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ABSTRACT: 

 

Several land cover maps are generated from aerial imagery and assessed by different approaches. The test site is an urban area in 

Europe for which six classes (‘building’, ‘hedge and bush’, ‘grass’, ‘road and parking lot’, ‘tree’, ‘wall and car port’) had to be 

derived. Two classification methods were applied (‘Decision Tree’ and ‘Support Vector Machine’) using only two attributes (height 

above ground and normalized difference vegetation index) which both are derived from the images. The assessment of the thematic 

accuracy applied a stratified design and was based on accuracy measures such as user’s and producer’s accuracy, and kappa 

coefficient. In addition, confidence intervals were computed for several accuracy measures. The achieved accuracies and confidence 

intervals are thoroughly analysed and recommendations are derived from the gained experiences. Reliable reference values are 

obtained using stereovision, false-colour image pairs, and positioning to the checkpoints with 3D coordinates. The influence of the 

training areas on the results is studied. Cross validation has been tested with a few reference points in order to derive approximate 

accuracy measures. The two classification methods perform equally for five classes. Trees are classified with a much better accuracy 

and a smaller confidence interval by means of the decision tree method. Buildings are classified by both methods with an accuracy of 

99% (95% CI: 95%-100%) using independent 3D checkpoints. The average width of the confidence interval of six classes was 14% 

of the user’s accuracy.  

 

 

1. INTRODUCTION 

Land cover maps can automatically be derived from satellite or 

aerial imagery. There exist many different methods to classify 

the objects in the landscape based on imagery. One approach is 

a supervised classification where one uses a selection of 

reference units to train the applied classifier in order to achieve 

a high thematic accuracy. The assessment of the thematic 

accuracy uses samples and estimates the accuracy of the whole 

map. In a stratified random sampling scheme, samples are taken 

for each class and the thematic accuracy is estimated for each 

class. Important is the reliability of the derived accuracy 

measures. They should, therefore, be supplemented by 

confidence intervals. There exist different methods to derive 

confidence intervals. The derivation may use the maximum 

likelihood or bootstrapping method. For the maximum 

likelihood method, the formulae can be found in (Card, 1982). 

In the present contribution, the bootstrap method is applied. It 

may be used for samples with normal or non-normal 

distribution of the errors. In order to test the usefulness of the 

approach, a few land cover maps will be produced and assessed. 

Two different classification methods are applied: The Decision 

Tree (DT) and the Support Vector Machine (SVM). The 

theoretical background of the two methods is given in previous 

publications, e.g. (Breiman et al., 1984) and (Vapnik, 1998). 

The basic idea in SVM method is to find an optimal hyperplane 

which separates two classes with the maximum distance 

between the closest training units (xi). The mathematical 

formulation is a cost function  

 

 

where w is the normal to the hyperplane, ξi are variables which 

account for the non-separability of data, and the constant C 

represents a regularization parameter that allows to control the 

penalty assigned to errors. The cost function is minimized using 

e.g. a Gaussian Kernel function K(xi, x)=exp(-γ||xi-x||2) where γ 

is a parameter inversely proportional to the width of the Kernel. 

A detailed description of the SVM method is given in (Melgani 

and Bruzzone, 2004) from where the above formula is taken. 

The DT method uses an algorithm in order to split the training 

data so that an optimal homogeneity of a class within a subset is 

achieved. The classification and regression tree (CART) 

algorithm, e.g., uses the ‘Gini impurity’ as a measure for how 

often a randomly chosen training unit would be incorrectly 

labelled. This can be expressed in the formula 

 

 

where fi is the fraction of units labelled with class i. (Wikipedia, 

2015a). Both methods have been employed for the generation of 

land cover maps using various remotely sensed data. In this 

contribution, the data are from an aerial camera with four 

spectral bands. The images overlap and are of high resolution 

and geometric quality. Such data enable new approaches for the 

derivation of land cover maps. Height data can be derived and 

used as an effective feature in the classification. Aerial imagery 

of three bands have been used together with lidar data in 

(Trinder and Salah, 2011). Reference data were obtained by 

digitizing polygons of the four classes (‘building’, ‘road’, ‘tree’, 

‘ground’) in the orthoimage. The use of the SVM method 

revealed an overall accuracy of 96.8%. Experiences with DT 

classification are published, e.g. in (Hansen et al., 1996), (Friedl 

and Brodley, 1997). (Gerke and Xiao, 2014) used airborne laser 





m

i

iG ffI
1

2
)2(1)(

)1(||||
2

1
),(

1

2





N

i

iCww 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W5, 2015 
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
Editors: A.-M. Olteanu-Raimond, C. de-Runz, and R. Devillers 

doi:10.5194/isprsannals-II-3-W5-1187-2015

 
187



 

scanning point clouds and image data of four bands to derive 

land cover maps with four classes by the Random Forest 

method. A test example of a residential area revealed thematic 

accuracies of 96.2% (‘building’), 96.7 (‘tree’), 98.9% (‘sealed 

ground’), and 88.0% (‘vegetated ground’). The reference values 

were determined by an operator and partly used to train the 

RTrees classifier. Tests with aerial imagery of four bands and 

DT classification were also carried out in (Höhle and Höhle, 

2013) in order to generate land cover maps of urban areas with 

four and six classes. Height data were derived from the images. 

Good results could also be obtained with a DT where the 

splitting rules were manually selected based on a-priori 

contextual information. The refinement of the automatically 

derived land cover maps by means of image processing methods 

has successfully been implemented in (Höhle, 2014). The main 

emphasis in this contribution is the methodology of assessment 

of the thematic accuracy. Also for this task, 3D data can be used 

with advantage. The structure of this paper is the following: 

Section 2 discusses the assessment of the thematic accuracy in 

general. The applied tools are presented in Section 3. Section 4 

contains practical tests with the derivation of a land cover map 

of an urban area. The obtained land cover maps are assessed by 

different methods in Section 5. Discussion and conclusion in 

Section 6 and 7 complete the paper.   

 

2. THE ASSESSMENT OF THE THEMATIC 

ACCURACY IN GENERAL 

The assessment of the thematic accuracy of each class requires 

checkpoints (aka reference points). Their position is randomly 

selected and a class value has to be determined at these 

positions with a high accuracy and reliability. Such points (or 

cells) are the reference data. Their number has influence on the 

reliability of the estimated thematic accuracy and, hence, the 

sample size becomes an important issue of the accuracy 

assessment. Various authors developed methods and formulae 

for this task, e.g. (Tortora, 1978), Congalton and Green, 2009), 

(Höhle and Höhle, 2013). In the last reference the calculations 

are carried out by means of functions, available as open source. 

The checkpoints should be completely independent from the 

training areas. Figure 1 depicts training areas and checkpoints 

used in the generation and assessment of a land cover map.  

Figure 1. Training areas and randomly selected checkpoints 

(crosses). The colours represent different classes. 

Image pairs and orthoimages, both in false colour, are sources 

for the reference (check-) points by which the assessment of the 

thematic accuracy is carried out. In the first case the 

checkpoints can be in 3D, which allows stereo-viewing of the 

checkpoint. As it is described so far, various methods are 

available for the assessment of the thematic accuracy. Some 

tests regarding the selection of checkpoints will also be carried 

out. Based on the gained experience in these tests, 

recommendations will be given. 

 

2.1 Error matrix 

The derived class for a cell is compared with the reference 

value. A matrix representation will give an overview on the 

agreement between the reference and the calculated class. The 

diagonal of this so-called error matrix (aka confusion matrix) 

contains the number of scores and the positions outside the 

diagonal are the errors (disagreements). The totals of the rows 

and columns supplement the error matrix, which is also used for 

the calculation of the accuracy measures. Weights are not 

applied in this ‘raw’ error matrix. 

 

2.2 Accuracy measures 

The measures which characterize the thematic accuracy of a 

land cover map are the user’s and the producer’s accuracy, the 

overall accuracy and the kappa value. The formulae for these 

measures are published in (Congalton & Green, 2009). Other 

accuracy measures are commission and omission errors which 

can be derived by (100% - user’s accuracy) and (100% - 

producer’s accuracy) respectively. If the goal is to estimate the 

accuracy for each class, a stratified simple random (STSI) 

sampling is applied. The sample size per class (nc) has to be 

calculated assuming a worst-case user accuracy for each class 

and a desired width of the confidence interval. The sample of 

each class is found by simple random sampling without 

replacement. The total number of units (points/cells) in the 

sample is then n = nc∙k, where k is the number of classes. 

Classes might be over- or under-sampled compared to their 

distribution in the produced land cover map. Therefore, weights 

are applied for each class of the sample. They are calculated 

using 
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where N is the total number of units in the map, Ni is the total 

number of units of class ”i" in the map, n is the total number of 

units in the sample, ni+ is the number of units of class “i" in the 

sample. Thereby, the stratified sampling design is taken into 

account. This ‘survey weighting’ is preferred because the sizes 

of classes and samples usually differ. At wi=1 all evaluated units 

are treated equally. Approximations for the accuracy measures 

can be obtained by cross validation (cv). In this approach the set 

of reference data is split into cells for training of a DT and cells 

for validation. There exist several variants, we apply “Leave one 

out cross-validation”. The class label of one cell is predicted by 

a classifier, which is derived from the (n-1) cells. The reference 

value is not used for the classification of this cell. The 

procedure is repeated n times resulting in n different classifiers. 

From the assigned class values an error matrix can be formed 

and approximate accuracy measures may be derived. Cross 

validation is usually used in order to test the applied model 

(selection of variables or parameters) or to compare different 

methods of classification (Wikipedia, 2015b). Because the 
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training data are not completely independent from the test data 

accurate and reliable accuracy measures are not obtainable by 

cross validation.  

 

2.3 Confidence intervals 

Each accuracy measure should also include a confidence 

interval (CI), which is a measure of the reliability of the 

accuracy measure. The distance between the lower and upper 

limit is the width of the CI. The calculated CI covers the true, 

but unknown, value of the accuracy measure with a confidence 

level of 95% if sampling is repeated many times. In 5% of all 

samples, the CI will not contain the true value of the accuracy 

measure. If the confidence level and the sample size are selected 

and kept fixed, the width of the CI depends only on the 

variability of the observations in the sample. It is of interest to 

the user that the width of the CI is a small value. The calculated 

accuracy measures are then more reliable. The calculation of the 

CIs should therefore be part of any assessment of the thematic 

accuracy of land cover maps.  

 

3. TOOLS 

There are several tools available for the generation of land cover 

maps and for the assessment of their accuracy. It has been one 

of the goals in this investigation to solve the tasks by open 

source software and by own programming. The R language and 

environment is the preferred tool (R Development Core Team, 

2013).  

 

3.1 R-packages  

The open source programming language and environment ‘R’ 

provides several packages and functions, which ease the 

calculation of the sample size, the thematic accuracy and the 

confidence interval. The package ‘survey’ includes functions for 

the analysis of complex survey samples (Lumley, 2015). 

Functions of the package ‘binomSamSize’ compute confidence 

intervals and the necessary sample sizes (Höhle, 2015). The 

package ‘binom’ has functions for binomial confidence 

intervals (Dorai-Raj, 2015). Applied packages for the 

classification methods and for generation of the land cover 

maps are ‘rpart’ (decision trees from training data), ‘ipred’ 

(prediction of class values by means of the derived DT), and 

‘kernlab’ (SVM classification). These R-packages are described 

in detail in (Therneau et al., 2015), (Peters et al., 2015), and 

(Karatzoglou et al., 2004). 

 

3.2 Other tools 

The professional  programs ‘Match-T’, ‘DTMaster’, and 

‘OrthoMaster’ of the Trimble/Inpho GmbH are useful for the 

tasks in pre-processing. ‘Match-T’ generates gridded Digital 

Surface Models (DSMs) from overlapping images. ‘DTMaster’ 

has functions for 3D data collection, filtering and editing of 

DSMs. 3D viewing of image pairs and automatic positioning to 

checkpoints are also valuable features of this software package. 

‘OrthoMaster’ generates orthoimages. 

 

 

4. PRACTICAL TESTS 

The practical test is carried out with land cover maps of an 

urban area produced by means of different methods. We 

describe first the area and the data at disposal, the steps in the 

classification for two different methods follow.  

 

4.1 Test site  

The test site is an urban area in Europe, which contains 

vegetated and non-vegetated objects. Buildings, car ports, walls, 

roads, and parking lots belong to the first category; the second 

category comprises the areas with grass, hedges, bushes and 

trees. A few swimming pools and paths are also part of the test 

site. The area covers about 1.4 ha.  

 

4.2 Data 

The test site has been imaged by a medium-format aerial camera 

(Leica RCD30). The images have four bands (red, green, blue, 

and near infra-red). The radiometric resolution of each band is 8 

bit or 256 intensity values. The size of the pixel on the ground 

is 5 cm x 5 cm only. The high resolution images were taken in 

the morning of a sunny summer day which resulted in long 

shadows. Accurate orientation data (camera calibration data, 

spatial position of the perspective centre in the reference system 

(UTM/WGS84/Ellipsoidal Heights), and attitude of the camera 

axis) were provided.  

 

4.3 Pre-processing  

Pairs of colour images are first processed to a Digital Surface 

Model (DSM). The point cloud is generated by means of 

matching corresponding image points and by interpolating a 

regular grid of elevations thereafter. The spacing between the 

grid points was selected with 0.25 m. Each cell of 0.25 m x 0.25 

m is considered as an object, which is supplemented with a 

number of attributes. For example, the height above ground 

(dZ), the normalized difference vegetation index (NDVI) or the 

intensity values of the four spectral bands (spectral signatures) 

may be chosen. These attributes have to be derived. The dZ- 

value is the difference between the DSM and the Digital Terrain 

Model (DTM). The DTM is processed by filtering of the DSM. 

Some editing of the DSM and the DTM may be required. The 

DTM is also a prerequisite for the generation of an orthoimage. 

Orthoimages are produced as false-colour composites where the 

vegetation is clearly seen. 

 

4.4 Classification 

The tasks for the classification are the selection of classes and 

attributes, the extraction of training points, and the selection of 

parameters at the applied classification methods in the practical 

tests. Two methods, ‘Decision Tree’ and ‘Support Vector 

Machine’, will be used and compared. 

 

The selection of classes and of the class attributes is an 

important step in the generation of a land cover maps. Starting 

point is the type of landscape, but the requirements of the map 

users and the characteristics of the available data may also 

decide on the number and the type of classes. In the applied 

high-resolution imagery small objects can automatically be 

detected. The achievable accuracy of the selected classes may 

differ considerably. The overall accuracy of a land cover map 

will depend on the selection of classes. In the practical example 

six classes are chosen and the accuracy of each class shall be 

determined. The selected classes are ‘building’, ‘hedge & bush’, 

‘grass’, ‘road’, ‘tree’, and ‘wall & car port’. In order to separate 

the chosen classes from each other, a number of attributes have 

to be selected. The normalized difference vegetation index and 
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the height above ground are effective attributes for the chosen 

classes. Good results for the thematic accuracy require a 

training of the classifiers. This is accomplished by means of 

points, where the class is known. The extraction of training 

points is carried out on top of the false-colour orthoimage. The 

corner points of the chosen training areas are digitized and the 

spatial coordinates (E, N, Z) of each DSM-cell within the 

polygon are extracted and supplemented by the associated 

attributes. Altogether, 17449 DSM cells were collected which is 

about 2% of the total number of cells in the test area. In 

average, 2900 cells of one class will be used to train the 

classifier.  

 

The DT-classification method determines thresholds for 

attributes which split the training data into two branches by 

means of an algorithm. The procedure is repeated several times 

until all training data are separated into the selected classes. The 

result is a tree with branches and leaves (cf. Figure 2), which 

gives the classification the name. This so-called ‘recursive 

partitioning’ is easy to implement, but an effective performance 

of the DT requires reliable training data and attributes. The 

accuracy of the training points may be determined in advance 

(cf. section 5.3). Big deviations from 100% will indicate noise 

in the training areas, which then may deteriorate the accuracy of 

the land cover map. By means of the derived decision tree all 

cells of the DSM are assigned with one of the six classes. The 

cells can then be plotted with a colour for each class. The 

produced land cover map is georeferenced and contains 907339 

cells.  

 

 
Figure 2. Principle of decision tree classification (T=test using 

thresholds of attributes; a, b, c=classes). Modified after (Friedl 

and Brodley, 1997) 

 

The SVM method is often applied for hyperspectral imagery 

where hundreds of spectral bands have to be handled. This 

method separates two classes by means of a hyperplane. A few 

points with attributes of each class are required to train the 

classifier. The calculated support vectors are weights, which 

select training points defining the optimal separating 

hyperplane. In the multi-class classification altogether M=k∙(k-

1)/2 classifications have to be carried out. The appropriate class 

is found by a voting scheme (cf. Figure 3). In our example with 

six classes, M=6∙5/2=15 classifications thus have to be carried 

out. The attributes of the points are usually the spectral 

signatures, i.e. the intensity values of each band. This approach 

leads to a long feature vector for multispectral imagery. It is 

good practice to reduce the number of features beforehand. 

 
Figure 3. Solving multi-class problems with binary SVMs 

(x=feature vector, class=classification result). Modified after 

(Melgani and Bruzzone, 2004). 

 

In this test, the normalized difference vegetation index is used 

which can separate the vegetated objects from non-vegetated 

objects efficiently. In addition, the height above ground is used 

for discriminating objects on the ground from objects above 

ground. This attribute is also known as ’nDSM’ which stands 

for normalized Digital Surface Model. In order to generate a 

land cover map with six classes, we use the function “ksvm” of 

the R-package ‘kernlab’. For this multi-class classification 15 

binary classifiers are trained and 15 class values are predicted 

for each cell of the DSM. The maximum number is then the 

predicted class value. When several classes reach the maximum 

number, the prior probability values decide on the “winning 

class”. The fractions of the areas, which the single classes cover, 

are appropriate estimates for the prior probability values. The 

training of the classifier depends very much on the quality of 

the training areas. Noise in these data may exist but its influence 

is reduced by a regularization parameter (C). The selection of 

‘C’ is empirical and a set of values is used. The best result is 

selected for the derivation of the land cover map. The 

calculation of the separating hyperplane uses a kernel function. 

As kernel function, we select the “Gaussian radial basis 

function” (“rbfdot”) where the kernel parameter (γ) is set to 

“automatic”. A value for the inverse kernel width is derived 

automatically. Figure 4 depicts the resulting land cover map.  

Figure 4. Result of the classification by means of the SVM- 

method. (Red=’building’, light green=’grass’, dark 

green=’tree’, green=’hedge&bush’, grey=’road&parking lot’, 

orange=’wall&car port’) 

 

It is georeferenced. The selected regularization parameter is 

C=1. The used prior values were selected with 0.21 (‘building’), 

0.18 (‘hedge&bush’), 0.25 (‘grass’), 0.19 (‘road&parking lot’), 
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0.04 (‘tree’), 0.13 (‘wall&car port’). 22% of the total area is 

covered with class ‘building’, 13% with class ‘hedge&bush’, 

23% with class ‘grass’, 17% with class ‘road&parking lot’, 8% 

with class ‘tree’, and 17% with class ‘wall&car port’.  

 

 

5. ASSESSMENT OF THE THEMATIC ACCURACY 

AND ITS RESULTS 

The assessment of the derived land cover maps requires 

reference data (checkpoints). The number of checkpoints is 

calculated with 91 per class assuming a worst-case user 

accuracy of about 60% for each class and a desired width of the 

95% confidence interval of ±10%. Details of the calculation are 

given in (Höhle and Höhle, 2013). At six classes, the total 

number of checkpoints amounts to 91∙6=546 checkpoints. The 

position of the checkpoints is randomly for each class. From all 

points of the derived land cover map, which were assigned with 

a certain class, a sample of 91 points is extracted. This is a 

stratified random sampling scheme. A reference value has to be 

determined at these random positions (cf. crosses in Figure 1). 

This so-called ‘true’ value can be found in the stereo pair or in 

the orthoimage. Such points are independent from the training 

areas. In the following, the results of the assessment are 

separated according to the data source and the type of 

checkpoints (2D or 3D). The type of classification will also be 

distinguished. The results of the assessments will be presented 

by means of the error matrix, the user’s and producer’s accuracy 

for each class, the overall accuracy, and the kappa coefficient. 

Each of the mentioned accuracy measures will be supplemented 

by a 95% confidence interval (95% CI). Weighting according 

equation (3) is applied due to the inequality of the class areas. 

 

5.1 Assessment of the DT classification by means of 

independent 3D checkpoints  

The reference data are found by means of observations in the 

original false-colour images. The 3D viewing is enabled by 

displaying the images in red and cyan and the use of glasses 

(filters) with the complementary colours (anaglyph method). 

The checkpoints must have spatial coordinates (E,N,Z) and can 

then be positioned and seen in 3D. The analyst observes the 

reference value and completes the “accuracy sample” with the 

reference value and the weight (cf. Table 1). 

 

id nr E  N Z c r w 

546 922 537152.7 5228892.0 492.8 b b 1 

Table 1. Excerpt of the “accuracy sample” in the assessment 

with independent 3D checkpoints (id=index, nr=number, 

E=Easting, N=Northing, Z=elevation, c=classification, 

r=reference, w=weight).  

 

By means of the “accuracy sample” with 546 observations an 

error matrix is computed (cf. Table 2). It reveals that the class 

‘wall and car port’ cannot be determined well enough. 

Especially, the discrimination of this class from the class ‘road 

and parking lot’ is poor. The calculated user’s and producer’s 

accuracy for each class can be taken from Tables 3 and 4. The 

derived values are supplemented with confidence intervals. The 

overall accuracy is calculated with 79% (95% CI: 76%-82%), 

the kappa coefficient with 0.74 (95% CI: 0.70-0.77). ‘Survey 

weighting’ has been applied in both measures. The average of 

the producer’s accuracy is 80% and of the users accuracy 73%. 

The omission and commission errors are in average 20% and 

27% respectively.  

 

reference  

class 
b h g r t w 

row 

Σ 

b 90 0 1 0 0 0 91 

h 0 71 17 1 1 1 91 

g 3 8 74 5 0 1 91 

r 5 2 0 82 1 1 91 

t 10 4 6 0 71 0 91 

w 8 8 8 43 0 24 91 

col Σ  116 93 106 131 73 27 546 

Table 2. Error matrix of the land cover map derived by a DT 

(b=’building’, h=’hedge&bush’, g=’grass’, r=’road&parking 

lot’, t=’tree’, w=’wall&car port’). Taken from (Höhle, 2014). 

 

class accuracy 95% CI 

building  99% 95%-100% 

hedge&bush  78% 69%-86% 

grass  81% 72%-89% 

road&parking lot  90% 83%-95% 

tree  78% 69%-86% 

wall&car port  26% 18%-36% 

Table 3. User’s accuracy of the derived land cover map by DT- 

classification 

 

class accuracy 95% CI 

building  86% 80%-91% 

hedge&bush  79% 70%-86% 

grass  80% 74%-85% 

road&parking lot  69% 63%-74% 

tree  89% 71%-98% 

wall&car port  83% 62%-96% 

Table 4. Producer’s accuracy of the derived land cover map by 

DT- classification 

 

5.2 Assessment of the SVM classification by means of 

independent 3D checkpoints 

The numerical results of the assessment are contained in Tables 

5-7. The error matrix of the SVM classification reveals rather 

big commission errors in the classes ‘tree’ and ‘wall and car 

port’. The overall accuracy is 75% (95% CI: 73-78%) and the 

kappa coefficient is 0.70 (95% CI: 0.66-0.73). Both values are 

‘survey weighted’, i.e. weights are applied according to the 

proportions of the class areas. The accuracies for the classes 

‘tree’ (42%) and ‘wall and car port’ (26%) are poor and differ 

considerably from the other four classes.  

reference 

class  
b h g r t w 

row  

Σ 

b 90 0 0 1 0 0 91 

h 4 65 16 4 2 0 91 

g 1 6 79 4 1 0 91 

r 0 0 1 90 0 0 91 

t 17 8 23 3 38 2 91 

w 4 16 21 25 1 24 91 

col Σ  116 95 140 127 42 26 546 

Table 5. Error matrix of the SVM-classification (abbreviations 

for classes are explained in the caption of Table 2)  
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class accuracy 95% CI 

building 99% 95%-100% 

hedge&bush 71% 61%-80% 

grass 87% 79%-93% 

road&parking lot 99% 95%-100% 

tree 42% 32%-52% 

wall&car port 26% 18%-36% 

Table 6. User’s accuracy of the individual classes (SVM- 

classification) 

 

class accuracy 95% CI 

building  87% 82%-91% 

hedge&bush  64% 55%-73% 

grass  70% 65%-75% 

road&parking lot  71% 64%-77% 

tree  82% 64%-94% 

wall&car port  96% 88%-99% 

Table 7. Producer’s accuracy of the individual classes (SVM- 

classification) 

 

5.3 Assessment by means of 2D checkpoints from training 

areas 

Such checkpoints are usually close to each other and very likely 

correlated. Therefore, they are not independent checkpoints and 

the derived accuracy measures may be wrong. However, for 

comparison of different methods or for checking the noise in the 

training data, the use of such checkpoints may also be useful. 

We will carry out an experiment and select either a small 

sample or use all the cells of the training areas in order to assess 

the accuracy of the classification. The cells of the small sample 

are again randomly extracted from each class (strata). These 

points are not aligned. The class value of these points is known, 

the checkpoints serve as reference points. Table 8 contains the 

user’s accuracy with CI’s, which are derived from a few 

randomly selected checkpoints (-cells) of the training areas. The 

achieved user’s accuracy is close to 100%, the width of the CI’s 

is ±4% in average. The overall accuracy is 96% (95% CI: 94-

97%) and the kappa coefficient is 0.95 (95% CI: 0.93-0.97). 

Weights were again applied.  

 

class accuracy 95% CI 

building 100% 100%-100% 

hedge&bush 93% 86%-97% 

grass 91% 84%-95% 

road&parking lot 97% 90%-99% 

tree 99% 92%-100% 

wall&car port 96% 89%-99% 

Table 8. User’s accuracy with CIs derived from 6∙91=546 

randomly selected cells of the training areas (SVM-

classification) 

 

The size of the sample can be extended and all cells of the 

training areas may be used. This is an aligned sampling. The 

derived user’s accuracy with all training data are then compared 

with the assessment of the map accuracy using the sample of 

independent checkpoints extracted from the land cover map by 

stratified random sampling (cf. Table 9 and Section 5.1). The 

derived accuracies are all higher when cells from the training 

areas are used. This is expected. Of interest is how much the 

accuracies differ from 100%. Big deviations from 100% 

indicate noise in the training area of that class, which will 

influences the thematic accuracy of that class. For example, the 

accuracy of the class ‘wall and car port’ of the derived land 

cover map (using the DT-method) is far off (26%). Also, the 

assessment by means of all training data of this class revealed a 

reduced accuracy (73%).  

 

class nc accuracy  nc accuracy 

building 4204 100% 91 99% 

hedge&bush 3308 99% 91 78% 

grass 2680 93% 91 81% 

road&parking lot 3152 100% 91 90% 

tree 1829 92% 91 78% 

wall&car port 2276 73% 91 26% 

Table 9. User’s accuracy determined either by 17449 training 

points or by 546 independent points (DT-classification) 

 

5.4 Assessment by means of 3D checkpoints using cross 

validation 

In the test with cross validation, the 546 3D checkpoints are 

used for the derivation of the DT (in order to produce the land 

cover map) and partly for the assessment of its thematic 

accuracy (using cv). Table 10 depicts the derived error matrix 

and Table 11 the user’s accuracy.  

 

reference/ 

class 
b h g r t w 

row 

Σ 

b 96 0 1 1 1 1 100 

h 0 69 19 1 1 4 94 

g 3 9 78 7 0 3 100 

r 1 3 2 112 1 4 123 

t 8 4 6 0 70 0 88 

w 8 8 0 10 0 15 41 

col Σ  116 93 106 131 73 27 546 

Table 10. Error matrix at cross validation (DT classification) 

 

The error matrix reveals that the class ‘wall and car port’ (w) 

cannot be distinguished very well from the other classes. The 

user’s accuracy will therefore be poor for this class.   

 

class accuracy 95% CI 

building 96% 91%-99% 

hedge&bush 73% 64%-82% 

grass 78% 69%-85% 

road&parking lot 91% 85%-95% 

tree 80% 70%-87% 

wall&car port 37% 23%-52% 

Table 11. User’s accuracy with CIs derived by cross validation 

(DT classification) 

 

The class ‘wall and car port’ is indeed poorly determined and 

the CI is rather big. The commission errors are in average 24%. 

 

 

6. DISCUSSION 

Two different methods have been used to classify an urban area. 

The assessment of the thematic accuracy uses stratified 

sampling with a sample size of nc=91 points in both 

assessments. Checkpoints are determined randomly for each 

class of the final land cover map. They are independent from the 

training areas. The overall accuracy obtained by DT 
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classification (79%) is slightly higher than the one obtained by 

the SVM classification (75%). The results of both methods 

regarding user’s and producer’s accuracy are depicted in 

Figures 5 and 6.  

 
Figure 5. User’s accuracy with confidence intervals for two 

methods of classification (Red=DT, blue=SVM, nc=91). 

Abbreviations of classes are explained in Table 2. 

Figure 6. Producer’s accuracy with confidence intervals for two 

methods of classification (Red=DT, blue=SVM, nc=91). 

Abbreviations of classes are explained in Table 2. 

 

The user’s accuracy is for both methods about the same in five 

classes. For the class ‘tree’, however, the DT method produced 

a higher accuracy (78% vs. 42%). The confidence intervals are 

about the same for five classes. Again, class ‘tree’ reveals a 

bigger difference (ΔCI=3%). The CIs are in average 14% with a 

standard deviation of ±5% (DT method) and 14% and ±7% 

(SVM method). Regarding the producer’s accuracy (cf. Figure 

6) the results of the individual classes are in average more 

balanced and of higher accuracy. The average CIs are with 18% 

±10% (DT method) and 15%±8% (SVM method) higher than at 

the DT method. The size of CIs is between 14% and 18%, 

which is relative big, which supports the argument that there is 

no need to quote the thematic accuracy with decimals. In all 

tests, the required limit of ±10% for CIs is complied with. The 

sample size of nc=91 has, therefore, been properly selected. In 

the SVM method the selection of the regularization parameter 

(C) has had influence on the results. Tests with a set of C-values 

{0.1, 1, 60, 100} revealed slight differences in the training 

errors. A change in the separation of classes could not be 

observed.  

 

The number of cells used for training of the DT will be 

discussed in the following. We restrict to the user accuracy 

because it characterizes the derived land cover map. When 

checkpoints from the training data are used, the obtained 

accuracy differs. Figure 7 displays the user’s accuracy for the 

SVM classification. This is derived either from 546 points of 

the training data by means of mono observations of the ‘truth’ 

in the orthoimage (named ‘Training’) or from 546 points which 

are sampled from the derived land cover map and use of stereo 

observation of the ‘truth’ (named ‘Independent’). The used 

sample size is 91 points (cells) per class in both assessments.  

 
Figure 7. User’s accuracy with confidence intervals for two 

types of checkpoints, sample size: nc=91, classification method: 

SVM. (Red=Training, Blue=Independent). Abbreviations for 

classes are explained in Table 2. 

 

The diagram in Figure 7 reveals for the assessment by means of 

a few (randomly selected) points of the training areas high 

accuracies (>90%) for all classes. The accuracies derived from 

independent checkpoints are considerably lower; for the classes 

‘hedge and bushes’ (Δ=12%), ‘tree’ (Δ=42%) and ‘wall and car 

port’(Δ=70%). These big differences confirm the general rule 

that the assessment of the thematic accuracy requires 

independent checkpoints. 

  

Figure 8 depicts the comparison between the user’s accuracy 

derived by independent checkpoints and by cross validation (cf. 

Tables 3 and 11). The decision tree (which produced the land 

cover map) has been derived either from the training areas with 

17449 cells (extracted from an orthoimage) or from the 546 3D 

points only.  

 
Figure 8. User’s accuracy at DT classification (red=independent 

checkpoints , green=cross validation, nc=91) 

 

The differences between the two approaches are small. A higher 

accuracy by the cross validation is obtained for three classes 

only (‘road and parking lot’, ‘tree’, ‘wall and car port’). The 

other three classes (‘building’, ‘hedge and bush’, ‘grass’) reveal 

even a lower accuracy. The averaged widths of the CIs are 2.2% 

bigger in the cv approach. 

 

 

7. CONCLUSION 

The assessment by stratified sampling requires the derivation of 

the land cover map at first. Afterwards the samples can be taken 

for each class randomly. The determination of the reference 

(‘truth’) is best done with georeferenced original images and by 

means of 3D viewing. The checkpoints have then to be with 

three coordinates (E,N,Z). The other choice for a source of 

reference data are orthoimages. When they are based on DTMs, 

positional errors at objects above ground will exist. 
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Observations of the reference in 2D are less reliable. The use of 

false-colour composites is of advantage because the vegetated 

areas are clearly visible. Aerial imagery of known exterior 

orientation and the application of stereo viewing is a reliable 

procedure for the assessment of the thematic accuracy. Training 

data are used for deriving the classifiers. Errors (noise) in the 

training data will influence the accuracy of the land cover map. 

The accuracy of the training units should therefore be assessed 

in order to produce accurate land cover maps. By means of a 

portion of training points the selection of attributes and 

parameters (e.g. C-values in SVM) in the applied model should 

be validated. For the assessment of the thematic accuracy we 

prefer 3D points derived from georeferenced false-colour 

images. We apply also weights for each class of the sample in 

order to compensate for over- or under-sampling. All derived 

accuracy measures are supplemented by 95% confidence 

intervals in order to check their reliability. The use of large-

scale multispectral imagery of high geometric and radiometric 

quality is also a characteristic of this contribution. Accurate 

DSMs can then be derived and the DSM cells can be 

supplemented by nDSM and NDVI values. These effective 

attributes enable simple classification methods such as DT and 

SVM. Positional errors in the map and in reference data are 

avoided. All of these characteristics give the applied 

methodology in the generation and assessment of land cover 

maps advantages to other approaches.  
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