeking the mode of the histogram of the 

frequency of the attributes. However, the correct identification 

of the mode may be challenging in multivariate attribute cases 

(Haralick and Sahpiro, 1992). In the work of Lari and Habib 

(2014), a two-step segmentation method is proposed. First a 

region growing method is used to identify planar patches. These 

planar patches are then grouped/clustered in order to complete 

the segmentation. However, the choice of threshold used to 

cluster the attributes is currently subjective, which may result in 

over or under segmentation depending on the dataset. 

 

As explained, the attributes in this study are robustly estimated 

during the classification process. Therefore, compact clusters 

are expected to be formed. In the research carried out by Bayne 

et al. (1980), Golden and Meehl (1980), Hartigan (1985), and 

Everitt et al. (2011) the complete linkage method was shown to 

be efficient for identifying compact clusters. This method does 

not require a priori knowledge about the number of clusters. In 

addition, it is not highly affected by outliers. However, it can 

break large clusters (Steinbach et al. 2003), resulting in over-

segmentation. Here, an iterative robust complete linkage 

algorithm is proposed to reduce over-segmentation. 

 

3. OBJECTIVE AND METHODOLOGY 

The overall goal of this research is to automatically summarize 

acquired point clouds of construction sites into a set of vertices 

(i.e. automatic generation of the as-built model) using only the 

geometric primitives. To that end, a novel method is proposed 

to robustly segment coplanar and collinear points as a means of 

extracting the most common structural elements (beams, 

columns, slabs and reinforcement bars). Initially, the points are 

classified into planes and lines through a robust PCA, which 

uses the Det-MCD proposed by Hubert et al. (2012) to robustly 

estimate the covariance matrix. The coplanar and collinear 

points with similar attributes are then grouped together using a 

novel clustering approach. The modified convex-hull algorithm 

is used to detect the boundaries of each segment. The closest 

segments are then intersected in order to generate the 3D as-

built model. The detailed explanation of the aforementioned 

stages is given in the following. 

 

3.1 Robust Planar and Linear Classification 

In order to classify point clouds into planes and lines, a 

neighbourhood is defined around each point. The 50 mm 

neighbourhood size is chosen based on the dimensions of the 

smallest structural elements that are required to be extracted2. 

Robust PCA is performed to determine the pattern of the 

variation within each neighbourhood. For coplanar points, the 

variation of the data in the direction of the surface normal is 

zero. For collinear points, all of the variation is summarized in 

one direction. This is illustrated in Figure 1. 

                                                                 
2 In the work of Belton and Lichti (2006) and Weinmann et al. 

(2014), efforts were made to optimize the neighborhood size 

while performing the classical PCA. As will be proven in the 

following, the robust PCA is able to detect the outliers 

present within the predefined neighborhood, which reduces 

the dependency of the classification results on the initially 

defined neighborhood size. 

 
 

Figure 1. Classification of accumulated point clouds into a) 

planar surface; b) linear features 

 

In order to illustrate the benefits of using robust PCA over 

classical PCA, in particular for the identification of mixed 

pixels, a point cloud comprising four adjacent planes scanned 

from a single instrument location was simulated. Random errors 

were added to the data using the specifications of the Leica 

HDS6100 TLS3, the instrument used to collect real data for this 

research. Mixed pixel artefacts were added between two of the 

planes using the following equation: 

  

    (1) 

 

where X1, X2, S1, S2 and SM are shown in Figure 2a. The 

simulated point clouds are shown in Figure 2b. 

 

 

 

 

 

 

Figure 2. a) Schematic representation of the mixed pixel 

phenomena; b) simulated point clouds of the planar walls 

 

Figure 3 illustrates the results of the classification of the data 

depicted in Figure 2b. Figure 3a represents the percentage of 

misclassified mixed pixels with respect to the threshold used for 

the percentage of variance, explained by the largest eigenvalue 

(the neighbourhood size was fixed at 100). It can be seen that 

the planar classification results using the robust PCA includes 

fewer type II errors than the classical PCA. Figure 3b shows the 

relative percentage of improvement in the number of 

misclassified mixed pixels with respect to the neighbourhood 

size (the threshold of the maximum normalized eigenvalue was 

fixed to 55%). It can be inferred that the percentage of 

improvement in the misclassified points within the planar 

classification is more evident as the neighbourhood size 

increases. The results shown in Figure 3 indicate that the 

proposed robust PCA is less dependent on the thresholds used 

(i.e. more robust) and the choice of initial neighbourhood size. 

                                                                 
3 The manufacturer suggests a random error with Gaussian 

distribution of mean zero and standard deviation of 2 mm 

and 125 μrad for range and angular measurements 

respectively. The beam width is 3 mm at exit with angular 

divergence of 110 μrad on each side. 
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𝑑 𝑈𝑉 𝑊 = max  {𝑑𝑈𝑊 , 𝑑𝑉𝑊} 

 
Figure 3. a) Percentage of misclassified points with respect to 

the threshold; b) percentage of improvement of the 

misclassification with respect to the neighbourhood size 

 

3.2 Robust Planar Segmentation 

From the robust PCA, points belonging to planar and linear 

features are identified. For each planar point, the four planar 

attributes, the robustly estimated surface normal vector and 

location (robust mean of the neighbourhood), are used to cluster 

points with similar attributes. As expressed in Section 2.2.3, the 

complete linkage algorithm is used to cluster coplanar points. 

According to the complete linkage algorithm, initially, a cluster 

is assigned to each point. The two clusters (say U and V) with 

the most similarity are merged together to form cluster UV. The 

distance between the similarity attribute of cluster (UV) and any 

cluster W is then calculated as follows: 

 

      (2) 

 

The cluster with the minimum distance to cluster UV is merged 

into UV, say point W, and the process is continued for cluster 

UVW. The grouping is finalized when the distance measured by 

Equation (2) is greater than a predefined threshold. The process 

is then repeated for the remaining clusters. However, the choice 

of the similarity threshold is subjective, which reduces the 

robustness of the method4. In order to reduce the dependence of 

the segmentation on the specific value of the threshold, a new 

iterative process is proposed (Figure 4). 

 

 

 

 

Figure 4. Iterative complete linkage algorithm for robust 

clustering of planar surfaces 

 

Initially, the complete linkage algorithm is performed on the 

robustly-estimated plane parameters to group the coplanar 

points with similar attributes. The threshold is chosen so as to 

prevent under-segmentation5. For each cluster, the plane 

parameters are then estimated from the eigenvalue 

                                                                 
4 A large threshold may result in under-segmentation, whereas a 

small value may result in over-segmentation. 
5 In this study, a difference of ±1% of the magnitude of the 

attribute is used to accept similarity.  

decomposition of the covariance matrix robustly estimated by 

DetMCD. The complete linkage algorithm is then carried out 

for the new plane parameters. The process is continued until the 

number of clusters remain constant. 

 

For the identified cluster, a robust complete linkage is 

implemented to help reduce the dependency on the initial 

threshold (i.e. minimize over segmentation). First, the closest 

clusters are identified, say clusters I and J with sizes NI ≤ NJ. A 

random set of observations from cluster I is added to cluster J 

(no more than 25% of NJ)6. For the newly developed cluster, the 

DetMCD is performed to identify the outliers. The two clusters 

are merged if and only if less than half of the determined 

outliers are from cluster I. The process continues until no more 

clusters can be added to cluster IJ. The process is then repeated 

for the remaining clusters. In order to improve the computation 

efficiency, clusters with attributes that are farther than a certain 

threshold are not examined. 

 

3.3 Robust Extraction of Flat Slab Floor and Ceiling 

A new method is proposed to identify and extract the points on 

planar slab floors and ceilings before performing the proposed 

robust PCA using only the histogram of point elevation. This is 

particularly beneficial to help reduce the calculation time of the 

proposed segmentation procedure. A similar idea was 

introduced in (Arastounia and Lichti, 2013) to reduce the points 

on the ground in an electrical substation dataset. Here, a robust 

floor and ceiling extraction method is proposed to minimize the 

dependency on the thresholds used. 

 

The typical histogram of point elevation for a room or a 

construction site with flat slab ceiling and floor is schematically 

shown in Figure 5. As illustrated, the histogram of elevation 

consists of two major peaks, representing the points of the floor 

and the ceiling. To determine the location of these two modes, 

the median-shift algorithm proposed by Shapira et al. (2009) is 

used. The two modes are regarded as points Pf and Pc in Figure 

5. In order to robustly identify the points on the ceiling and the 

floor using the identified modes (peaks), first, all points within a 

predefined radius (r), here 5cm, from the modes Pf and Pc are 

identified. The Det-MCD algorithm is then applied on the 

specified points in order to identify the floor and ceiling. 

 

 

 

 

 

 

 

 

Figure 5. Expected distribution of the elevation of the points 

 

3.4 Linear Segmentation 

Every line in space can be uniquely defined by the intersection 

of two non-parallel planes. This concept is used to segment 

collinear points. After performing the robust PCA, each linearly 

classified point is defined by the robust directional vector and 

the robust location (mean of the neighbourhood). The cross 

product of the directional vector and the location vector results 

in a normal vector of a plane that passes through the line of 

interest and the origin. Initially, this metric is used within the 

                                                                 
6 The DetMCD algorithm is most efficient with 25% or less 

outlier contamination (Hubert et al. 2012). 
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complete linkage method to segment points with similar normal 

vectors. For each planar segment, the origin is then moved to an 

arbitrary location outside of the plane. The normal vector for 

each point in the cluster is again estimated using the robust 

directional vector and the new location7. The complete linkage 

algorithm is again performed to determine the final segments. 

 

3.5 Boundary Detection and Robust Surface Fitting 

Using the clustering methods proposed in Sections 3.2 and 3.4, 

spatially discontinuous surfaces with similar attributes are also 

grouped together. In order to enforce surface continuity, outer 

boundary points are determined using the modified convex hull 

algorithm proposed by Sampath and Shan (2007) and inner 

boundary points are defined using the method proposed by Lari 

(2014). Therefore, discontinuous surfaces are separated into 

different clusters.  

 

The plane and line parameters for each identified cluster are 

robustly estimated using DetMCD. The closest planes and lines 

are then intersected to determine the vertices of the structural 

elements. 

 

4. EXPERIMENTS 

Two sets of LiDAR data were collected using a Leica HDS6100 

TLS. The first set of experiments was for the as-built modelling 

of a laboratory at the University of Calgary. The second set of 

data was collected from an actual construction site and the 

planar and linear features are robustly segmented. 

 

4.1 Experiment 1: Mechanics of Materials Laboratory 

The first set of data was collected from the Mechanics of 

Materials laboratory at the University of Calgary (Figure 6). As 

illustrated in Figure 6a, the laboratory consists of many metallic 

tables, which may result in data contamination due to multipath 

reflections. Therefore, it can be considered as a fair 

representation of an actual indoor construction site. 

Approximately 30 million 3D points of the interior surfaces 

were recorded from three different scan-stations. Figure 6b 

shows the plan view of the planned model. As illustrated, the 

lab consists of 26 different walls. The elevation of the ceiling 

relative to the floor is 2.7 m. The planned model suggests that 

the roof, floor and the surrounding walls are planar surfaces. 

The objective of this experiment is to robustly extract the planes 

representing the walls, floor and ceiling in order to control 

dimension compliance. 

 

 
Figure 6. a) “Mechanics of Material” laboratory; b) plan view of 

the laboratory 

 

                                                                 
7 Since the DetMCD covariance estimate is very close to affine 

equivariant, the translation of the origin will not impact the 

segmentation results. 

4.1.1 Robust Extraction of Floor and Flat Slab Ceiling: 
First, the points of the flat slab floor and ceiling are extracted 

using the method presented in Section 3.3. The histogram of the 

elevation is shown in Figure 7, which complies with the 

hypothesis presented in Figure 5. The smaller peak, shown in 

blue, represents the metallic tables. The precision, recall and 

accuracy (Olsen and Denlen, 2008) of the extracted points are 

91.5%, 100% and 92% for the floor and 92.4%, 100% and 

93.4% for the ceiling respectively8. As illustrated, no Type II 

errors were detected during the planar feature extraction, which 

indicates the robustness of the proposed method. In addition, 

the extracted points accounted for approximately half of the 

total accumulated points, which suggests a significant reduction 

in the time of data classification and segmentation. 

 
Figure 7. Histogram of elevation of the actual point cloud 

 

4.1.2 Segmentation and As-built Model: Using the methods 

presented in Section 3.1, the robust PCA was performed on the 

remaining points. The planar parameters were then clustered 

using the method described in Section 3.2. The results of the 

segmentation are shown in Figure 8b. Approximately 94.7% of 

the points were segmented correctly. Figure 8c shows the as-

built 3D model of the laboratory. The vertices were determined 

by intersecting the nearest planar clusters using the method 

described in Section 3.5. 

 
Figure 8. a) LiDAR point cloud; b) results of the robust 

segmentation (obstacles are removed for clarity) - purple 

represents segment boundaries; c) as-built 3D CAD model 

 

4.2 Experiment 2: Graduate Student Residence Hall 
Construction Site 

The second dataset was collected from the Graduate Student 

Hall of Residence construction site at the University of Calgary 

(Figure 9a). Approximately, 150 million points were collected 

from four scan locations with the Leica HDS6100, shown in 

Figure 9b. The building is a concrete structure with box-shaped 

columns. The goal was to robustly segment the planar surfaces 

(floor slab and column facets) and linear features (reinforcement 

bar) using the methods proposed in Section 3.  

Figure 9. a) Construction site; b) point clouds of the site 

                                                                 
8 The actual values are derived manually 
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4.2.1 Robust Floor Extraction: The points on the planar 

floor slab were extracted using the method proposed in Section 

3.3. Figure 10 shows the histogram of point elevation of the 

acquired data. As illustrated, the shape of the histogram of the 

points on the floor complies with that proposed in Figure 5. 

Approximately 65 million points were removed using the 

proposed method, which led to a great reduction in the 

calculation time for the planar and linear segmentation of the 

remaining points. The precision, recall and accuracy rates are 

90.3%, 100% and 94.6% respectively9. 

 

 

 

 

 

 

 

 

Figure 10. Histogram of point elevation 

 

4.2.2 Robust Classification: The robust PCA proposed in 

Section 3.1 was performed on the remaining point cloud to 

identify the planar and linear features. The results of the 

classification are presented in Figure 11. Figure 11a represents 

the point cloud after the removal of the points on the floor. 

Figure 11b illustrates the points classified as lying on planar 

surfaces. As illustrated in Figure 11b, the proposed robust 

classification and floor extraction methods are able to correctly 

distinguish planar plates with a thickness of 5 cm from the 

points on floors. Figure 11c shows the remaining points after 

removing planar surfaces. The points classified as linear are 

shown in Figure 11d. The precision, recall and accuracy for the 

planar classification are 93.2%, 92.4% and 91.6% respectively. 

For linear classification, the precision, recall and accuracy are 

91.8%, 89.6% and 92.8% respectively.  

 
Figure 11. Robust planar and linear classification: a) after 

removing the floor; b) points classified as planar surfaces; c) 

points after removing the points classified as planes; d) points 

classified as linear 

                                                                 
9 Approximate values since the actual points are determined 

manually 

4.2.3 Robust Segmentation: The results of the robust 

segmentation of the classified point cloud are shown in Figure 

12. Figures 12a through 12c10 show the improvement of the 

planar segmentation results after each stage of the method 

proposed in Section 3.2. Figure 12a represents the segmentation 

of planar surfaces after the first iteration, in which 185 clusters 

were identified and over-segmentation is apparent. Figure 12b 

shows the planar segmentation after the last iteration (the third 

iteration). The number of clusters has been reduced to 132. 

Figure 12c illustrates the results after the robust complete 

linkage algorithm has been applied. The number of clusters was 

further reduced to 87. After this stage, approximately 95.2% of 

points were segmented correctly. 

 

Figure 12d shows the linear segmentation results. The point 

density has been reduced for clarity. The reinforcement bar on 

the top of the elevator shaft has also been magnified to better 

represent the linear segmentation results. Approximately, 91.4% 

of the reinforcement bars were clustered correctly. For the 

remaining linearly classified points, about 86.9% of points were 

clustered correctly. It may be possible to improve the linear 

segmentation by means of a better choice for the location of the 

origins in the method proposed in Section 3.4. 

 

 
 

Figure 12. Planar segmentation: a) first iteration, 185 clusters; 

b) last iteration, 132 clusters; c) after robust complete linkage, 

87 clusters. d) Linear segmentation results, 347 clusters 

 

5. CONCLUSTION 

The use of LiDAR for construction site progress monitoring and 

structural dimension compliance control is evolving markedly. 

However, the point clouds collected in a dynamic environment 

such as a construction site are expected to be contaminated with 

outliers. Here, a robust method for the classification and 

segmentation of planar and linear features in LiDAR data 

collected from construction sites has been introduced. The 

classification method uses a robust PCA to reduce the effects of 

                                                                 
10 The boundary detection has been carried out to differentiate 

discontinuous surfaces  
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outliers on the pattern of the data. It was also shown that the 

results of the classification are less affected by the choice of the 

size of neighbourhood. However, a robust optimum 

neighbourhood search method is required to further enhance the 

classification results.  

 

A novel method for robust planar segmentation was proposed 

using an iterative complete linkage clustering method and the 

DetMCD covariance estimator. The method is particularly 

beneficial since its performance is not a function of a 

subjectively pre-defined threshold. 

 

A robust method for extraction of planar floors and ceilings has 

been developed. This method has shown to be very efficient in 

extracting the points on floors and ceilings as well as reducing 

the calculation time for the classification and segmentation of 

the remaining points.  

 

A new two-step method for linear segmentation was also 

introduced. Currently, the choice of the second origin after the 

initial segmentation is arbitrary and subjective and hence more 

investigation is required to find the optimum location of the 

origins to improve the linear segmentation results.  

 

The applicability of the proposed planar and linear 

segmentation methods have been investigated in two datasets. 

The results indicate promise for the robust segmentation and 

classification of planar and linear features in contaminated 

datasets. 

 

In future studies, the applicability of the proposed methods will 

be examined on two construction sites located at the University 

of Calgary as construction progresses. The inconsistencies 

between the planned 4D BIM model and the automatically 

generated as-built model will be investigated through a novel 

change detection algorithm. The robust segmentation and 

classification of NURB surfaces and the use of alpha-shapes in 

detecting the boundaries of these types of segments will also be 

studied. 
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