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ABSTRACT:

Being able to merge high quality and complete building models with parcel data is of a paramount importance for any application
dealing with urban planning. However since parcel boundaries often stand for the legal reference frame, the whole correction will
be exclusively done on building features. Then a major task is to identify spatial relationships and properties that buildings should
keep through the conflation process. The purpose of this paper is to describe a method based on least squares approach to ensure that
buildings fit consistently into parcels while abiding by a set of standard constraints that may concern most of urban applications. An
important asset of our model is that it can be easily extended to comply with more specific constraints. In addition, results analysis
also demonstrates that it provides significantly better output than a basic algorithm relying on an individual correction of features,
especially regarding conservation of metrics and topological relationships between buildings. In the future, we would like to include
more specific constraints to retrieve the actual positions of buildings relatively to parcel borders and we plan to assess the contribution
of our algorithm on the quality of urban application outputs.

1. INTRODUCTION

Scientists and experts are addressing problems which tend to be
more and more complex, hence requiring numerous information
stemming from different geographical databases. However, due
to process-inherent errors (projections, external reference, mea-
surement inaccuracies and systematic bias in surveys... (Girres,
2012)), merging two datasets that don’t match to some degree
of satisfaction is a common task for any GIS user who wants to
produce relevant data for a given application.

This merging operation will cause geometric deformation on fea-
tures, then it is obvious that correcting one dataset to make it fit
consistently the other one will inevitably introduce new errors.
But depending on the eventual use case, some discrepancies be-
tween original and corrected datasets may be described as mi-
nor while other ones may render the output dataset useless. It is
therefore important to target relevant properties that geographic
features should keep through the correction process.

In our case study, we are focusing on conflating buildings onto
land parcel vector data for urban planning. While most of the
time, the term conflation is used to describe the process of merg-
ing two datasets representing the same real worl entity, we will
be referring to the broader definition provided by (Li and Good-
child, 2011; Ruiz et al., 2011), i.e. conflation is the process of
merging multi-source datasets in order to derive additional value
from their combination. Indeed, merging building and parcel data
is very useful in various applications dealing about land use ad-
ministration, cadastral management and constructibility assess-
ment. In this paper, we propose a methodology to conflate cadas-
tral parcels and buildings with the respect of a given set of con-
straints in order to provide information to a building simulator
(Brasebin et al., 2012; He et al., 2014). A typology of spatial re-
lationships and properties particularly meaningful for urban ap-
plications can be found in (Bucher et al., 2012). Typically, for
some applications, it may be relevant to preserve intervisibility
between buildings or connectivity between parcels during merg-
ing process in order to compute solar cadastre from conflated

output data. In urban-related applications, we suspect that due
to multiple threshold effects in the legal right to build, we might
end up with markedly different output depending on whether sim-
ulations are run on original or corrected datasets. Yet, this point
remains to be investigated, and this will be the object of future
works. Though we are considering a particular case study, there
are many other practical motivations to merge such data, ranging
from solar maps to noise and thermal fields analysis, hence par-
ticular attention will be paid to get a generic and parameterizable
method. However, as parcels often stand for the legal reference,
in all our study we assumed that their positions are fixed, even if
building accuracy is known to be better on the considered area.
Therefore we intend to preserve initial parcel geometries that is
legally the exclusive reference to support decisions about plan-
ning permissions.

As a particular case of conflation, our problem involves two steps,
namely (1) associating buildings to their containing parcels and
(2) processing correction (Li and Goodchild, 2011). For their
inherent property to spread errors on observations, least squares
method is an interesting option to ensure displacement propaga-
tion and maintain consistency among buildings through the con-
flation process.

The purpose of this paper is to describe a method embedding
polygon-into-polygon constraints into a classical non-linear least
squares adjustment framework. After a review of the state-of-the-
art, we will discuss briefly the reasons leading us to disregard step
(1), then our methodology to conduct step (2) will be thoroughly
presented, followed by a description of our implementation on
real data and a discussion of the results.

2. BACKGROUND AND RELATED WORKS

It is perfectly known that spatial errors are often auto-correlated
in space (Funk et al., 1998) and this is all the more true since
we are especially addressing piecewise systematic errors. If a
building is ascertained to have an error in one direction because it
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overlaps a parcel border, then it is likely that surrounding build-
ings have been affected by the same positional error. Thus, the
idea underlying a least squares estimation of correction parame-
ters is that we can draw information from patent inconsistencies
to propagate them on some neighborhood to latent positional er-
rors. This approach however, suffers from two main drawbacks.
First is that model parameters should be set carefully so that in-
formation propagation is restrained to the vicinity of the patent in-
consistency. And second, is that errors being spatially correlated
doesn’t mean that the error field is smooth everywhere, espe-
cially when the dataset is stemming from the gathering of differ-
ent pieces of surveys (Funk et al., 1998). Applying least squares
with no prior knowledge of these discontinuities will inevitably
led to propagate errors beyond their actual effective range.

Taking advantage of least squares to merge multi-source data is
not a new approach in geography. This method has been used by
(Touya et al., 2013) to process map conflation while constraining
the shape of displaced features. They also compared least squares
approach to the rubber sheeting classical conflation method and
showed that the former achieves better performance regarding
geometrical shapes conservation. In the present issue, applying
rubber sheeting continuous algorithm on a piecewise error field
may not produce relevant results. Moreover, least squares frame-
work may be more suitable to extend our method to a large ar-
ray of disparate constraints. (Harrie, 1999) applied least squares
techniques in the same purpose but focusing on solving conflicts
between objects. Independently, they have also been used to cor-
rect inconsistencies on cadastre polygon shapes avoiding unrea-
sonable modifications of their area (Tong et al., 2005). But to
our knowledge, least squares adjustment has never been used to
solve buildings-into-parcels type problems, though it is possible
to find many works about industrial nesting problems involving
polygon-into-polygon constraints but whose objectives are more
specialized than in our case study then involving more complex
optimization algorithms (Fischetti and Luzzi, 2009; Gomes and
Oliveira, 2002).

3. OBJECTIVES

Our objective is to provide a methodology designed to process a
buildings into parcels vector data integration abiding by a given
standard set of constraints that may be in fine downright depen-
dent on the eventual application. We propose the pipeline de-
picted in figure 1, while most of the following part deals with
the correction step in itself, plus a possible way to express our
standard set of constraints into equations complying with least
squares method.

Having that set, it is important to note that determining which
parcel should contain such and such building (i.e. association
step) is sometimes not a trivial problem, especially when posi-
tional error has a magnitude equivalent to the building dimen-
sions. Figure 2 presents such an ambiguous configuration. In
most cases, while association is somewhat easy for a human op-
erator who would make the most of both the building vicinity
(what is the local trend of the displacement errors ?) and the
comparison of its shapes to the parcel borders, it is not as trivial
for a computer. The resolution of this problem would benefit a
lot from geographic features matching field (Bel Hadj Ali, 2001).
No matter which algorithm is used, association process will al-
ways be suffering from some level of uncertainty. However given
that each building has only a finite (and often small) number of
parcels it is likely to belong to, an interesting solution would be
to implement an iterative resolution algorithm with a feedback
loop (dashed line on figure 1), back and forth between the asso-

Figure 1: Global architecture of the conflation process

ciation and correction steps, trying different possibilities on un-
certain building-parcel couples until the correction is satisfying.
In our case study, we associated each building to the parcel with
which it shares the largest intersection area, the result of this step
being a n-to-one relationship (this is particularly true in France
where a building cannot be located on two different parcels).

Figure 2: Obvious (left) and ambiguous (right) association cases.
Buildings are depicted in red and parcels in black.

Based upon previous works on urban planing rules, it appears
clearly that planning permissions are strongly sensitive to the full
inclusion of buildings into parcels and to the distances between
nearest neighbor features such as parcel borders and other build-
ings (Brasebin et al., 2011). Topological connections between
buildings also appear to be a key property that should be kept dur-
ing the correction. Finally, when multiple configurations are sat-
isfying all the constraints, it is better to select the one that would
induce a minimal displacement of features.

Let’s summarize these constraints :

(1) Positional : vertex displacement should be minimized.
(2) Metrics : variations in distances between buildings should

be minimized, especially when they are neighbor buildings.
(3) Topology : connection and disconnection relationships be-

tween buildings should be rigorously preserved.
(4) Inclusion : buildings should be fully included in parcels.

In our model, we want the inclusion constraint to be imperative,
i.e. among all the solutions abiding by (4) we will be looking for
the one that best fits (1), (2) and (3).
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So far it’s worth noticing that this problem can apply to two dif-
ferent cases depending on the relative quality of building and par-
cel datasets. If buildings are thought to be more accurate, then
a solution is suitable when it minimizes quality degradation of
these buildings while being constrained in parcels. Reversely, if
parcels are more accurate, this problem can be looked on as us-
ing topological inconsistencies between both datasets to improve
building data accuracy. We have strong reasons to think that our
standard set of constraints will hopefully handle both cases.

4. METHODOLOGY

4.1 Data preparation

The parcels being not necessarily convex, it appears clearly that a
building-into-parcel inclusion constraint cannot be summed up in
constraining all building vertices in the parcel. Therefore, it can
be interesting to precompute inner-fit polygons for each build-
ings before attempting to correct the dataset. Given a building
B whose center of mass is noted g and let’s assume that B is
supposed to be fully included in a parcel P , inner-fit polygon
M of B inside P is defined as the only polygon verifying :
B ⊆ P ⇐⇒ g ∈ M . This set M corresponds to the fol-
lowing Minkowski’s difference : M = P -© B (Fischetti and
Luzzi, 2009). It can be easily demonstrated that the inner-fit poly-
gon associated to a building Bi belonging to a parcel Pj can be
simply calculated from the Minkowski’s sum below.

Mi = Pj +©Bi

However, even with above simplification, Minkowski’s sum op-
eration on non-convex polygons cannot be easily found in ev-
ery computational geometry library. Practically, a solution to
this problem might be to process convex decomposition of Bi

and Pj and then to compute the union of all the n ∗m possible
Minkowski’s sum between convex parts.

Figure 3: Minkowski substraction (green) between a parcel
(black) and a building (red) from building center (red point)
for different configurations : standard (a), building strong non-
convexity leading center of mass to be located outside polygon
(b) and non-connectedness (c) cases.

We also tried to process inner-fit polygons directly by moving
g and processing a non-convex hull (alpha-shape) of all posi-
tions of g that let the building fully inside its parcel. Eventually,
we applied a line simplification algorithm (e.g. Douglas-Peucker
or more refined algorithms) to reduce the number of vertices in
the final polygon. Even though that alternative solution proved
to need longer computation time, it has been shown that it re-
sults in a fine approximation of the Minkowski’s difference (pro-
vided that resolution is small enough) notwithstanding that it can
be much more easily implemented than the exact computation
method.

The inclusion of buildings inside their parcels being fully condi-
tioned by the inclusion of their centroids within their respective
inner-fit polygons, at the end of this step, the problem amounts
to constraining a set of points inside a set of associated polygons.
Then it is possible to set constraints (2) only on edges of the De-
launay triangulation of centroids : T (V,E, γ), with V the set of
centroids (cardinal n), E the set of edges and γ the transition
function that maps E in V × V .

Based on the same principle, constraint (3) is set on a the con-
nection graph where an edge is defined between the centroids of
each connected pair of buildings : T ′(V ′, E′, γ′)

Figure 4: Metrics and topology constraints are enforced on both
Delaunay triangulation network T (dashed line) and network T ′

(blue line), respectively. Buildings are depicted in red.

4.2 Data correction

Let : X = (x1, y1, x2, y2, ...xn, yn) ∈ R2n be the parameters
vector we would like to estimate, standing for 2D positions of the
n building centroids.

X0 = (xo1, y
o
1 , x

o
2, y

o
2 , ...x

o
n, y

o
n) corresponds to the vertices ini-

tial positions. Then positional constraints (1) can be expressed
through the 2n following equations :

∀i ∈ [1;n] xi = xoi yi = yoi (1)

Every edge of the Delaunay triangulation also needs to be con-
strained in length variation, which amounts to set :

∀(i, j) ∈ Im(γ)
√

(xi − xj)2 + (yi − yj)2 = doij (2)
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where doij stands for the distance between vertices in their initial
configuration.

( doij =
√

(xoi − xoj )2 + (yoi − yoj )2 )

Alternative formulation below (expressing relative variation of
the edge length) enables to constrained all the more edges as they
are short.

√
(xi − xj)2 + (yi − yj)2

doij
= 1 (2bis)

Similarly, we can ensure that connected buildings will remain
connected through correction simply by constraining the length
of each component of the connection graph edges (thus constrain-
ing both distance and direction between centroids).

∀(i, j) ∈ Im(γ′) xi−xj = xoi−xoj yi−yj = yoi−yoj (3)

Finally, for each centroid i, the function Di is defined as the
squared distance to its associated inner-fit polygon Mi :

Di(xi, yi) =

{
distance2((xi, yi),Mi) if Mi 6= ∅
0 otherwise

Note that due to minor errors in building scales, Minkowski’s
difference may be empty. Then inclusion constraint can be set as

D(X) =


D1(x1, y1)
D2(x2, y2)

:
Dn(xn, yn)

 = 0 (4)

Let v be the residuals on (1), (2) and (3). Objective function f is
formulated as a sum of squared residuals over all indicative con-
straints. Equation (4) is then integrated and we get the following
equality-constrained non-linear optimization problem :

minimize
X∈R2n

f(X) =

C∑
i=0

v2i (X)

subject to D(X) = 0

where : C = 2n+ card(E)+2card(E′), the number of indica-
tive constraints.

Several approaches can be considered to solve constrained least
squares problem. In our implementation, we used the method of
Lagrange multipliers to ensure that inclusion into parcels is an
imperative constraint (Bindel, 2009). Over-weighting constraint
(4) in a classical least squares resolution is an alternative method.
But either way before resolution, constraint (2) and (4) must be
linearized to find an approximate solution with Gauss-Newton
iterative algorithm.

(2) is a classical constraint in geodetic network adjustment prob-
lems. It is linearized through a first order Taylor expansion in the
vicinity of the kth estimation :

xki − xkj
dkij

(δkxi − δkxj) +
yki − ykj
dkij

(δkyi − δkyj) = doij − dkij

δkx being the incremental parameters that should be estimated to
compute xk+1 from xk

Regarding constraint (4), the analytical expression of function D
is unknown, but it is possible to compute its value in every point
X in R2n. Numerical derivation is done as below through a cen-
tered finite difference approximation with an error O(h2) :

∂Di

∂xi
' Di(xi + h, yi)−Di(xi − h, yi)

2h

∂Di

∂yi
' Di(xi, yi + h)−Di(xi, yi − h)

2h

and :
∂Di

∂xj
=
∂Di

∂yj
= 0 ∀i 6= j

Then equation (4) is linearized in :

∂Di

∂xi
(xki , y

k
i )δ

kxi +
∂Di

∂yi
(xki , y

k
i )δ

kyi = −Di(x
k
i , y

k
i )

LetAδX = B be the matrix equation containing (after lineariza-
tion) constraints (1), (2) and (3) (original dataset properties con-
servation constraints) and D the linearized version of constraint
(4). Then, incremental vector δX is evaluated at each step by
solving the following matrix equation (where λ is the Lagrange
multipliers vector) :

[
ATA DT

D 0

] [
δX
λ

]
=

[
ATB
0

]

Then, estimated coordinates are updated according to :

Xk+1 ← Xk + δX

The lack of guarantee as far as convergence to a potential solution
is concerned is a well known problem of non-linear least squares.
Thus, it may be necessary at each iteration, to multiply δX incre-
ment by a reduction factor 0 < f < 1. We will assume that the
solution X̂ is obtained when all the components of the increment
vector are negligible compared to data geometric precision.

∀i 1 6 i 6 2n :
∣∣∣δXk

i

∣∣∣ < ε

Finally, a snapping point operation is applied to the buildings so
that every point in the corrected dataset is projected on parcel
border segments located at less than a threshold distance t. This
adjustment operation ensures that no residual overlap remains at
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the end of the process (due to the finite number of iterations in
Gauss-Newton algorithm, buildings often slightly overlap parcels
borders). Setting the threshold at a relatively low value enables
to make the distinction between acceptable residual errors and
abnormal overlapping which could be due to a wrong building-
parcel affectation. As it may result in topological errors on build-
ing polygons (e.g. self-intersections), snapping point implemen-
tation should be conducted carefully.

After investigation of the first results, it appeared that a relatively
high proportion (30 %) of buildings were associated with empty
inner-fit polygons (due to the aforementioned precision errors on
building dimensions). This is particularly frequent when build-
ings are tightly constrained in the parcel along at least one dimen-
sion. The original idea was to let these buildings unconstrained
by setting null their function Di then relying on neighbor build-
ing correction displacements to guide them at the right place.
This might be a valid solution provided that the number of empty
inner-fit polygons is relatively small, which is not the case in our
dataset.

Figure 5: Solving the problem (left) by reducing the inner-fit
polygon dimension, here to a line for example (right).

Additionally, when the parcel has nearly a rectangular shape but
with a slight length difference on two opposite sides (figure 5),
the inner-fit polygon often ends up being located far away from
the actual position of tightly constrained buildings. A solution
to this problem has been found in reducing the dimension of
the inner-fit polygon. The main idea was to compute a oriented
bounding rectangle, then comparing its dimensions to threshold
values (10 cm in our implementation) to decide if it might be
worth reducing the inner-fit polygon to a line or to a point (which,
in both cases, simplifies subsequently the inclusion constraints).

Figure 6: Incorrect inner-fit polygon.

But this simplification doesn’t handle any cases. For example, as
shown in figure 6, it is difficult to detect automatically that the

inner-fit polygon is obviously incorrect due to minor inaccura-
cies in the building dimensions relatively to the parcel. This had
been leading us to consider a generic method to correct most of
these particular cases without having to review all the possible
configurations.

A solution to this problem might be to compute homothetic trans-
formations of every buildings relatively to their centroids with a
ratio r ' 1 (r < 1). Gradually reducing r from an initial value
of 1, showed that in 99% of cases where the inner-fit polygons
could not be computed, a value of r greater than 0.98 enabled
to get a non-empty solution. Based upon this consideration, the
following adaptive approach can be proposed.

Algorithm 1 Compute building-into-parcel inner-fit polygon
Require: Polygons B and P (6= ∅)

M ←P -©B
M̃ ←P -© homotethy(B, 0.98)
if M = ∅ or surfacicSimilarity(M , M̃ ) ≤ 0.9 then

M ← M̃
end if
return M

In this algorithm surfacicSimilarity stands for the areal ratio of
the intersection out of the union of two polygons (Bel Hadj Ali,
2001) while 0.9 has been chosen as an empiric threshold.

It’s interesting to note that in our resolution model, satisfactory
homothetic ratio ri is chosen for each building, then geographic
coordinates (xi, yi) are estimated by least squares adjustment.
An interesting improvement of this algorithm would be to esti-
mate the vector of parameters (xi, yi, ri), which would guarantee
to get an optimal reduction of building dimensions. However, this
requires to reprocess inner-fit polygons at each step of the least
squares estimation, which could make the whole process signifi-
cantly slower.

5. RESULTS AND DISCUSSION

For our study, La Plaine Commune data have been used, cover-
ing an area of 1.5 x 1.5 square kilometers extent in Paris suburbs
(France), for a total amount of 2800 buildings scattered within
1907 parcels (average 1.49 buildings per parcel). Building data
are stemming from BDTOPO c© (IGN, national mapping agency)
while parcels data were extracted from PCI Vecteur (Ministry
of Public Finance). In order to check correction validity, PCI
buildings (priorly integrated to parcels) have been extracted and
matched with their IGN counterpart, providing us with what is
assumed to be the ’ground truth’ of the building dataset that we
want to correct. With this particular training data, it is all the
more relevant to process conflation, since unlike IGN buildings,
PCI Vecteur buildings don’t have any height attribute.

The method described in the previous section has been imple-
mented in Java under GeOxygene platform, with the libraries JTS
(geometric operations) and JAMA (matrix). Correction has been
launched on Intel Core(TM) i7-3770 processor (3.40 GHz RAM
8 Go), by blocks containing at most 400 buildings (total 9 blocks)
with a total computation time of 4’51” for the whole dataset.

Parameters have been set as follows : weight on positional con-
straint = 1 (arbitrary reference), weight on metrics = 10, weight
on topology = 100, weight on inclusion into parcels = +∞ (con-
strained least squares), convergence criteria ε = 10−2 m, nu-
merical derivation step h = 10−2 m, reduction factor f = 0.1,
snapping threshold t = 0.25 m.
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In order to assess the capabilities of our method, a batch of quality
indexes has been implemented between data before and after cor-
rection. In the following table, rms stands for root mean square.

INDEX DESCRIPTION

POSITION Rms in correction displacement distances (m)
PERIMETER Rms in building perimeter variations (m)
SURFACIC Rms in building area variations (m2)
INTRA DIST Rms in variations in distances between

buildings inside same parcel (m)
INTER DIST Rms in variations in distances between

buildings inside adjacent parcels (m)
OVLP BILD Rms in overlap between building area (m2)
OVLP PRCL Rms in building / parcel overlap area (m2)
DIST BORD Rms in variations in distances from

buildings to parcel borders relatively to
ground truth (m)

TOPOLOGY Number of [disconnected buildings that
get connected + connected buildings
that get disconnected] during correction

Table 1: Indexes to assess least squares algorithm performance

As a reference, we also implemented a basic algorithm, based
on an individual correction of buildings followed by a snapping
point operation (same as described previously). The optimal dis-
placement for each building is computed in two steps : first the
translation direction is estimated, then successive translations are
operated along this direction until the building is moved to the po-
sition maximizing the portion of its surface included in the parcel.
Quality indexes have been measured on both algorithms. Results
are presented in table 2, where B-ALGO stands for the basic al-
gorithm and LS-ALGO for the least squares approach.

INDEX B-ALGO LS-ALGO IMPROV. (%)

POSITION 0.58 0.54 - 6.9
PERIMETER 0.83 0.13 - 84.3
SURFACIC 3.28 0.50 - 84.7

INTRA DIST 0.24 0.11 - 54.2
INTER DIST 0.32 0.18 - 43.8
OVLP BILD 1.43 0.14 - 90.2
OVLP PRCL 0.09 0.08 - 11.1
DIST BORD 0.79 0.76 - 3.8
TOPOLOGY 1716 8 - 99.4

Table 2: Comparison of basic and least squares algorithms.

From these results, it appears clearly that least squares algorithm
tends to avoid drastic variations in building polygon perimeters
and areas (both of them being around 5 times smaller compared
to the results provided by the basic algorithm). Through the posi-
tion quality index, we can ascertain that this improvement hasn’t
been done at the expense of position conservation (i.e. buildings
haven’t been displaced further than with basic algorithm, but in
possibly more relevant directions).

Results can confirm as well that constraint (3) has enabled to
avoid most of the topological problems that occurred with ba-
sic algorithm. However it is also interesting to note that despite
the heavy weight set on the topological constraint, a few couples
of buildings (8) have been disconnected during the process. Fur-
ther investigation revealed that this was due to inconsistencies in
the parcel dataset (when two parcels that should be adjacent are

slightly separated, every couple of connected buildings belong-
ing respectively to each one of these parcels will assuredly end
up getting disjoint).

On the whole dataset, significant improvement has been achieved
regarding the conservation of distances between neighbor build-
ings (40 − 50%). However, both basic and least squares ap-
proaches score poorly on DIST BORDS index (80 cm) but com-
paring the distances to parcel borders on two building datasets
that don’t have the same specifications may not be meaningful.
Still, it remains that obviously least squares method doesn’t per-
form much better than its basic counterpart in terms of replac-
ing buildings in the most realistic position relatively to the parcel
borders. This can be due to the fact that only a relatively small
number of buildings are significantly displaced during the cor-
rection, then it is difficult to assess to what extent distances to
parcel borders have been retrieved while indexes are providing
an aggregated average value on the complete dataset. Therefore,
it might be interesting to consider only an area where significant
errors have been corrected (figure 7 and 8).

Figure 7: Original data set (red) and corrected data set (green).

Figure 8: Cadastre ground truth priorily conflated building data

From these pictures, it can be seen that setting adequate weight on
the metrics constraint (2) might not be a trivial problem. In most
cases, buildings are closer to the ground truth after correction, but
it also appears that on some other buildings, metrics constraint
seems to be over-weighted, thus propagating error correction dis-
placements on features that were not concerned. More generally,
this raises the question of finding an adequate weighting (possibly
variable in space) on the metrics constraint.

It’s worth noticing that in most cases, even without explicit con-
straint, buildings in parcel 13 (figure 8) have been replaced at
their right position relatively to the parcels borders, thus mean-
ing that our standard constraints set may enable to some extent to
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make up for the lack of explicit information on building-border
connections. But this is not always true, and figure 7 and 8 il-
lustrate a representative area where some buildings haven’t been
compelled by their vicinity to get connected with borders (parcels
15, 18, 223). It could be interesting to provide our model with
statistical information (possibly based on geometrical consider-
ations) as regards the probability of a given building to be con-
nected to its parcel borders.

A key parameter regarding computation time is the reduction fac-
tor f . If not small enough estimation process will be divergent.
Conversely, setting f to an unreasonably small value may result
in a very slow albeit certain convergence. A middle-ground pa-
rameterization may be found in a variable reduction factor along
with iterations. Figure 9 depicts the average correction displace-
ment on building centroids for different values of f including a
variable parameterization (f = 1 before the 10th iteration, then
f = 0.1 from the 11th to the 50th and eventually f = 0.001 un-
til convergence criteria is met). The erratic behavior of green line
can be qualitatively explained given the fact that inclusion con-
straint (4) is ineffective whenever a building gets fully included
in its parcel. Then, if translation is not restrained enough, as it
is only guided by non-deformation constraints, the building poly-
gon would undergo a leap back to its initial configuration before
being adjusted again and so on, leading to the periodical pattern
embodied in the next figure.

Figure 9: Number of iterations vs average correction (m) for dif-
ferent reducing factors : 0.4 (green), 0.001 (blue) and variable
(red).

In our model, we assumed that each building belongs to the par-
cel with which it shares the largest area. This proved to be a
coarse but no so unrealistic decision criteria as comparison with
ground truth data confirmed that 99.8 % of the buildings have
been associated with their actual parcel. Besides, when applying
correction even on ill-associated buildings, we found that with an
adequate parameterization, perturbations remain local and could
be corrected manually in post-processing by a human operator
(this is mostly due to the positional constraint (1) which behaves
as an inertial component, enabling to attenuate spatial propaga-
tion of errors). At this step, this raises the question of finding an
efficient way to map residuals so that the user can easily locate
areas where the conflation process may have been suffering from
wrong associations.

6. CONCLUSION

In this study, we tried to implement an algorithm based on a least
squares approach to integrate buildings into a given parcel dataset
that we assumed to be the positional reference. Through its gener-
icity, our method can be parameterized and extended to fit other
use cases. Results evidently showed that it provides significantly

better output than a basic algorithm relying on an independent
correction of buildings though an optimal weighting of the met-
rics constraints is still an important criteria to ensure a realistic
propagation of correction displacements. However, it would be
interesting to compare its results to a more sophisticated algo-
rithm. Another strong limit of our model is that it doesn’t allow
for rotations during correction steps. Maybe some more complex
categories of constraint solving methods like genetics algorithms
could enable to perform correction on a vertex-basis (possibly
oversampled along building edges to bypass parcel non-convexity
issues), thus empowering the model with potentially broader and
more refined constraints. In further research, it would be im-
portant as well to conduct sensitivity analysis on parameters in-
volved in the homothetic correction step in order to complete our
method. We will also aim at extending our model to 3D data
buildings which would open to a large array of new constraint-
type problems, like intervisibility, roof-structure or prospect dis-
tance conservation.
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