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ABSTRACT: 

 

This study introduces a new method to reconstruct 3D model of railway tracks from a railway corridor scene captured by mobile 

LiDAR data. The proposed approach starts to approximate the orientation of railway track trajectory from LiDAR point clouds and 

extract a strip, which direction is orthogonal to the trajectory of railway track. Within the strip, a track region and its track points are 

detected based on the Bayesian decision process. Once the main track region is localized, rail head points are segmented based on 

the region growing approach from the detected track points and then initial track models are reconstructed using a third-degree 

polynomial function. Based on the initial modelling result, a potential track region with varying lengths is dynamically predicted and 

the model parameters are updated in the Kalman Filter framework. The key aspect is that the proposed approach is able to enhance 

the efficiency of the railway tracking process by reducing the complexity for detecting track points and reconstructing track models 

based on the use of the track model previously reconstructed. An evaluation of the proposed method is performed over an urban 

railway corridor area containing multiple railway track pairs.  
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1. INTRODUCTION 

A precise and effective maintenance of railway infrastructure 

should be guaranteed to find a solution for high operating safety 

and low maintenance costs. For this, the key operation is to 

perform the evaluation of as-built condition by analyzing track 

profile and level as well as overall geometry and undulation. 3D 

modeling of railway tracks can provide significant benefit in 

precisely monitoring potential risks of railway infrastructure. 

The track models allow users to: (a) accurately detect wear and 

deformation of tracks; (b) easily perform collision test and 

clearance measurement by simulating rail car operating along 

the entire track route; (c) carry out an immediate response to 

violations; (d) do cost-effective maintenance by keeping a 

database of railway systems up to date.   

Various techniques related to the railway track model 

reconstruction from Imagery and LiDAR data have been 

proposed in literature. The reported algorithms using images 

which are in b/w or color often depend on the following key 

assumptions to obtain a tractable practical solution to railway 

scene complexity. (a) As metals such as iron and steel are 

usually used for the track material, railway tracks are a 

distinctive object with uniform brightness. The methods 

normally start to extract supporting cues in detecting tracks 

based on the evaluation of similarity or homogeneity of image 

gradients between tracks and the corresponding background. 

However, the detection methods are sensitive to variation of 

background and noise caused by shadows and occlusions. (b) 

Railway tracks are obviously arranged parallel to each other 

with certain orthogonal distance. This allows us to use simple 

linear operators with the fixed search space for detecting tracks. 

However, the applications are limited to cases with the complex 

distribution of tracks. Especially in the railway switch area, 

tracks are placed closer together and go in different direction. 

Based on the key assumptions, many researchers have 

introduced different algorithms such as knowledge-based track 

edge detection (Espino and Stanciulescu, 2012), detection rule-

based self-adapting algorithm (Beger et al., 2012), spectral 

estimation and signal-processing based method (Resendiz, 

2013) and HOG feature-based track and turnout recognition (Qi 

et al., 2013).     

Compared to the image-based approaches, the LiDAR as an 

active remote sensing system enables detailed capture of a 3D 

railway scene with high point density for example in a number 

of hundreds per square meter. This allows us to readily detect 

track objects in the 3D space by compensating the weaknesses 

derived from image-based techniques. By using the massive 3D 

point clouds, one can refer to literature based on knowledge 

based track detection and Markov Chain Monte Carlo based 

track model parameter estimation (Oude Elberink et al., 2013), 

Kalman filter based track detection (Muhamad et al., 2013), 

cross-section based template matching (Yang and Fang, 2014).  

Despite the contributions of the LiDAR data-based studies, 

there are some limitations affected by the following: (a) 

geometric constraints of track structures and a priori 

information of railway scene are used. (b) The methods are 

sensitive to various factors including point density and scene 

complexity. This causes the uncertainty in separating track 

points from terrain points. To overcome the limitation, this 

study integrated track point detection with track modelling in 

the Kalman filter framework. It enhances the efficiency of the 

track modelling process by simultaneously capturing track 

points along the predicted track models and updating the 

previous track models.  
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2. METHODOLOGY 

Figure 1 illustrates the overall proposed approach, Kalman filter 

based railway tracking, for detecting and modelling railway 

tracks, which is mainly comprised of three steps: (a) pre-

processing for determining railway orientation and extracting a 

local search region, called a strip, from raw mobile LiDAR data. 

(b) Railway track localization for clustering track components 

and reconstructing initial track models. (c) Railway tracking by 

detection for simultaneously capturing railway points and 

modelling railway tracks in the Kalman filter framework. 

Finally, the track geometric information is calculated as by-

products which are very important factors in the precise risk 

monitoring of the railway tracks. 
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Mobile Laser Scanning Data
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Track Component Clustering
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Figure 1. Overall workflow of proposed methods for railway 

tracking in the Kalman Filter framework. 

 

 

2.1 Railway Orientation Determination 

In this study, a strip, is used as a data processing unit space for 

detecting initial track regions and generating initial track 

models. As the strip is extracted in the orthogonal direction to 

the orientation of railway track trajectory, the orientation )(T


 

is required to be calculated in advance. For this, a line equation 

with implicit form,  sincos:),( yxL  , is used and its 

parameters are estimated based on the weighted least squares 

minimization, thereby using the angle as the railway orientation. 

Where,   and   are the angle of line’s normal vector and X-

axis and the distance between the line and the origin 

respectively. The first step is to partition point data into a fixed 

grid space to effectively deal with the massive point clouds 

(Cho et al., 2004). Next, center points are calculated using 

member points belonging to each grid space. Lastly, the line 

parameters are estimated using the center points and their point 

densities of each grid space. As the point density more or less 

consistently decreases if points are far from a main track region, 

it can be considered as a weight value in the estimation process 

of the railway trajectory vector. The main reason is that the 

LiDAR system is a line-of-sight system with a certain angular 

resolution and operated along the main track region. Figure 2 

shows the approximated 2D vector of railway track trajectory 

)(T


 and the derived initial strip expressed by a rectangular box.  
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Figure 2. Determination of railway track trajectory, )(T


, (red 

colored line) and extraction of the initial strip (a rectangle). 

 

2.2 Railway Track Localization 

The extracted strip contains various objects such as terrain, 

vegetation, platform, power line as well as tracks. In addition to 

that, the track is a small and thin object and directly contacts 

with the ground even the some part of rail foot is integrated 

with the ground as shown in Figure 3. This causes the scene 

complexity and uncertainty for detecting the tracks and 

separating them from the ground. To deal with the uncertainty, 

in this study, we turn to the Bayesian view in which the 

uncertainty is quantified by the corresponding probabilities. As 

a single-track railway consists of two tracks, it is firstly required 

to detect track zones including the track conjugate pairs in the 

initial strip. For this, a supervised classification as a machine 

learning technique is adopted by using a set of features which 

represents unique characteristics in describing the track zone. 

Additionally, we also focus on only detecting rail head and web 

which are considered to comprise a full track object to avoid the 

scene complexity.  
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Figure 3. Railway formation: (a) track region image, (b) KS-60 

railway track standard (KRRI, Korean Rail Research Institute), 

and (c) laser scanning points representing the track. 
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2.2.1 Feature Extraction: Three types of features are 

proposed as follows: mixing coefficients of GMM (Gaussian 

Mixture Model), HOG (Histogram of Oriented Gradients), and 

contextual features. The proposed features for detecting a track 

can be considered as a scale- and orientation-invariant feature. 

However, the GMM feature can be affected by the scale that is 

the size of search window. To avoid the problem, the size of the 

moving window for this study is fixed using 1.5m×1.5m, which 

is derived from a priori knowledge on the orthogonal distance 

between tracks. Thus, the features are measured by discretely 

moving the search window from left to right side in the strip. 

First, in the GMM feature extraction, a local search space 

located around the track is composed of two main segments, a 

higher one for the track and lower one for the ground in the 

cross-section view as shown in Figure 3(c). It is assumed that 

the distribution of points belonging to the search space can be 

expressed by a mixture of two Gaussian distributions ),( N  

with expectation   and variance  . The Gaussian mixture 

model )(xp is formulated as:  

  

 
 


2

1

2

1

1),,|()(
i i

iiii xNxp   
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where, 
i is called mixing coefficients and used to normalize 

the Gaussian densities which sum to 1 and 0i for all i.  

 

Thus, as a track standard has a certain dimension (Figure 3(b)), 

we can expect that the difference of mixing coefficients 

becomes almost constant value in the moving window 

containing tracks. The GMM parameters including the mixing 

coefficients are iteratively optimized in the EM (Expectation-

Maximization) framework (Ozerov et al., 2011). 

Second, HOG is known as a robust local feature descriptor with 

scale and rotation invariance in the image domain introduced by 

Dalal and Triggs (2005) (Qi et al., 2013). To extract the HOG 

feature from point clouds, the first step is to divide the moving 

window into a regular grid space. Then, track candidate points 

are detected based on GMM-EM classifier in the each grid. 

Under the assumption that a track is a linear object in the local 

search space, the linear vector with its variance is generated 

using the track candidate points for each grid in the horizontal 

plane. Then, the orientations of the vectors  00 1800  ii   

are quantized into eight directions  8,...,1: ii  based on CLF 

(Compass Line Filter) suggested by Sohn et al. (2008). Lastly, 

those orientation vectors are accumulated by using the 

corresponding variances as a weight and the normalized 

histogram with range from 0 to 1 is generated as a HOG feature. 

Therefore, we believe that the one of eight vectors has a 

dominant value in the HOG feature histogram for the track zone. 

Third, a railway structure is constituted to be a pair of single 

tracks and parallel to each other. Based on the prior knowledge, 

a pair-wise geometric information comprising contextual 

features, OD (orthogonal distance between tacks) and IA (inner 

angle between the OD and the tack vector), can be extracted. As 

a result, the contextual features become the strong evidences of 

track existence and are expected to compensate the uncertainty 

related to the geometric similarity of objects’ appearance in 

detecting tracks.  

 

2.2.2 Track Region Detection: This step aims to detect track 

candidate zones and select a zone as a main track region in the 

Bayesian perspective. For this, we adopted a loss function (Eq. 

(2)) which is used to make as few misclassifications as possible 

by minimizing its expected loss (Bishop, 2006). We assign 

points belonging to the search window to one of two classes, a 

track region and non-track region based the cost function 

minimizing the total loss caused by the misclassification. 
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where,  
2,1 jxx  is a class set and 1 and 2 denote a label for the 

track and non-track region, respectively, given a set of 

measurements y .  2,1 i  is a set of possible actions in 

determining x . () is the loss for the actions.  yxP j |  is the 

posterior probability to be estimated and proportional to the 

multiplication of likelihood  
jxyP |  and prior probability )( jxP . 

In here, we use training data to learn Gaussian parameters and 

prior information for determining  yxP j | . As a track is a static 

object and shows the similarity of geometric configuration 

along the railway corridor, many training data sets might be not 

required for this study. Thus, one strip is randomly selected in 

the long railway corridor area and used for the training process.   

In the case of Bayesian decision rule for two categories like this 

study, the likelihood ratio can be formulated as shown in Eq. (3) 

and the corresponding class label is assigned to each search 

window. The loss ()  is normally quantified based on 0-1 loss 

function due to complexity reasons (Schluter et al., 2005). That 

is, ()  satisfies 0()   if ji  , otherwise, 1()  .  
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 Figure 4 shows the example of the railway candidate track 

regions and the selected main track region minimizing its 

expected loss.   

     

 

Figure 4. Potential railway track zone detection (dark gray 

color) and the main track region determination (blue color) in 

the initial strip. 

 

2.2.3 Initialization of track models: Once track candidate 

points are detected in the previous step, rail head points 

representing a track surface are required to be segmented from 

the track points for the use of reconstructing 3D track models. 

In this study, the mean shift clustering using a flat kernel is 

considered as an effective method in grouping rail head points. 

That is, as the spatial distribution of track points shows the 

combination of different geometric patterns (i.e., horizontal 

segment for rail head and vertical segment for rail web) with 

respect to the height direction (Figure 3(c)), the region growing 

technique can be easy to be applied and gather points 

representing the track surface using closeness property between 

points. The 3D track model is reconstructed using the 3rd 

polynomial model in the form: 
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  )(),(|,, yfzyfxzyxR VH

T
  (4) 

 

where, 3

3

2

210)( ycycyccyf   defines the 3rd polynomial 

model and H and V indicate the horizontal and vertical plane, 

respectively.  Tzyx ,, is defined in the local coordinate frame in 

which the y-coordinate follows the track vector.   

 

Figure 5 depicts the example of the track component clustering 

and track modeling. The process starts with the track region 

detected in the first strip (Figure 5(a)). Next, track points are 

detected based on the GMM-EM algorithm from the track 

region (Figure 5(b)). The track points are then segmented into 

rail head and web patches using the mean shift clustering 

(Figure 5(c)). Finally, 3D track models are reconstructed using 

rail head points (Figure 5(d)). 

 

  

(a) (b) 

  

(c) (d) 

Figure 5. (a) Main track region, (b) track candidate points 

(green color), (c) rail head point clustering (blue color), and (d) 

3D track model reconstruction (red color). 

 

2.3 Kalman Filter-based Railway Tracking 

The Kalman filter is known as a best linear estimator and 

recursive filter (Kalman, 1960) and is widely used in many real-

time applications including navigation, object tracking as well 

as economics (Faragher, 2012). That is, it is designed to 

estimate optimal parameters of interest from noisy 

measurements by minimizing the mean square error and 

improve the estimation from a series of measurements observed 

over time. In this study, as parameters used for the track 

tracking is not associated with a time epoch, a distance 

comprising a space along a track is used as the time variable. 

The proposed railway tracking procedure based on the Kalman 

filter framework is composed of two steps: the space update and 

the measurement update. The used state vector consists of two 

parts: track end point  Tyx TT  and 3rd polynomial model 

parameters for horizontal and vertical plane  TVH MM . In the 

space update, the track end positions at the current space (k) is 

predicted by Eq. (5) using the state vector at the previous space 

(k-1).  
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where, L  is a distance along the track vector and   denotes 

the orientation of the track vector. In this study, the L is 

dynamically determined by measuring deviation between a 

linear and non-linear track vector under the assumption that a 

track has a linear property in the local search area. Thus, the 

track end point is specified along the track vector at the position 

with the deviation which is more than the pre-determined 

tolerance.  

After the space update, a potential track region is determined 

using L  and rail head points are segmented from track points 

detected based on the GMM-EM technique and mean shift 

clustering. The state vector is then estimated using the track 

head points detected at the current space (k) based on the 

measurement update step of the Kalman filter.   

Figure 6 presents the entire process of Kalman filtering for 3D 

track modelling and railway tracking in the selected track 

trajectory. The process started with the results of the railway 

track localization in the first strip. 

 

Initial Condictions

1st Space Prediction

1st Measurement Update

2nd Space Prediction

2nd Measurement Update

3rd … Space Prediction

Final 3D Track Model

 

Figure 6. Kalman filter-based railway tracking procedure for 

detecting track points (blue color), 3D track model (red color), 

and track center line (blue color). 
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3. EXPERIMENTAL RESULT 

The performance of the proposed method was evaluated with 

mobile LiDAR data containing two double-tracks (i.e., four 

single track pairs) which is located between Uiwang and 

Cheonan near Seoul of South Korea. The laser point data are 

acquired from the Optech's Lynx M1 mobile mapping system 

mounted on a vehicle and installed on a train wagon with a 

speed of 60 km/h. The mobile mapping system is able to collect 

up to 1,000,000 points per second in the maximum range of 200 

m with 20% reflectivity. The relative and absolute accuracy of 

points are reported to be less than 1 cm and 5 cm, respectively. 

Figure 7 shows the test data covering about 100m (length) × 

50m (width) in which mobile laser points are colorized from 

blue to red colour according to their height. Approximately 0.4 

million laser points at an average point density of 85 (points/m2) 

were collected.      

 

 

Figure 7. Raw mobile LiDAR data set colorized from black to 

white w.r.t. the intensity strength of point clouds, and 3D 

railway track models (red color) and track center line (blue 

color) in the main track region. 

 

We evaluated the detection rate of track points by comparing 

the results with reference. In here, the classification was 

manually conducted using the commercial software (TerraScan 

of Terrasolid) to produce the reference data. The detection rate 

was measured by two criteria, completeness and correctness, by 

counting three factors: TP (True Positive), FN (False Negatives), 

and FP (False Positives) (Jwa and Sonh, 2012). A total number 

of 8621 points were classified as track points in the reference 

data. As we compared the reference data to the track detection 

results, 7074 of TP, 1574 of FN, and 7 of FP are counted. This 

leads that the completeness was calculated as 81.7% and the 

correctness was measured as 99.9%. As shown in the detection 

results, the proposed method for detecting track points intends 

to produce a higher rate of correctness by producing fewer FP, 

while more FN leads to lower rate of completeness. The main 

reason is that points representing the rail foot were also labelled 

as track points in the reference, while the detection results 

mostly contains points representing the rail head and web for 

track points. We believe that the performance of track 

modelling is not affected by the relatively low completeness rate 

because 3D track models are reconstructed using rail head 

points. The track modelling results are shown as thick red lines 

in Figure 7. The track modelling accuracy (RMSE) measured by 

the discrepancy between track models and the corresponding 

track points, resulting in the accuracy of 1.79 cm in X-Y plane. 

The modelling accuracy can be considered as a reasonable 

result by taking into account the point accuracy of less than 5 

cm and the width of rail head of approximately 6.5 cm.  

In addition, geometric information on railway tracks can be 

extracted as by-products which become important factors in 

performing the precise railway risk management. As shown in 

Figure 8, the extracted track models show the variation of track 

gauge with the mean of 1.5 m and its standard deviation of 0.11 

cm (Figure 8(a)) and the variation of height difference of 1.8 cm 

and its standard deviation of 0.21 cm (Figure 8(b)) for the test 

data.    
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Figure 8: Geometric information of tracks derived from 3D 

track models reconstructed: (a) variation of track gauge and (b) 

variation of height difference of a pair of single tracks. 

 

 

4. CONCLUSION 

Geometric modelling of railway tracks has become an issue of 

increasing importance for the effective and precise railway track 

monitoring. This is due to the fact that track models are 

regarded as an essential component for identifying potentially 

dangerous situations such as inelastic deformations of the steel 

tracks. This study addressed the new method, Kalman filter-

based railway tracking, for detecting railway track points and 

reconstructing 3D railway track models from mobile LiDAR 

data. The proposed method provided the accurate detection rate 

of railway track points with the completeness of 82% and the 

correctness of 99%. The resulting track models are good with 

the RMSE of 1.8 cm, which means that those models are fitted 

well to the corresponding track points. Consequently, in the 
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railway risk management, those high modelling quality can 

provide a great benefits to perform a rapid and correct the 

assessed clearance quantity in the railway corridor area. As 

future work, to improve the robustness of proposed method, the 

recognition process of various track related objects such as 

turnouts and switch stand is required to be developed.   
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