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ABSTRACT:

Laser scanner point cloud has been emerging in Photogrammetry and computer vision to achieve high level tasks such as object tracking,
object recognition and scene understanding. However, low cost laser scanners are noisy, sparse and prone to systematic errors. This
paper proposes a novel 3D super resolution approach to reconstruct surface of the objects in the scene. This method works on sparse,
unorganized point clouds and has superior performance over other surface recovery approaches. Since the proposed approach uses
anisotropic diffusion equation, it does not deteriorate the object boundaries and it preserves topology of the object.

(b) Point cloud

Figure 1: The laser scanner point cloud may be noisy, sparse,
prone to systematic errors. We propose an approach to overcome
these problems and reconstruct surface of the objects in this pa-
per.

(a) Image

1. INTRODUCTION

Surface of the objects can be observed by applying different tech-
niques such as stereo images, laser scanner or structured light.
These techniques provide 3D coordinates of the sampled points
of a surface called point cloud. Depending on the technology ap-
plied to collect data, the noise in 3D coordinates can vary from
less than millimeter in high quality laser scanners to few centime-
ters in stereo images. The resolution of the point cloud is also a
factor of the applied technology. The stereo images and struc-
tured light provide dense point cloud, in contrast the laser scan-
ner may collect sparse point cloud especially using inexpensive
laser scanners. The point cloud may be affected by systematic er-
rors. The stereo images and structured light may suffer from light
overexposure or lack of texture may result the failure in these
approaches. The laser scanner may be affected by the platform
motion while the data is collected. In autonomous driving appli-
cations, the sensors’ point of view is restricted to the installation
of these sensors on the platform and therefore, objects are most
likely to be observed from one point of view. If the object is seen
from one point of view, back of the object will be self-occluded
and therefore, the generated surface partially represents surface
of the object. If the object is seen from different perspectives,
surface of the object can be fully generated. Figure (1.a) shows
the image of an object and the sampled points are projected to
the image in Figure (1.b). The sparsity of the point cloud can
be seen in this figure. This paper presents 3D super-resolution
approach to overcome aforementioned problems. In order to 3D
super-resolution We use a 3D generalization of anisotropic PDE
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based regularization which has been used for various computer
vision applications including super-resolution, restoration , de-
noising , and inpainting (Tschumperlé and Deriche, 2005, Sapiro,
2006).

This paper is organized as follows. The surface reconstruction
approaches are briefly described in section (2.). The implicit rep-
resentation of surface and anisotropic diffusion equations using
local patches are given in section (3.). The implementation as-
pect of the proposed approach is discussed in section (4.) and it
is explained how the noise can be handled in laser scanner data.
Experiments are described in section (5.), the results of our ap-
proach is compared to two popular approaches and conclusions
are drawn in section (6.).

2. LITERATURE REVIEW

Laser scanner point cloud can be used for high level tasks in
computer vision such as object tracking, object recognition and
scene understanding. The observed depth of the object makes
laser scanner more reliable to track objects rather than the image
based object tracking. Held et al. used laser scanner and cam-
era in multiple epochs to precisely track the objects (Held et al.,
2014). In addition, it has been shown that the histogram of ori-
ented depth can be employed to recognize people in the scene
similar to the histogram of oriented gradient (Premebida et al.,
2014). However, the use of the histogram of oriented depth may
be adversely affected in sparse point clouds and the surface re-
construction approaches may be required to improve the density
of point clouds. It has been shown that the success rate of the
object recognition increases when the point cloud and images are
used together (J. Dolson and Thrun, 2010). Surface of an ob-
ject can be represented in different ways. In addition to the point
based representation which is shown in Figure (1.b), surface can
explicitly approximated by triangular mesh, spline and its deriva-
tives (Szeliski, 2010, Lee et al., 1997). Moreover, surface can be
implicitly represented using level sets. In this approach the space
is divided into inner object space and outer object space and an
indicator function is defined as signed distance function with dif-
ferent signs for inner and outer object space and the surface is
zero-crossing of this function (Osher and Fedkiw, 2003). Among
many surface reconstruction algorithms marching cubes , mov-
ing least squares (MLS), and Poisson surface reconstruction may
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be more popular. Marching cubes uses zero-crossing of the im-
plicit surface representation to recover 3D model (Lorensen and
Cline, 1987). MLS applies a moving window to fit a polyno-
mial to the points in this window (Pauly et al., 2003, Alexa et
al., 2003) and therefore, it is locally optimum. Kazhdan et al.
(Kazhdan et al., 2006, Bolitho et al., n.d., Kazhdan and Hoppe,
2013) suggested to use implicit shape model to fit surface to the
sparse sampled points. This approach obtains a global optimum
surface which may not preserve topology and fill the holes in the
object. Lim and Haron (Lim and Haron, 2014) have surveyed
surface reconstruction techniques in more details. There are also
some scientific endeavors to recover the normal vector field of an
object. Tasdizen and Witaker have used an anisotropic diffusion
tensor to smooth the normal vector field while it preserves the dis-
continuities (Tasdizen et al., 2002, Tasdizen and Whitaker, 2003).
Anisotropic filtering of the normal vector field and curvature ten-
sor is used to improve the quality of meshes of surface (Liu et
al., 2007). Boulch and Marlet address the ambiguities of the nor-
mal vector field and edges and corners and provide a solution to
handle it (Boulch and Marlet, 2012).

3. METHODOLOGY

In this section, we introduce mathematical foundation of the pro-
posed approach. First, local coordinate system is defined and 3D
surface is converted to depth scalar field. The foundations of the
geometric anisotropic diffusion equation are described later.

3.1 The Local coordinate system

Every surface can be considered as a two dimensional manifold
embedded into three dimensional Euclidean space, S : A C
R® — RZ?. A is a subset of R® that encompasses the surface.
If we assume that the surface is smooth and consequently differ-
entiable, it becomes a Riemannian manifold and tangent space
can be defined. Let’s assume that tangent space, T'(u, v) is tan-
gential to the surface at point X and it is spanned by orthogonal
vectors u and v, we define the local coordinate system in the way
that its origin is located at point X and u, v and n are the bases
of this coordinate system. n is normal vector of the surface at
point X. Therefore, every point X’ in the vicinity of point X
may be expressed as X' = [ux/,vx/, O]T in local coordinate
system. Point X’ may be also represented in three dimensional
Euclidean coordinate system of sensors, which is called global
coordinate system in this paper, X' = [z, %, 2] . Subscript g
stands for global coordinate system and subscript [ in local coor-
dinate system is left for brevity. If the neighborhood of point X,
Qx, becomes larger, the surface diverges from tangent space and
X' = [ux/,vx/,0]" is not valid anymore. Let’s assume the dis-
tance of the every point on the surface from its projection in tan-
gent space is W (u, v). Itis a scalar field referred as distance map
or depth map. Therefore, every point X’ in the neighborhood of
point X can be represented as X' = [ux/, vxs, W (ux’, vx/)]—r
in tangent space. In order to recover the surface, it suffices to
estimate the scalar field W (ux/, vx/) and convert the points in
local coordinate system into global coordinate system. Figure
(2) shows the profile of local coordinate system. Horizontal axis
represents the tangent space where W (u,v) = 0, and vertical
axis shows the normal direction to the surface. Point X shows
the origin of the coordinate system and every point X’ has (u, v)
components in tangent space and W (u, v) component in normal
direction.

Furthermore, The choice of the neighborhood is of importance:
the large neighborhood may fill the holes in the objects and overex-
tends the boundaries of the surface. In contrast, small neighbor-
hood may not reconstruct the surface and does not overcome the

-50

Figure 2: The local surface is shown by a quadratic curve. The
coordinate system is defined in the way that point X is the origin,
(u,v) are the basis vectors in tangent space and n is the basis
vector in normal direction. Therefore, every point X’ can be rep-
resented as [ux/, vx/, W(ux/, vxs )]T

sparsity of the sampled points. It is also preferable to change the
neighborhood based on the geometry of the sampled points.

It should be noted that the proposed approach is condition to the
convexity (or concavity) of the surface in 2x. The convexity
(or concavity) of the surface in the neighborhood guarantees that
W (ux,vx) is a function of ux and vx. Itis obviously invalid
for realistic scenarios, but most of the objects may be assumed to
be convex (or concave) in local neighborhood.

If a surface is an open surface, some of the points are located at
the boundaries of the surface. The boundaries of an object can be
represented as a curve and it can be assumed as one dimensional
manifold embedded into two dimensional space, C' : 7 C R? >
R', where 7 is the subset of R? that encompasses the boundaries.
The boundaries of the surface can be considered as the silhouette
of an object in image processing and may be used to create the
histogram of the oriented depth for object recognition (Premebida
et al., 2014).

3.2 Geometry based surface reconstruction

Laser scanner collects samples of points from surface of an object
in the scene, X*. The surface can be reconstructed at this local
neighborhood if the depth map, W (u, v) is estimated in this re-
gion. The surface reconstruction is an inverse problem and it is
ill-conditioned. Therefore, we apply the smoothness assumption
of the surface to regularize the surface reconstruction such that

min E(W):/Qqﬁ(HVWH)dudv, (1)

W:Q—R

where VW = [Z¥ 9W] — [WW,,W,] is the gradient of the
depth map, ®(.) is an arbitrary differentiable convex function and
[[VW]|| is Lo norm of VW at point X’. The Euler-Lagrange
equations can be applied to minimize (1) and it leads to isotropic

diffusion equation

(@3]

ot — ,
W — ifX e X',

{GW = div(VW) = AW ifX' ¢ X'
ot

where A is the Laplacian operator and (2) indicates to a famous
problem in partial differential equation known as heat flow. Here,
we considered ®(.) as an Lo norm quadratic surface. Equation
(2) can be solved using gradient decent minimization in few it-
erations. Obviously, we need an initial estimation of the surface
and we can update it in every iteration such that

ow

Wk+1 :Wk - W

9, 3)
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where 4 is the step size at each iteration. Equation (1) assures that
the surface is smooth, but it may smooth the edges and corners. In
order to preserve the edges and corners, a diffusion tensor can be
applied to (1). A diffusion tensor, D can be multiplied by VW in
(1) to provide anisotropic diffusion filtering. Therefore, ¢(VWW)
in (1) is replaced to ¢(DVW). Solution of (1) can be estimated
using the gradient descent in an iterative scheme

SV = div(DVW) ifX' ¢ X' @
o = ifX' e X"
The term (%V = 0 guarantees that the diffusion equation main-

tains the sampled points intact and smoothes other points on the
surface. In order to preserve the edges and corners, D should be
selected in the way that it suppresses the smoothing in the direc-
tion of VI¥. Perona and Malik suggested to use inverse of expo-
nential function of the squared gradient in their work (Perona and
Malik, 1990). If the sampled points X; in the neighborhood of
point X are converted to the local coordinate system, the local co-

ordinates of these points become X; = [uxi, vxi, W (uxi, vxi)] "

. W (i i) — W (ux,vx)
VW can be approximated as W,, o ¥ (xi-txi) = Wiuxvx)
Ui —UX
W(uyivgi) o Wluxivgi) =W(ux,vx) _ Wluyivgi)
Uyi and W, ~ Vyi —UX - Vxi :
We can generate the structure tensor such that

C=VW'Vw. 5)

The structure tensor represents local geometry of the surface and
its eigenvectors show the maximum and minimum gradient di-
rections W. The eigenvalues, A\1 > A2 > 0, and eigenvectors
01, 6, of structure tensor show how the points are distributed in
the neighborhood. In order to preserve the edges and corners, the
smoothing filter should be panelized where the gradient is large.
The eigenvalues of the structure tensor indicate to the magnitude
of the gradient and the eigenvectors are the direction of the gra-
dients. Let’s define the diffusion tensor, D such that

D= fl (>\17 A2)9101T + f2(/\17 A2)9292T. (6)

If f1(.) and f2(.) are decreasing functions. There are many vari-
ations of f1(.) and f2(.), but it should be defined in the way that
the large gradient should be suppressed. Therefore, the diffusion
process does not pass through the discontinuities such as edges
and corners in the surface. In this paper, we chose f1(.) and f2(.)
as follows

_ 1
{fl(AhA?)— VAT ™
F2(A, 22) = s

For more details, readers are referred to (Tschumperlé and De-
riche, 2005, Sapiro, 2006). Solution of (4) is equivalent to an
oriented Gaussian smoothing. Therefore, anisotropic diffusion

4. IMPLEMENTATION

A simple method to convert local coordinate system to global
coordinate system is presented. This discussion is followed by the
initial estimation of the surface and the numerical conditioning of
the problem.

4.1 Transformation between local and global coordinates

The local coordinate system is defined by three vector bases u,
v, and n and it is originated at point X. Although u and v are
chosen in the directions of minimum and maximum surface cur-
vature in many applications, their directions are not important for
the proposed approach as long as they are orthonormal and the
transformation between local and global coordinate systems is
known. Therefore, it is sufficient if the rotation between z axis
(in global coordinates system) and normal to the surface at point
X (in local coordinate system) is calculated. This transformation
can be estimated such that

n= R1(Q)R2(ﬂ)Z. )

Ifn = [n1,n2,ns]andz = [0,0, 1], itleads to o« = — arctan(;:2

and 8 = arccos \/n2 + n2. Obviously, the translation vector is
the coordinates of point X and for every point X’ in the neigh-
borhood in local coordinate system can be converted to global
coordinate system

X, =Ri(a)R2(B)X] + X (10)

4.2 Initial surface

Geometry of the surface in a local neighborhood can be repre-
sented by structure tensor. Unlike (5), where the structure tensor
is created in local neighborhood, the structure tensor for the sam-
pled points can be calculated in global coordinate system. The
structure tensor for 3D Euclidean coordinate system (global co-
ordinate system) is created such that

Gaxs = (X} — X)) T (X] — X,). an
Now, the structure tensor can be decomposed into its (A1 > A2 >
A3 > 0) and eigenvectors (61, 02, 603). The eigenvector corre-
sponding to the least eigenvalue is aligned to the normal vector
of the surface. It can be used to generate tangent space which has
been defined in section (3.). The other eigenvalues and eigen-
vectors indicate to the shape of the object in the neighborhood
of point X,. The other two eigenvectors (61 and 62) to define
the neighborhood that can be adjusted based on the geometry
of the object. The eigenvalues A1 and A2 provides the major
and minor axes of an ellipse in tangent space to approximate

equations are equivalent to oriented Gaussian kernel , K, w(Tschumperlg . .. shborhood. If the points are located at a plane, therefore

and Deriche, 2005, Sapiro, 2006) such that

K(t) = 14 exp(—*2%)
{W(t) = K(t) * W(0), ®

where ¢ stands for the number of iterations, * is convolution oper-
ator, W (0) indicates to the depth scalar field at initial surface, and
x is the location of the location of the element in the kernel. This
method is initially applied for image enhancement and the use of
it in surface reconstruction may require some modifications and
we will address it later.

A1 > A2 > 0 and ellipse and consequently neighborhood be-
come large (if A1 ~ A2, it becomes circle). If the points are
located at a narrow part of the object (Roof of the car is seen like
anarrow object in Figure (1.a) ), A2 ~ 0 and the ellipse elongates
the narrow part. Therefore, it enforces maintaining the geometry
of the object and prevents any overgrowing region. Later, it is
shown that this property maintains topology of the surface. In
order to dispense the points in the neighborhood of point X, a
100 x 100 grid is created around the point X and the depth map
of the surface is estimated for every point on the grid. Assuming
the depth of each point on the grid is zero, the surface is approx-
imated with pieces of planes. However, it is preferable if higher
order polynomial is fit to sampled points X* in the neighborhood
of point X. A quadratic surface is used here to approximate the
depth for the points on the grid. Let’s assume the quadratic form
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Figure 3: A 100100 grid is created to generate the surface at the
local neighborhood. This local neighborhood is shown in Figure
(1.a) with a red rectangle. Depth map should be estimated for the
points on the grid to reconstruct the surface in this neighborhood.

is like az?® +by? +cxy = z forapointp = [x,y, 2] . If the sam-
ple points are X; = [ux:,vxi, W (uxi,vxi)] ', the quadratic
form of the surface can be estimated such that

Ux1Ux1

= ]

le Ux1Ux1 Ux1VUx1
: (12)
Wxn UXnUxXn

VUXnUXn UXnUXn

The constant term in (12) is considered to be zero to guarantee
that the surface passes through the origin. The first order terms
are also assumed to be zero in order to keep the slope of the sur-
face at the origin zero and maintain the normal vector. The second
order coefficients can be estimated in (12) using least squares and
the quadratic form is used to estimate the depth of the grid points.
Figure (3) illustrates a 100 x 100 grid points and the neighboring
sampled points. The red dots are the sampled points in the local
coordinate system. The color of the surface shows the depth of
every point in the grid. This patch which is used in this paper
to explain the proposed approach is shown in Figure (1.a) with
a red rectangle. This patch is located at the boundary of the ob-
ject and the sampled points are distributed in half space of local
coordinate system.

4.3 Normalization

Solution to (2) is equivalent to the convolution of the depth map
with a Gaussian kernel based filter, K. The exponential function in
(8) may lead to very large numbers especially if the points are not
evenly distributed in space. Therefore, it should be normalized to
overcome the numerical ill-condition problem. The maximum
distance of the sampled points, X*, in the neighborhood to the

V3)

point, X, dpqz, is calculated and scale is defined as s = 2

This scale maps the distance such that [0,00] — [0, 1]. "The
Gaussian kernel is also mapped such that ;- [0,1] — = [2,1].
The similar scheme is commonly used in Photogrammetry and
computer vision where the interest points are not evenly distributed
over the image space. For instance, the significant improvement
has been shown in homography estimation using numerical con-

ditioning (Hartley and Zisserman, 2004, Hartley, 1997). Here, we

(a) Initial state

b)k2 > k1

(C) k’g >~ k‘l

Figure 4: The mechanical system which can be interpreted as
the diffusion equation and noise suppression in geometric surface
reconstruction. If the boxes move vertically and initial state of
this mechanical system is like (a), The final state of the system
depends of the constant factor characteristic of the springs. If
ko > k1 the boxes move toward walls and if k2 ~ k1, the final
state suggests that the boxes should be almost at the same level.

generalized the numerical conditioning in 2D image space for the
sparse points in 3D Euclidean space.

4.4 Noise in sampled points

Up to this point it is assumed that the sampled points are accu-
rate and the surface should be constructed in the way it passes
through these sampled points. It may arguably be considered
acceptable since these points are the only observations from the
surface. As it will be discussed later, the laser scanner range er-
ror may be significant and the sampled points may be noisy. In
addition, other systematic errors such as platform motion can ad-
versely affect the quality of point cloud. Therefore, the noise of
the sampled points should be suppressed in surface recovery. In
(2) and (4) the second term assures that the surface passes through
the sampled points. If the second term in these equations is re-
placed with % = ¢ for the sampled points (X’ € X%), the
surface does not pass through the sampled points anymore. The
value of ¢ which depends on the laser scanner range error bal-
ances how much the surface should follow the sampled points
and how smooth it should be. Figure (4) shows a schematic me-
chanical system that represents the concept of diffusion and noise
suppression. If the boxes in Figure (4) can move vertically and
their final position depend on only the force created by springs,
there will be an analogy between the surface recovery and the fi-
nal state of the springs. The upper and lower walls are similar
to the observed sampled points and the boxes are similar to the
generated surface. The springs can be interpreted as the relia-
bility of the sampled points. If the sample points are not noisy,
these points are reliable and the surface should be forced to pass
through the sampled points. If the sampled points are noisy, the
sampled points may be smoothed. Analogously, if the springs at-
tached to the walls are much stronger than the springs connecting
the boxes, k2 > k1, the first and last boxes will get close to the
walls (b). If we consider that the springs attached to the walls are
not stronger that the springs connecting the boxes, k2 ~ k1, and
the boxes will be positioned in a smooth curve (c).

5.  EXPERIMENTS AND RESULTS

The objects are segmented from dataset 5 in KITTI dataset (Geiger
et al., 2012, Geiger et al., 2013). We focused on the moving ob-
jects but the results are valid for the static objects since the motion
cue is not applied. Velodyne HDL-64E sensor is used to recon-
struct surface of the object and the PointGray Flea2 color camera
is used to color the point cloud and provide a better visualization.
Figure (1.b) shows the point cloud superimposed on the image.
The sampled points are 2 centimeters accurate in range, they are
sampled in 0.09° angular resolution and laser scanner has 120
meters range (Geiger et al., 2012, Geiger et al., 2013). The im-
ages are 1.4 Megapixels, 90° opening angle and global shutter.
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The cameras and laser scanner are calibrated and external and
internal calibration parameters of the sensors are known. The im-
age content is not used for surface reconstruction and we have
used the images for only visualization purposes. To the knowl-
edge of the authors there are not quantitative evaluation metrics
for surface reconstruction. Also, there is no benchmark for 3D
recovery in realistic scenario. Since laser scanner is one of the
most accurate 3D surface reconstruction methods, there are not
many options left to be used as the ground truth. As mentioned
earlier, the generated surface can be applied for object recogni-
tion. The boundaries of the generated surface are very important
in object recognition. Therefore, we discuss how well different
approaches can maintain the boundaries. In order to evaluate the
quality of each method, we project the generated surface into im-
age and compare the boundaries of the generated surface to the
boundaries of the object in image. In addition, topology of the ob-
ject may be important. Topology of an object may be represented
as the number of holes in the object. We have considered three
object in our experiments: car, cyclist and pedestrian. Car has
two (or more) windows that laser passes through them. There-
fore, topology of the object is two. For the cyclist case, topology
of the object is very complicated. The wheels of bike, handles of
bike and hands of cyclist may create holes. For the pedestrian,
surface do not have hole. It is arguably assumed that topology
should be preserved in this paper and explained if topology of
the surface can be preserved. Among many 3D surface recovery
approaches, we chose moving least squares and Poisson surface
reconstruction approaches and compared the generated surfaces
with the results of the proposed approach in this paper. These
approaches are popular in surface reconstruction and have been
commonly used to up-sample point clouds. Our approach and
MLS use local estimation of the surface, in contrast to Poisson
surface reconstruction that uses a global optimization to recover
the surface. All of these three approaches implicitly represent the
surface, but Poisson surface reconstruction uses level sets con-
cept to obtain 3D surface. Poisson surface reconstruction origi-
nally assumes that the surface is closed and some modifications
may be required to apply this approach to open surfaces. Further-
more, the proposed method and MLS populate the point cloud
and create more accurate point based representation of the sur-
face. Poisson surface reconstruction is mesh based surface rep-
resentation approach and surface is constructed from faces and
vertices here.

For surface reconstruction of car, we had around 500 sampled
points of the surface which are shown by red dots in Figure (5).
The density of the points was around 20 centimeters which could
change depending on the depth. As mentioned before, a grid of
100 x 100 is generated for every sampled point, the points outside
the elliptic mask are removed and the surface is generated with
more than 1 million points. For MLS approach a surface with 1
centimeter resolution which has more than 500,000 points is gen-
erated. A mesh with more than 6000 faces is created in Poisson
surface reconstruction. The vertices of the faces were extracted
from every face, they were colored and demonstrated in Figure
(5.c). Although mesh representation of the surface makes Pois-
son approach useful for many applications in computer graphics,
we converted it to the point-based representation and the results
of this method may be affected by this conversion. In order to
preserve the quality of images, we have save the results in Encap-
sulated PostScript vector graphics (eps) format. Obviously, illus-
tration of these points are not possible and the generated surfaces
are down-sampled to be visible on the screen. The same proce-
dure has been performed for cyclist and pedestrian in the scene.
The results shows that the projected point cloud of car properly
fit the image of car in our approach. In contrast, MLS and Pois-
son surface reconstruction methods are not able to recover the

boundaries of car properly and the generated surface exceeds the
boundaries. Topology of a surface may be described with the
number of holes in the surface. Our method is the only method
that preserves topology and MLS and Poisson approaches fill in
the holes (windows) in car. The surface of the cyclist has been re-
constructed using three approaches. Similar to car, the boundaries
of the cyclist cannot properly preserved in MLS and Poisson. In
contrast, our approach shows better performance and the gener-
ated surface is similar to the cyclist. There are some miniature
holes in cyclist using our method which it comes from the down-
sampling for visualization purposes. Also, there are some sam-
pled points on the leg of the cyclist and generated surface does
not cover them. Since we use noise suppression, the generated
surface does not follow the sampled points. However, the bound-
aries are still well-recovered in most regions. MLS and Poisson
surface reconstruction fail to recover the boundaries of the pedes-
trian. Compared to car and cyclist, we believe our method fail to
recover accurate boundaries of pedestrian. Our method connects
the stretched legs and hands of the pedestrian to the body and
creates a surface that may not be useful for applications such as
object recognition.

6. CONCLUSION

In this paper, we proposed a novel method that uses local implicit
representation of the surface and applied 3D generalization of
super-resolution to populate the point cloud and generate a dense
surface. The proposed approach has superior performance over
the existing approaches and it generates an accurate surface that
can be used in histogram of oriented depth for object recognition.
However, the proposed approach may connect different parts of
an object and fail to preserve the boundaries.

This paper can be extended in different ways: The image content
can be used to sharpen the edges and improve the quality of the
generated surface; A global term can be added to the regularizer
to assure the global smoothness of the surface; The generated
surface using this method can be used to recognize the objects
and the accuracy of object recognition using this method may be
studied.
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