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ABSTRACT: 

  

Transitory obstacles – random, short-lived and unpredictable objects – are difficult to capture in any traditional mapping system, yet 

they have significant negative impacts on the accessibility of mobility- and visually-impaired individuals. These transitory obstacles 

include sidewalk obstructions, construction detours, and poor surface conditions. To identify these obstacles and assist the 

navigation of mobility- and visually- impaired individuals, crowdsourced mapping applications have been developed to harvest and 

analyze the volunteered obstacles reports from local students, faculty, staff, and residents. In this paper, we introduce a training 

program designed and implemented for recruiting and motivating contributors to participate in our geocrowdsourced accessibility 

system, and explore the quality of geocrowdsourced data with a comparative analysis methodology. 

 

 

1. INTRODUCTION 

Mapping dynamic geographic phenomena is often difficult, due 

to the requirements for frequent updates and changes that occur 

over time. In urban areas, pedestrian corridors and 

transportation infrastructure are the most in-demand, critical 

features to map, yet they are frequently impacted by sidewalk 

obstructions, construction detours, and changing surface 

conditions (Figure 1).  

 

 
 

Figure 1. Transient obstacles in the pedestrian corridors, 

Fairfax, Virginia. 

 

For individuals with vision or mobility impairments, changes to 

the pedestrian corridors (even temporary ones) are very 

difficult, due to the necessity for rerouting, inconvenience, and 

the increased risks associated with safety hazards. Mapping 

these areas with high-frequency coverage is essential. Where 

remote sensing and automated feature extraction is not a 

realistic approach due to cost or required frequency of updates, 

a different approach is needed. Rein (2009) provides evidence 

of the great cost and difficulty associated with improving and 

maintaining a functional, accessibly multimodal transportation 

network. Beale et al. (2006), Laakso et al. (2011, 2013), Karimi 

et al. (2013), and Kasemsuppakorn et al. (2009) provide useful 

approaches for pedestrian network modeling and applications 

for routing disabled individuals. Nuernberger (2008) and 

Barbeau et al. (2010) show how communication devices can be 

used to enhance navigation and improve communication with 

disabled individuals. The primary missing element in these 

approaches is the ability to capture and map transient events, 

which is difficult due to their dynamic nature.  

 

Rice at al. (2011, 2012a) present a useful approach for mapping 

transient obstacle data using open source software, gazetteer-

based geoparsing, and geocrowdsourcing. Subsequently, Rice 

et al. (2012b, 2013a, 2013b, 2014) extend this approach with 

quality assessment approaches, routing tools, and visualization. 

Paez (2014) presents a study of training and semantic 

understanding in geocrowdsourcing systems, and documents 

approaches for teaching contributors to identify and 

characterize transient obstacles in a geocrowdsourcing system. 

Through comparisons to other training systems embedded in 

OpenStreetMap, Google Map Maker, and the USGS’s The 

National Map, Paez identifies key strategies and approaches for 

training and summarizes those approaches. Rice et al. (2014) 

review the work of Paez (2014) and provide additional insight 

into the use of training systems and quality assessment of 

geocrowdsourced data.  

 

Goodchild (2007, 2009) first introduced the domain of 

geocrowdsourcing or ‘volunteered geographic information’ 

(VGI) in order to describe the phenomena of non-professionals 

creating and utilizing geographic data. The first generation of 

VGI applications aimed to collect georeferenced data and 

observations to be stored in a database. A newer concept of 

VGI, proposed by Thatcher (2013), is known as ‘volunteered 

geographic services’, or VGS. VGS differs from traditional 

VGI in the sense that while VGI is collected once and remains 

static, VGS permits users to add, edit, or delete the entries. 

VGS can be considered as a dynamic version of VGI. It is 

focused more on actions between users who offer or use 

services. One good example of VGS is SeeClickFix, which 
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permits users to report neighborhood issues to authoritative 

agencies such as tree falling, power outage, traffic light 

problems, offended graffiti, and potholes. SeeClickFix1 permits 

users to vote on problems to elevate the visibility of the report. 

The initiator can also close a case once the problem is resolved. 

Other examples of dynamic VGI or VGS applications are 

Carma Carpooling (formerly known as Avego) and Waze 2 .  

The work presented here uses data contributed by the public 

(VGI) but also enhances the active use of this data through 

active map-based routing and other services (VGS). A critical 

aspect of the provision of services is an active quality 

assessment system, which depends on an understanding of the 

obstacle characterization abilities of the data contributors. The 

following sections of this paper present an overview of the 

GMU Geocrowdsourcing Testbed and its moderation and 

quality assessment program, the training and obstacle 

characterization studies, a short discussion of user motivations, 

a summary of positional accuracy characterization, and finally, 

conclusions and future work.  

 

2. THE GMU GEOCROWDSOURCING TESTBED 

The GMU Geocrowdsourcing Testbed (GMU-GcT), presented 

in Rice et al. (2014), was developed as an experimental 

approach for mapping transient navigation obstacles in the 

region surrounding the George Mason University Campus in 

Fairfax, Virginia. The GMU-GcT uses crowdsourced data 

contributions from members of the public, who identify, 

document, position, and describe obstacles through a map-

based crowdsourcing approach. This system is built on the 

work of Paez (2014) and other best practices for map-based 

geocrowdsourcing. The system uses a menu-driven, semi-

structured reporting process where end-users provide location 

information, temporal tags, images, and attribute data for 

obstacles in the Fairfax, Virginia region (Figure 1). The GMU-

GcT has both desktop and mobile contribution tools to facilitate 

obstacle reporting by the public and provides services such as 

obstacle-avoidance routing (Qin et al., 2015).3 

2.1 Moderation and Quality Assessment in the GMU 

Geocrowdsourcing Testbed 

Many authors have explored data quality issues in 

geocrowdsourcing, including Haklay (2010) and Girres et al. 

(2010) who explore the accuracy of crowdsourced features in 

OpenStreetMap through comparisons with authoritative 

Ordnance Survey and French IGN data. The assessments in 

Girres et al. (2010) are noteworthy for the thoroughness of the 

evaluation in the context of well-known map accuracy and GIS 

data accuracy characterization methods, such as those 

published by Guptill et al. (1995), Hunter et al. (1992), and 

Veregin (1999). Goodchild and Li (2012) suggest different 

methods for quality assessing geocrowdsourced data. Because 

of the unofficial nature of the data, the GMU-GcT uses 

Goodchild and Li’s social approach, where a team of trained 

moderators checks data contributions for errors. This quality 

assessment system is discussed in Rice et al. (2014) and Paez 

(2014). A key to the data quality approach in the GMU-GcT is 

the ability of end-users to accurately identify, document, and 

characterize obstacles. While some elements of data 

contribution, such as map-based obstacle positioning, are 

                                                           
1 http://seeclickfix.com (accessed 3/12/15) 
2 https://carmacarpool.com, https://www.waze.com (accessed 

3/12/15) 
3 http://geo.gmu.edu/vgi (accessed 3/12/15) 

objective and easy to analyze for errors, other elements are 

more difficult. Obstacle characterization in the GMU-GcT 

requires a shared understanding of obstacle categories between 

the system administrators and system end-users. This 

categorical characterization process, as noted by Camponovo et 

al. (2014) in the context of the Haiti Earthquake response, is 

problematic. They report that over fifty percent of the messages 

to the Ushahidi web platform were mischaracterized with 

regard to emergency need. Foody et al. (2013) develop 

approaches for assessing the relative accuracies of end-user 

categorization of land cover. Galloway et al. (2013) tested the 

ability of young contributors to identify tree species, finding the 

contributors over-reported rarer classes. Quality assessment for 

crowdsourced geospatial data is a challenge, as noted by many 

of the fore-mentioned authors.  The approach for quality 

assessment used in the GMU-GcT is built on the best practices 

for these approaches, with Goodchild and Li’s moderator-based 

social quality assessment as the model.  

2.2 Training and Obstacle Categorization in the GMU 

Geocrowdsourcing Testbed 

To improve the quality of information contributed to the GMU-

GcT, Paez (2014) conducted a thorough review of training 

strategies in map-based social applications and 

geocrowdsourcing and found the most effective methods of 

training to be those that were embedded within the data 

contribution tools, such as those embedded within Google Map 

Maker and OpenStreetMap. Based on Paez’s work, training 

videos are embedded within the GMU-GcT, through the “How 

it Works” link.4 While effectiveness or success of the training 

methods can be difficult to assess, Paez (2014) provides a 

summary and assessment of best practices.  

For the GMU-GcT, the primary means of characterizing 

transient navigation obstacles is through the placement of a 

map-based location icon, the categorization of the obstacle in 

question, and categorical assessments of the obstacles expected 

duration and urgency. While the positioning of obstacles is of 

high interest (Rice et al., 2015), a critical aspect is the 

contributor’s obstacle categorization. Potential contributors to 

the GMU-GcT (which includes a wide range of students, 

faculty, staff, and local community members) were asked to 

participate in a training exercise to learn obstacle categorization, 

and were shown a series of pictures with authoritative obstacle 

characterizations shown (Figure 2). The general obstacle types 

shown in Figure 2 and used in the GMU-GcT (sidewalk 

obstruction, construction detour, entrance/exit problem, poor 

surface condition, crowd/event) were derived from an end user 

study conducted in 2013 and reported in Rice et al. (2013a).  

                                                           
4 http://geo.gmu.edu/vgi/train/HowitWorks.mp4 (accessed 

3/12/15) 
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Figure 2. Training graphic with picture and obstacle type, 

obstacle duration, and obstacle priority characterization 

A subsequent training step asked potential contributors to 

identify the obstacle type from a simple unlabeled picture 

(Figure 3) using the obstacle types presented in the previous 

step. While some obstacle pictures were relatively easy to 

characterize (Figure 3, Figure 4) others were much more 

complex (Figure 5, Figure 6).  

 

Figure 3. GMU geocrowdsourcing training picture showing 

crowd/event 

 

Figure 4. High agreement (95%) for categorization of Figure 3 

as a crowd/event obstacle by 37 training participants 

 

 

 

Figure 5. GMU geocrowdsourcing training picture showing 

sidewalk obstruction 

 

Figure 6. Significant disagreement for categorization of Figure 

5 by 37 training participants. 

Figures 7 and 8, similar to Figures 5 and 6, show relatively high 

levels of disagreement among the forty-six members of a 

second training cohort in early 2014. In Figure 7, the water 

hose draped across the sidewalk is interpreted as an obstacle, as 

are various construction barricades and construction vehicles 

visible off-screen.  

Figures 9 and 10 show relatively low levels of disagreement for 

the category of the object shown in Figure 9, which may be 

attributable to the less complex scene. A majority of 

participants categorized the obstacle in this image as a poor 

surface condition. Figure 11 shows the frequency of all obstacle 

category tags in the GMU-GcT as of January 2014.  

 

Figure 7. GMU geocrowdsourcing training picture showing 

sidewalk obstruction 

    Obstacle Type

Sidewalk Obstructio

n

Constructio

n

 De tour

Entrance/Exit Problem

Poor Surface Conditio

n

Crowd/Events

Not Sure/No Answer
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Figure 8. Significant disagreement for categorization of Figure 

7 by 46 training participants 

 

Figure 9. GMU geocrowdsourcing training picture 

 

Figure 10. Moderate to low disagreement for categorization of 

Figure 9 by 46 training participants 

 

Figure 11. Distribution of obstacle types in GMU-GcT, January 

2014. 

During the course of Paez’s study (Paez, 2014; Rice et al., 

2014), 150 potential system contributors were trained in 

obstacle characterization. A few important results emerged 

from the training. First, participants recorded some 

disagreement in obstacle characterization for complex scenes 

(Figure 5, Figure 8) where more than one potential obstacle can 

be seen. Initial training subjects requested the ability to declare 

more than one category of obstacle for each training image. A 

resulting change in the GMU-GcT was the allowance for 

multiple obstacle types for each object. Another change 

precipitated by feedback from training subjects was the use of 

broader and simpler duration categorizations, which are now 

instituted as shown in Figure 2, with durations being low (less 

than 1 day), medium (1-7 days), and long (greater than 7 days).  

Current efforts in the training of participants for the GMU-GcT 

is the modularization of training materials into short videos, 

and the embedding of training material directly into the 

contribution tools, as recommended by end-users and noted in 

Paez (2014) and Rice et al. (2014).  

2.3 User motivation in the GMU Geocrowdsourcing 

Testbed  

The success of many geocrowdsourcing projects depends on 

the motivations and willingness of participants. For 

OpenStreetMap, an initial motivation for participation is 

described by Coast (2006) as resentment over the data pricing 

and data licensing practices of the Ordnance Survey. 

Furthermore, Coleman et al. (2009) note that differences in user 

needs and motivations are based on the different contexts in 

which they contribute. A study by Pease (2014) underscores the 

potential problems associated with user motivation in 

geocrowdsourcing. While typical positional accuracy levels for 

the GMU-GcT are in the same range as feature position 

accuracy positions noted by Haklay (2010) and Girres et al. 

(2010) for OSM data (Rice et al., 2014), Pease noted lower 

levels positional accuracy, and a higher level of disagreement 

for obstacle categorizations. In the study by Pease (2014), 

students were asked to characterize the position and attributes 

of obstacles along a path. The obstacles had previously been 

thoroughly characterized by trained moderators and project 

staff. Pease noted an average positional error of 13.07 meters 

for obstacle reports, and greater level of disagreement for 

obstacle categorization than for similar reports collected by the 

same GMU-GcT from the same area. The differences, 

according to project staff (Paez, 2014; Rice et al., 2014) were 

due to the motivation of the study participants. While in general, 

participation in the GMU-GcT is based on altruism and a desire 

to correct accessibility problems, the study participants in Pease 

(2014) were recruited from a general subject pool where extra 

credit was offered, which was suggested as a reason for their 

performance.  

3. POSITION ACCURACY 

The GMU-GcT uses the positioning of reported obstacles in 

order to facilitate obstacle avoidance routing on a pedestrian 

network, which is motivated by the accessibility mapping and 

accessibility wayfinding work of Golledge (1999), Golledge et 

al. (2000, 2005, 2006), Church et al. (2003), Jacobson  (1998), 

Pingel (2010) and Rice et al. (2005). Implemented in the 

system are four methods of evaluating positional accuracy: (1) 

human-georeferenced geographic coordinates via computer, (2) 

mobile GPS coordinates from user’s current position, (3) 

embedded geo-tags in an image of reported obstacle, and (4) 

convex hulls created from geoparsed text descriptions of the 

obstacle’s location, based on a comprehensive gazetteer. This 

work, characterized in Rice et al. (2015), involves the 

development of metric georeferenced footprints from geoparsed 

location descriptions (red outline in Figure 12, based on Rice et 

Sidewalk Obstructio

n

Poor Surface Conditio

n

Crowd/Events

Not Sure/No Answer
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al., 2011), geo-tagged positions embedded within contributed 

obstacle images (blue marker in Figure 12), obstacle 

positioning from a movable location icon (yellow marker in 

Figure 12) and positioning determined through a social 

moderation of the report (green marker, Figure 12).  This work 

continues, with recent efforts to use electronic compass data 

embedded in image headers to validate the positions of 

obstacles (Rice et al., 2015). 

 

Figure 12. Positional characteristics of an obstacle report 

4. CONCLUSION AND FUTURE WORK 

The GMU-GcT has been built to gather information about 

transient navigation obstacles in the local environment. 

Gathering these obstacles using a geocrowdsourcing system 

provides many benefits, including the ability for blind, visually-

impaired, and mobility-impaired individuals to be informed in 

advance about unexpected changes to a pedestrian pathway. It 

will also allow these individuals to re-route, and avoid risks and 

significant delays. The data quality assessment is done through 

a social moderation process and based on best practices. The 

ability of data contributors to characterize and categorize 

obstacles is important to the system, and has been studied and 

improved through an iterative process and feedback from end-

users and contributors (Paez, 2014; Rice et al., 2014). The 

GMU-GcT allows for obstacle avoidance routing, and to do so 

requires obstacle data whose positional characteristics and 

attributes are well known. Project researchers will continue to 

improve the system and maintain high quality geographic 

information. Critical future work will refine the routing 

elements and active-use elements of the system, including 

mobile data validation tools and mobile moderation and quality 

assessment tools.   A recent publication by Karimi et al. (2014) 

offers insights and strategies in a similar project, which will 

provide opportunities to adopt best practices and workflows 

from a different geographic setting.  
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