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ABSTRACT:

Development of laser scanning technologies has promoted tree monitoring studies to a new level, as the laser scanning point clouds
enable accurate 3D measurements in a fast and environmental friendly manner. In this paper, we introduce a probability matrix
computation based algorithm for automatically classifying laser scanning point clouds into ’tree’ and ’non-tree’ classes. Our method
uses the 3D coordinates of the laser scanning points as input and generates a new point cloud which holds a label for each point
indicating if it belongs to the ’tree’ or ’non-tree’ class. To do so, a grid surface is assigned to the lowest height level of the point
cloud. The grids are filled with probability values which are calculated by checking the point density above the grid. Since the tree
trunk locations appear with very high values in the probability matrix, selecting the local maxima of the grid surface help to detect
the tree trunks. Further points are assigned to tree trunks if they appear in the close proximity of trunks. Since heavy mathematical
computations (such as point cloud organization, detailed shape 3D detection methods, graph network generation) are not required, the
proposed algorithm works very fast compared to the existing methods. The tree classification results are found reliable even on point
clouds of cities containing many different objects. As the most significant weakness, false detection of light poles, traffic signs and other
objects close to trees cannot be prevented. Nevertheless, the experimental results on mobile and airborne laser scanning point clouds
indicate the possible usage of the algorithm as an important step for tree growth observation, tree counting and similar applications.
While the laser scanning point cloud is giving opportunity to classify even very small trees, accuracy of the results is reduced in the
low point density areas further away than the scanning location. These advantages and disadvantages of two laser scanning point cloud
sources are discussed in detail.

1 INTRODUCTION

Trees do vital job for well-being of all species on the planet. They
do not only increase beauty, prove food and living space for ani-
mals, but they also absorb carbon dioxide and give oxygen which
contributes to the environmental circulations. Therefore, for sci-
entists, for municipalities and other governmental agencies, it is
important to track the numbers of trees and to measure their phys-
ical attributes for scientific analysis such as carbon dioxide ab-
sorbing volume. Laser scanning technology provides opportunity
to do all these physical measurements in a computer environment
without disturbing the nature and by spending less man effort.

Most tree classification studies in literature focus on separating
trees in environments where there is little variation in objects.
Therefore, separating tree points problem is solved by removing
the ground points and checking the appearance of tree trunks or
tree crowns. When the point cloud is from an urban region, it
might contain points of many different objects such as building
facades, cars, light poles, traffic signs, etc. In this case, algo-
rithms need to segment the point clouds of different objects in
order to control their 3D shapes. By controlling shapes, the al-
gorithms decide if the points are coming from a tree or another
object. These algorithms generally depend on either voxel space
creation or fitting pre-defined geometrical models to the point
clouds. The voxel space creation based methods are generally
very sensitive to the voxel size selection. The methods which are
using geometrical models also need specific parameter selection
and they have a risk of missing trees which have trunk shapes
different from the pre-defined models.

Some of the previously introduced approaches for processing re-
gions having only trees as objects are as follows. Pyysalo and

Hyyppa (2002) introduced a method to detect individual trees
in dense forest point clouds which are acquired by an airborne
laser scanner. They have used a Digital Terrain Model (DTM)
to remove ground, which means that additional data is required
to process the point clouds. Lalonde et al. (2006b) proposed a
tree classification approach from terrestrial laser scanning point
clouds by detecting the ground surface. The method worked us-
ing a statistical classification technique which uses linear-ness
and scatter-ness of local area. The method had some disadvan-
tages such as difficulty of scale selection, high computation time
and difficulty of noise removal. Rutzinger et al. (2010) segmented
their point cloud into homogeneous planar regions and they re-
moved non-vegetation segments, which are large and planar. The
remaining laser echoes are re-labelled by grouping nearby points
to connected components. For these components the roughness
(standard deviation of elevation) and a point density ratio in a
given height interval are calculated. They observed that the point
density ratio is significantly low for trees because the tree crown
intercepts much more echoes than the tree trunk. Therefore, trees
are extracted by selecting connected components with high rough-
ness and low point density ratio.

McDaniel et al. (2012) have developed an automatic individual
tree detection method using terrestrial laser scanning point clouds.
They have started with ground plane segmentation. After fitting
a ground surface, they have estimated breast height for trees and
detected tree trunks. Finally, they have used the K-means classi-
fication method to decide for the rest of the points if they belong
to a tree trunk. They have tested the algorithm in different en-
vironments with different appearance. They have observed that
the more straight the ground surface the better performed the al-
gorithm. Kaartinen et al. (2012) have selected nine different tree
classification methods from literature and tested them on a for-
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est laser scanning point cloud. They have discussed strength and
weaknesses of the different methods in terms of four scientific
criteria; number of detected trees, accuracy of the detected tree
locations, accuracy of the detected tree heights and crown de-
lineation accuracy. They have also noticed that for in all nine
different methods, higher trees are detected more accurately than
lower ones.

Bremer et al. (2013) separated objects in the point clouds by con-
nected component and Dijkstra-path analysis. They have classi-
fied trees using a graph based approach considering the branch-
ing levels of the given geometries. Gorte and Pfeifer (2004) have
generated a range image in order to segment trees. After seg-
menting individual trees, they mapped the points back to a voxel
space, where it is segmented into branches using mathematical
morphology. The voxel size selection has played a very crucial
role in well performance of the algorithm. Tittmann et al. (2011)
introduced a RANSAC approach to fit geometric models on point
clouds in order to identify individual tree crowns. Li et al. (2012)
introduced a method to segment individual trees in dense forest
point clouds. The method depends on detecting seed points (lo-
cal maximums) which are assumed as tree tops and fitting a cone
shape from the seed points to the ground in order to segment the
point clouds. The proposed algorithm provided good results even
in dense coniferous forests. However, they have indicated that
the algorithm might not be applicable to forests which consist of
other types of trees. Besides, the algorithm failed to detect trees
which are very short or which have low point density.

Pu et al. (2011) segmented the point cloud and checked the 3D ge-
ometries of the segments. If an object has a cylindrical body and
a large crown on the top, then it is labelled as a tree. The trees are
not detected if their cylindrical shape trunks are not visible or if
their crown diameter is not large enough. In the second case, the
trees in a street point cloud might end up being labelled as poles.
Monnier et al. (2012) proposed a tree detection algorithm based
on local geometric descriptors computed on each laser point us-
ing a fixed neighbourhood. These descriptors described the lo-
cal shape of objects around every 3D laser point. A projection
of these values on a 2D horizontal accumulation space followed
by a combination of morphological filters helped them to detect
individual tree clusters. Lalonde et al. (2006a) have extracted
3D features from the point clouds to classify points as trees and
non-trees. They have then applied a segmentation algorithm to
identify individuals. Finally they have used 3D primitive geomet-
ric shapes such as cylinders in order to generate 3D tree models.
They have used the models to estimate the breast hight diameter
on ground and also aerial point clouds. Raumonen et al. (2011),
proposed a method for automatically extracting approximate tree
branch measures from point clouds. The method assumed that
the tree can be locally approximated with cylinders without using
voxel spaces. It performed well for detecting tree trunks and rel-
atively large branches. However, it could not show good perfor-
mance on detecting thin, irregular shaped, or low-point-density
branches. Bucksch et al. (2009) detected individual trees by us-
ing a region growing approach starting from seed points. They
have used individual trees for breast height diameter estimation
after skeletonizing the point clouds.

We have noticed that these graph generation, model matching and
3D feature extraction based methods not only need considerable
amount of processing time, but they are also not able to detect a
tree when it has a different 3D geometry than the trees which are
used for training the algorithm parameters.

The literature survey shows us that; most of the previously pro-
posed approaches have complex implementation steps, they gen-

erally need high computation time and accurate parameter defini-
tion plays an important role in order to obtain successful results.
We believe that, there is still a need for fast and reliable tree clas-
sification algorithms for processing large data sets which include
trees but also many other types of objects. Herein, we propose an
automatic approach to classify tree points in laser scanning point
clouds. The classification is done by generating a 2D probabil-
ity matrix which is an imaginary surface approximately on the
ground layer level. This probability matrix highlights the possi-
ble tree trunk locations and it helps to identify if a point belongs
to a tree. The resulting point cloud basically has the same x, y,
z coordinates as the input points. However it contains one extra
column which indicates if the point belongs to the ’tree’ class or
’non-tree’ class. We test the algorithm on mobile laser scanning
(MLS) and airborne laser scanning (ALS) point clouds.

2 TREE CLASSIFICATION

Before identification of individual trees for further detailed anal-
ysis, an important and helpful step is to classify the tree points
in the input point cloud. This classification basically refers to as-
signing a class value 1 to the points which belong to a tree and
a class value 0 to the points which belong to other objects in the
point cloud. Once tree points are separated from points sampling
other objects, it is easer to identify individual trees and making
necessary measurements on them.

For classifying the points in the input point cloud as tree points,
we introduce a new approach based on the following steps;

1- Generating a probability matrix
2- Selecting maxima which indicate the locations having high
probability to have a tree trunk
3- Assign points to the ’tree’ or the ’non-tree’ class
4- Filter the ground points
In the following parts, we explain each step in detail.

2.1 Generating A Probability Matrix

Our classification method works in 3D space and keeps the orig-
inal locations of the 3D points in the cloud. However, at the
processing stage, we use a 2D matrix (which we will call the
V (x, y) probability matrix) for making a decision about the ap-
proximate locations of the tree trunks. This 2D matrix is an imag-
inary grid in the (x, y) plane, appearing between (Xmin, Ymin),
(Xmin, Ymax), (Xmax, Ymin) and (Xmax, Ymax) geographical
coordinates. Here, Xmin, Xmax and Ymin, Ymax correspond to
the minimum and maximum x, and y coordinate values of the
input points. The grid step sizes of the V (x, y) matrix are deter-
mined by considering the ground sampling resolution of the point
cloud and the diameters of the smallest trees (0.5 meters in our
examples) that we would like to be able to classify correctly.

We introduce the steps of the algorithm on a tree point cloud ex-
ample given in Figure 1.(a) which shows a mobile laser scanning
point cloud from a view angle perpendicular to the (x, z) plane.
The same point cloud is shown in Figure 1.(b) having false col-
ors corresponding to the height values of the points. Figure 1.(c)
shows the calculated V (x, y) matrix which is also false colored
in order to show the differences more clearly.

The pseudocode given in Figure 2 presents the algorithm that we
use to compute and to assign values to the grids of the V (x, y)
matrix. The V (x, y) matrix is filled with zero values at each grid
as an initial value. Here Pnum is equal to the total number of
points in the input point cloud P . The symbols P (i).x, P (i).y,
P (i).z stand for the x, y, z coordinates of the i-th point of the
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Figure 1: (a) An example tree point cloud from a mobile laser
scanning data, (b) The same tree point cloud with height values
assigned to the points as false color, (c) The calculated V (x, y)
matrix is shown with false colors where the red color corresponds
to the highest and the blue color corresponds to the lowest value.

point cloud P respectively. The X and Y variables indicate the
position of a point in the 2D grid. Finally, the xstep and ystep
variables stand for the grid size in X and Y dimensions respec-
tively. In this study, we choose xstep equal to ystep. The value
0.3 (in meters) is assigned to these variables as grid step size in
our example.

If the grid step size is very large then we can miss some trees
which do not have a large diameter, if the step size is too small
then we might use unnecessarily large memory space. Therefore,
the user must decide to set the grid step size wisely considering
the diameter of the smallest tree which is interesting for the ap-
plication.

2.2 Selecting Local Maxima Points

The ’for’ loop in the pseudocode given in Figure 2, basically
adds the height of every point into the corresponding grid. We
expect the V (x, y) matrix to have very high values at the posi-
tions where tree trunks are located, since there will be many trunk
points which correspond to the same grids of the (x, y) plane.
Therefore after generating the V (x, y) matrix, local maxima of
the matrix are searched by sliding a w × w grid size window. In
our study, we choose w = 5. Since building facades, cars and
other large objects do not generate local maxima in the V (x, y)
matrix, we do not have a challenge to do further processing to
eliminate them. However, we cannot prevent false detection of
pole like objects. The detected (xt, yt) local maximums are as-
sumed as approximate tree trunk positions which unfortunately
contains some light poles and traffic signs as well.

2.3 Assigning Points to Two Different Classes

The detected (xt, yt) locations are used in the classification pro-
cess that we perform with the algorithm shown in pseudocode in
Figure 3.

In this pseudocode, the dist variable is the minimum 2D distance
to the closest tree trunk position in the grid. distthresh is the

Figure 2: Pseudocode of generating the 2D probability matrix

Figure 3: Pseudocode of the algorithm for assigning tree class
labels to the points

maximum allowed distance to the closest tree trunk position. So,
for each 3D point the 2D Euclidean distance to the closest trunk
location is determined. If this distance is below a given threshold
distance then the point is assigned to that tree trunk.

2.4 Filtering the Ground Points

After assigning ”1” and ”0” labels to the points (which indicate
that they are from the ’tree’ class or ’non-tree’ class respectively),
we apply a filtering process in order to move some of the ground
points from the ’tree’ class to the ’non-tree’ class. To do so, we
use a (2 ∗ distthresh × 2 ∗ distthresh) size window which is
located at the center of each tree trunk. Filtering is applied to the
points which fall into this 2D grid space limited by the window
when they are projected on the (x, y) plane. Inside of the window,
each point which has class label ”1” is checked, and the point
with the lowest z position is selected as a reference (called zl).
Again inside of the window, each point with class label ”1” is
checked and the points which have z value lower than zl + ztol
is moved to the ’non-tree’ class, by changing their class labels
to ”0”. Here, ztol is the tolerance value that we select as 10%
of zl in our application. zl is computed again for each window
position, since it is not a global value for all input point clouds.
In Figure 4, we provide the detailed mathematical steps of the
ground filtering function.

Figure 4: Pseudocode of the algorithm for filtering the ground
points of the tree class.
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2.5 Known Issues

Unfortunately this method cannot avoid assigning wrong classi-
fication labels to the points which are coming from other objects
around the tree such as traffic signs, light poles or people stand-
ing very close to the tree trunk. Figure 5 shows a focused view
of the tree classification result on a subsection of an MLS point
cloud. As it is seen in the bottom figure, the light poles and the
traffic lights are labelled as trees in the result point cloud.

Another important issue to take care of is how to choose the ztol
value. If it is too high then some lower parts of the tree trunk will
be eliminated. On the other hand, however, if the tree is standing
on a slope or if the data is noisy (having some redundant very
low values) then some of the ground points will not be filtered. In
the following section, we provide results of the tree classification
algorithm on mobile and airborne laser scanning point clouds.

Figure 5: Top; a sub-section of the MLS point cloud having trees,
light poles and traffic signs in the same row (light poles and traffic
signs are shown with circles). Bottom; tree classification result of
the same sub-section, which also holds the false detection of light
poles and traffic signs (tree class is indicated by green color).

3 EXPERIMENTS

3.1 Data Description

We test the algorithm on TUDelft campus point clouds which
are acquired by two different sensors; one is from a mobile laser
scanner and the other one is from an airborne laser scanner. The
mobile laser scanning point cloud is acquired by the FUGRO
company in 2013. This mobile laser scanner can collect approx-
imately 11500 points per square meter with a ranging accuracy
of less than 2 cm. The airborne point cloud is obtained from the
free data base called ”Actueel Hooghtebestand Nederland” AHN
(2008). AHN2 (the second and the higher resolution point cloud
data base) data of the study region have been acquired in 2008.
The AHN2 data that we use in this study is gridded in (x, y) space
at 0.5 meter spatial resolution. In Figure 6, we show the original
MLS and AHN2 point clouds together.

In order to evaluate the algorithm performance on different sen-
sors, we take the intersecting part of the point clouds. The upper
row image in Figure 8 show the intersection area of the AHN2
and MLS point clouds.

3.2 Classification Results

We test the algorithm on these two point clouds. The bottom
row of the same figure shows the tree classification results where
points from the ’tree’ class are shown with a vibrant green color.
In order to be able to talk about the performance of the results
we use groundtruth point clouds which we have generated by se-
lecting tree points manually. Table 1 tabulates the performance
values for AHN2 and MLS point clouds separately. The column
called ’Points’ holds the total number of points in the input point
cloud that we process. The ’Tree Points’ column holds the tree
points in the groundtruth point cloud. The ’Detected’ column
shows the true detection. However the light poles and traffic signs
which are very close to the groundtruth points are also labelled
as true detection. More detailed manual calculation is necessary
when points coming from these non-tree objects are wanted to
be eliminated. Unfortunately, the AHN2 data misses small trees
since their point density does not appear high enough to be de-
tected. On the other hand, the MLS data misses the trees which
are further away from the road where the laser scanning vehicle
has travelled. In this case, the trees which are far away from the
scanning position appear in lower point densities. In Figure 7, we
illustrate the point cloud density of the MLS point cloud by false
coloring. The color palette assigns red for the highest and blue
for the lowest local point density values. The red color points
make the driving trajectory visible and it is seen that the point
density decrease when the objects are further away from the laser
scanning vehicle.

The last column of the table 1 shows the very low and very promis-
ing computation time needed for classifying these large point
clouds. The computation time necessary for processing these two
point clouds are very similar since the number of points and the
surface area size are almost the same. The number of points in the
input point cloud directly affects the time needed for probability
matrix generation and also for assigning points to two different
classes. The ground point filtering step is mostly affected by the
grid size selection and the sliding window size. Smaller grid size
and larger sliding window increase the computation time. The
scene is also changes the computation time needed to process the
point cloud. Having more trees in the scene causes having more
local maxima and more distance computation in order to assign
every point into the correct tree trunk.

Data Points Tree
Points

Detected % TP time
(sec)

AHN2 231177 120155 111301 92,63 29,66
MLS 281405 160807 157225 97,77 29,57

Table 1: Tree classification performances on AHN2 and MLS
point clouds of a large area at TUDelft campus.

3.3 Case Study

In order to present the classification performances a little bit more
clearly, in Figure 9, we present the classification for a small sub-
section of the MLS point cloud. We also provide Table 2 to give
the exact point numbers of the clouds which are presented in the
sub-figures.

Figure 9(a) shows the original MLS point cloud section that we
consider in more detail. Figure 9(b) shows the point cloud that
we have manually labelled for creating a benchmark. The green
points belong to the benchmark tree points which are used for
classification performance calculation. Figure 9(c) shows the sub-
sampled and automatically classified point cloud. Here, red points
represent the points from the ’tree’ class and blue points represent
the points from the ’non-tree’ class. Figure 9(d) shows the same

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W5, 2015 
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
Editors: S. Oude Elberink, A. Velizhev, R. Lindenbergh, S. Kaasalainen, and F. Pirotti 

doi:10.5194/isprsannals-II-3-W5-137-2015

 
140



Figure 6: The original AHN2 point cloud (the larger cloud) and MLS point cloud (containing the color information for each point) are
shown together.

Figure 8: The intersecting AHN2 and MLS points are shown in
the top and the bottom row respectively. The points which are
classified as trees are shown in green.

result together with the original MLS point cloud. Finally, Figure
9(e) shows the benchmark points (in white color) and the auto-
matically classified point cloud together. Here, blue points are
accepted as true detection and the warmer colors are accepted as
false detection since they are further away from the benchmark
cloud. As can be seen in Table 2, the original MLS cloud has
524,475 points. In order to reduce the computational difficulty,
this cloud is subsampled before classification. The subsampled
cloud contains 21,485 points and 17,794 points are classified into
the ’tree’ class automatically. By comparing the 3D Euclidean

distances to the closest benchmark points, we have concluded that
202 of 17,794 points are more than 1m. further away from the
benchmark. We have assumed those points as false detections.
We have computed the false detection percentage in this small
area as 1.13% and correct detections as 98.86%. As can be seen
in the results given in Figure 9, the false detections are coming
from the points of light poles and the cars which are parked very
close to the tree trunks.

Data Points
Tree points in the original MLS section (Fig. 9(a),
Fig. 9(d))

525,475

Total points in the subsampled MLS section (Fig.
9(c))

21,485

Detected tree points in the subsampled MLS sec-
tion (Fig. 9(c), Fig. 9(d))

17,794

False tree detection in the subsampled MLS sec-
tion (Fig. 9(d))

202

Table 2: Tree classification performances on a small section of
the MLS point cloud.

4 CONCLUSIONS

In this article, we have introduced a new method for classify-
ing trees from laser scanning point clouds. The reliability of the
method is very high by the fact that it requires only few parame-
ters and that results are not heavily affected by slight changes of
the parameter values. We test the algorithm on mobile laser scan-
ning and airborne laser scanning data of a region inside of the
TUDelft campus. The algorithm distinguishes trees from other
urban structures easily without needing to check detailed geome-
try of the segments. This is the main advantage of the algorithm.
The simple yet reliable approach makes the algorithm very fast
and gives advantage of running the program on different plat-
forms easily, without having need of heavy mathematical compu-
tation methods and library dependencies. Unfortunately, we can-
not prevent false detection of light poles and traffic signs in the
’tree’ class. In future studies, we will be focusing on providing
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mathematical solutions to overcome this challenge. Our current
experimental results indicate the reliability of the proposed algo-
rithm and its possible usage when fast and big data processing is
needed.
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Figure 7: The local point density of the MLS point cloud is illustrated with false color. The warm colors which correspond to high
density values also give clue about the driving trajectory of the mobile laser scanning vehicle.
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Figure 9: The classification performance on a small section of the MLS point cloud is represented with details. (a) The MLS point cloud 
section, (b) The manually labelled tree points in the MLS point cloud section (green points are chosen as benchmark for performance
calculation), (c) The subsampled and automatically classified point cloud (red points are from the ’tree’ class and blue points are from
the ’non-tree’ class), (d) The subsampled and automatically classified point cloud is shown together with the original MLS point cloud,
(e) The benchmark points (in white color) and the automatically classified points are shown together (blue points are accepted as true
detection, the warmer colors are accepted as false detection since they are further away from the benchmark cloud).
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