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ABSTRACT:

Crowd-sourcing, especially in form of Volunteered Geographic Information (VGI) significantly changed the way geographic data is
collected and the products that are generated from them. In VGI projects, contributors’ heterogeneity fosters rich data sources, however
with problematic quality. In this paper, we tackle data quality from a classification perspective. Particularly in VGI, data classification
presents some challenges: In some cases, the classification of entities depends on individual conceptualization about the environment.
Whereas in other cases, a geographic feature itself might have ambiguous characteristics. These problems lead to inconsistent and
inappropriate classifications. To face these challenges, we propose a guided classification approach. The approach employs data
mining algorithms to develop a classifier, through investigating the geographic characteristics of target feature classes. The developed
classifier acts to distinguish between related classes like forest, meadow and park. Then, the classifier could be used to guide the
contributors during the classification process. The findings of an empirical study illustrate that the developed classifier correctly predict
some classes. However, it still has a limited accuracy with other related classes.

1. INTRODUCTION

The advance of Web technologies (e.g. Web 2.0) and the in-
creasing availability of hand-held location sensing devices (e.g.
smart phones) empower the public to participate in mapping ac-
tivities. Those activities, which were formerly conducted by map-
ping agencies and cartographers, now attract volunteers. Collab-
orative mapping is one form of Volunteered Geographic Infor-
mation (VGI), when a group of volunteers acts to collect, share,
maintain, and use information about geographic features (Good-
child, 2007). Among others, OpenStreetMap1(OSM), Google
Mapmakers2 and Wikimapia3 are examples of collaborative map-
ping projects which aim to produce a digital map of the world.
During the last decade, VGI has played a significant role in the
GIScience community. Various applications and services have
been developed based on VGI data including – but not limited to
– environmental monitoring, crisis management, urban planning,
mapping services, etc.

Despite of the increasing dependency on VGI data, its question-
able quality results – in some cases – in limited use (Elwood et
al., 2012). Among other things, the lack of detailed information
about data quality and the difficulty of applying traditional spa-
tial quality measures for assessing the data are key reasons behind
its questionable quality (Flanagin and Metzger, 2008, Elwood et
al., 2012). Generally, multiple measures are used to describe the
quality of spatial data from different perspectives such as com-
pleteness, positional accuracy, thematic accuracy, logical consis-
tency, and lineage. In this paper, we tackle the quality from a
classification perspective. Classification is one facet of data qual-
ity that influences thematic accuracy.

1www.openstreetmap.org
2www.google.com/mapmaker
3www.wikimapia.org

In most VGI projects, a large amount of data is contributed re-
motely by tracking satellite images. The contribution method
itself poses a classification challenge: whether a piece of land
covered by grass is classified as park, garden, meadow, or grass,
if a water body classified as pond or lake – the classification an-
swers to these questions mainly depend on contributors’ perspec-
tives and need some sense of locality. Moreover, some classes
are semantically related (e.g., park or garden), while others have
ambiguous characteristics (e.g., grass). Hence, in such cases an
entity could be inappropriately classified resulting in problematic
quality.

In this paper, we present an approach for rule-guided classifica-
tion aiming to improve the quality of VGI data. The approach
consists of two phases: Learning and Guiding. During the Learn-
ing phase, the task is to learn the unique geographic character-
istics that distinguish between related classes. Learning mainly
depends on topological investigation of classes. During learning,
data mining algorithms are applied to extract the characteristics
of specific classes in form of a set of predictive rules. Based on
the extracted rules, a rule-based classifier is developed that guides
the contributors, during the Guiding phase, towards the most ap-
propriate classes.

In an empirical study, we investigate the classification of grass-
covered land. We analyze the classes forest, garden, grass, meadow,
park, and wood. The classification of these features represent a
challenge: they are commonly covered by grass, however each
class has unique characteristics. For example, the classes park
and garden have entertainment characteristics, forest and wood
are usually covered with trees or other woody vegetation, the
class meadow has agriculture characteristics, etc. The findings
indicate the feasibility of the approach; The developed classifier
is able to precisely classify some of the target feature classes,
while other classes still have poor classification accuracy.
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The paper is organized as follows: Section 2 presents a literature
review of VGI data quality. Section 3 gives insight into the main
factors behind the heterogeneous classifications in VGI data. Sec-
tion 4 presents the proposed approach and its phases. Section 5
presents an empirical study. The last section outlines the conclu-
sions and the current state of the work.

2. VGI DATA QUALITY

In VGI, particularly in collaborative mapping, contributors act
as sensors to collect, update, and share information about ge-
ographic features. VGI employs the contributors’ locality and
their willingness to contribute in order to produce rich spatial
data sources (Goodchild, 2007). However, the quality of the re-
sulting data is heterogeneous. With increasing utilization of VGI
in GIScience activities and applications, data quality becomes a
concern of highest priority (Flanagin and Metzger, 2008, Elwood
et al., 2012).

VGI data is evaluated either by comparison with authoritative
data or by intrinsic analysis following crowd-sourcing, social, or
geographic approaches (Goodchild and Li, 2012). (Girres and
Touya, 2010, Haklay, 2010, Neis et al., 2011, Jackson et al.,
2013) compare VGI data against authoritative data sources in
France, UK, Germany, and USA, respectively. They emphasize
the quality of VGI data particularly in urban areas. In (Hecht
and Stephens, 2014), authors conclude that VGI data quality de-
creases with increased distance from urban areas. On the other
side of research, (Bishr and Kuhn, 2007, Keßler et al., 2011, Neis
et al., 2011, Mooney and Corcoran, 2012b, Barron et al., 2014)
assess VGI data intrinsically. They asses VGI data by investigat-
ing the meta-data like contributors’ mapping activities and repu-
tation, entities’ editing history, etc. Authors of (Neis et al., 2013)
compare the development of contributors’ communities in differ-
ent cities around the world indicating the relation between the
communities and data quality. The work in (Barron et al., 2014)
presents 25 fitness-for-purpose measures to assess VGI data in
specific uses.

Towards improving data quality, (Pourabdollah et al., 2013) con-
flate VGI data with authoritative data. In an attempt to improve
the data quality at contribution time authors of (Vandecasteele
and Devillers, 2013) provide an approach to guide contributors
during the editing process aiming to improve the semantic data
quality. Moreover, (Schmid et al., 2013) argue a task-specific
interface approach toward acquiring higher data quality. In our
previous work, we tackled the inconsistent classification prob-
lem in (Ali and Schmid, 2014) and proposed a learning-based
approach to detect the problematic classification of VGI in (Ali
et al., 2014).

Most of the research investigates quality measures like positional
accuracy and completeness, while this paper tackles the thematic
accuracy from a classification perspective. Moreover, assessment
of VGI data through a comparison approach is no longer appro-
priate for the nature of VGI. As well as, more studies assess VGI
data intrinsically following crowd-sourcing or social approaches,
whereas we follow the geographic approach aiming to improve
the data quality.

3. CLASSIFICATION CHALLENGES IN VGI

Classification ambiguity and vagueness in spatial data types are
the fundamental sources beyond the problematic thematic accu-
racy of VGI (Fisher, 1999, Devillers et al., 2010). Particularly,
the loose classification mechanisms and the absence of integrity
checking mechanisms result in heterogeneous data classification.
In most VGI projects, contributors are heterogeneous; they have

Figure 1: Appropriate classification as park

Figure 2: Inappropriate classification as park

diverse levels of knowledge about geography and cartography,
and come from diverse cultures and educational backgrounds. On
one hand, VGI harnesses the contributors’ heterogeneity towards
developing rich data sources and preserving the concept of lo-
cality; on the other hand, identical geographic features should be
classified homogeneously as much as possible to support global
applications (e.g. routing or map rendering). At the same time,
there exist geographic entities that might appropriately belong to
multiple classes (e.g. park or garden). However, if the char-
acteristics and the geographic context of an entity is taken into
account, this entity would be more appropriately belong to one
class rather than to the other(s).

In this paper, we define appropriate classification as assigning
a given entity a class which highly reflects its intrinsic and ex-
trinsic characteristics and matches its geographic context. E.g.,
Figures 1 and 2 illustrate the terms of appropriate and inappro-
priate classifications, respectively. In Figure 1, the given entity
contains some amusement facilities such as a playground, sport
centers, and accessibility for walking. This entity is classified
as park, which typically expresses the characteristics of the en-
tity. Here, park represents the appropriate class of the entity. In
contrast, in Figure 2 an entity represents a small piece of land
covered by grass, located beside roads and roundabouts. The en-
tity is classified as park, despite it being too far from being used
for amusement or entertainment. Here, park is an inappropriate
class and grass might be the appropriate class that truly reflects
the characteristics of the entity. Hence, learning the intrinsic and
extrinsic characteristics of a given geographic feature class is re-
quired towards guiding and recommending the contributors dur-
ing the classification process.

3.1 Ambiguous Classification

As a case study, this paper addresses the classification of grass-
covered land. A piece of land covered by grass could be clas-
sified as garden, grass, park, meadow, or even forest or wood.
These classes represent a sample among other potential classes
(e.g. recreation ground, scrubs). Our previous study in (Ali et
al., 2014) demonstrates how contributors are unlikely to agree
between themselves on a certain class for a given set of entities.
The participants of the study typically reflect the nature of VGI
contributors: diversity of age, gender, culture, education, and ge-
ographic knowledge. The findings indicate the following: (1) the
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difficulties of classifying such of these entities; (2) the massive
need for multiple classes for some entities; and (3) the demand
for rule-guided classification. During remote classification, it is
difficult, even for experts, to recognize the intrinsic properties of
an entity to assign the most appropriate class. Thus recommen-
dations and guides are both required particularly for non-expert
contributors, which represent the majority in VGI projects.

We utilized OSM data, as a common example of VGI projects.
In OSM, the classification is done by means of tags in form of
key = value, where the key represents a classification perspec-
tive and the value represents a class of that perspective. For ex-
ample, tag leisure = park the key leisure is associated with
the set of entities that are used for entertainment purposes, while
park represents one class between others like garden, pitch,
recreation, etc. There are no restrictions on the number of tags
that are associated with an entity; each entity could be related
to no tags or several tags with arbitrary combinations of tags
(Mooney and Corcoran, 2012a). The flexibility of contribution
mechanisms itself leads to problematic classifications. At the
same time, OSM provides only recommendations of tags based
on discussions between mappers communities. However, most
contributors do not spend enough time to check the given recom-
mendations. Moreover, particularly for non-experts, some rec-
ommendations might be conceptually misinterpreted (e.g. wood
or forest and landuse or landcover).

4. RULE-GUIDED CLASSIFICATION APPROACH TO
IMPROVE CLASSIFICATION QUALITY

The proposed approach to improve the quality of classification
exclusively depends on VGI data. We aim to develop a classifi-
cation system able to guide the contributors during the classifi-
cation process. Through guiding we aim to obtain data of con-
sistent/homogeneous classification. Figure 3 illustrates the pro-
posed approach, which consists of two phases: Learning phase
(see Section 4.1) and Guiding phase (see Section 4.2).
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Figure 3: Guided classification approach

4.1 Learning Phase

The objective of the Learning phase is mining VGI data to ex-
tract a set of predictive rules. The rules describe the geographic
characteristics of specific feature classes. The extracted charac-
teristics have the form of:

head← body (1)

where the body describes the characteristics of an entity and the
head points to the recommended (predicted) class. The combina-

tion of rules would be able to describe a specific feature class. Af-
terwards, the extracted rules are organized into a rule-based clas-
sifier, which consequently would be able to predict the most ap-
propriate class for a given set of characteristics of an entity. The
proposed approach maintains the locality principle. We assume
that at country level a certain geographic feature should have the
same characteristics; learning the characteristics of a specific fea-
ture in China and applying the developed classifier in Germany
may not make sense. During the learning process, we depend on
topological investigations to understand the geographic context
of target feature classes.

4.1.1 Topological Investigation Based on the first law of ge-
ography (Tobler, 1970): “Everything is related to everything else,
but near things are more related than distant things”, we investi-
gate the topological relations between pairs of entities in order
to understand the geographic context of specific classes of enti-
ties. In short, this is to find the frequent relations between entities
that uniquely distinguish each class. For example, park typically
contains playgrounds, pathways, etc., whereas grass and meadow
contain less infrastructure; also park is located within or near res-
idential areas, whereas meadow is typically located near farms
and rural areas, etc.

We employ the 9-Intersection Model (9IM) (Egenhofer, 1995) to
investigate the topological relations between pairs of entities. As
shown in Figure 4, 9IM describes the topological relations be-
tween pairs of entities as: disjoint, meet, overlap, covers, covered
By, contains, inside, and equal. Basically, geographic features
are represented by means of point, line, and polygon data ele-
ments. In this work, the target classes are usually represented by
polygon. Thus, we consider all possible topological relations be-
tween polygon and other data elements; polygon-point, polygon-
line and polygon-polygon.

inverse

Figure 4: The 8 topological relations of the 9-Intersection Model

At Figure 4, assume that the gray entities represents the target en-
tities. We consider disjoint, meet, overlap, contains, and covers
relations. Regarding disjoint relation we analyze entities within
distance of 10 meters far from target entities. Particularly, the dis-
joint relation gives insight about the external geographic context,
while the others represent the relations resulting from the inter-
sections of the interiors and boundaries of entities. We neglect
the inside, covers, and equals relations for two reasons: (a) inside
and covers are inverse relations of contains and covered By, re-
spectively; and (b) the equal relation rarely occurs and does not
add useful information for analysis.

4.1.2 Data Mining Process The topological analysis aims to
find the frequent patterns (topological relations) involved between
target classes and other geographic features, e.g. park contains
playground, sport center, etc. We consider each combination of
key and value as a new feature type. E.g. leisure = playground
and leisure = sport are two different geographic features. We
encode them as leisure playground and leisure sport re-
spectively and relate each new feature with a unique identifier
(ID) in an indexed file. The analysis includes the common map
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features that are suggested by the OSM project on its Wiki page4.
Due to the free contribution mechanism of the OSM project, the
analysis results in more than 1,000 unique features, after filtering.

The mining process works to extract atomic rules in form of rule
(1), which is translated into:

Class(X,C)← R(X,F ) (2)

where X represents a target entity, C is the predicted class and
C ∈ {park, meadow, etc.}, R is one of the topological relations
where R ∈ {contains,meet, etc.} and F represents the set of
frequent features that is mostly involved in a relation R with en-
tities of class C.

To extract such rules, we apply the Apriori algorithm (Agrawal
et al., 1994). The Apriori algorithm is one of the common data
mining algorithms that were initially developed to extract fre-
quent item sets and to learn association rules from a transactional
database (Witten and Frank, 2005). In this work, we particularly
use a class association rule mining task, when rules have a pre-
defined class (e.g. park) as their consequences (left side at rules
(1) and (2)). Extracting interested rules among a large number of
possibilities requires setting up some constraint parameters. Sup-
port (supp) and confidence (conf ) are two common constraints
that used to define the thresholds for extracting and evaluating the
interesting rules, as follows: [where 1=leisure playground

and 15=highway footway]

support is used to filter the interesting patterns. It is defined
as the percentage of entities that hold the body description.
e.g., supp (contains(X , [1, 15])) = 20%, means 20% of the
entire entities contains playground and footways features.

confidence is used to evaluate the extracted rules. It is equal
to the percentage of entities that hold the body description
and consequently the head. e.g., conf (Class(X, park)←
contains(X , [1, 15])) = 80%, implies 80% of the entities
hold the rule body is associated with class park.

4.1.3 Classifier development The main idea of association
rule mining has adapted to solve other problems such as classifi-
cation problem resulting in associative classification mining filed.
Associative Classification (AC) is one branch of data mining that
combines two mining tasks, associating rule mining and classifi-
cation, to build a classifier based on a set of predictive association
rule (Thabtah, 2007). Generally, developing a classifier based on
a set of predictive rules consists of 4 steps:

Step 1 Find all interesting class association rules from a data set;

Step 2 Based on a confidence threshold, filter the extracted rules
into a set of predictive association rules;

Step 3 Encode the rules into a classifier; then

Step 4 Evaluate the classifier on a test data set.

In geographic contexts, usually everything is possible (e.g., a
building may be located in a desert, a highway crosses a resi-
dential area or a public park, etc.). Besides, in VGI projects there
exist unlimited unique features (See section 4.1.2). Thus, we set
the support threshold to 1% and consider patterns which occur
with a frequency of more than 1% as frequent. During the learn-
ing process, we are mining to extract atomic rules per topological
relation per class.

4http://wiki.openstreetmap.org/wiki/Map_Features

The extracted rules represent the output of Step 1. In the spatial
context and due to the uncertainty of spatial data, the rules them-
selves represent a challenge at Steps 2 and 3. The aim at Step
2 is to organize the extracted rules into a set of predictive asso-
ciation rules for developing the classifier in Step 3. Hence, the
difficulties come from the following points: (a) Step 1 results in
rules of identical bodies associated with different heads (classes);
(b) during Step 2, the higher the confidence threshold for filtering
the interesting rules, the more possibility to dismiss useful infor-
mation; (c) due to ambiguous classification (See section 3.1), an
entity could plausibly belong to more than one class; and (d) due
to geographic context, an entity could match with several atomic
rules associated with different head (classes). In summary: How
should we classify? By the majority of rules or by rules of higher
confidence? In this paper, an appropriate classification is that
which truly reflects the characteristics of an entity.

4.2 Guiding Phase

During the Guiding phase, the aim is to enhance the classifica-
tion quality of VGI by applying the developed classifier. The
proposed approach presents two different ways of guiding: First,
contribution checking, when the classifier is implemented in an
editing tool. At contribution time, the tool informs the contribu-
tor about the potential problem, based on the classifier. The editor
provides the contributor with recommendations. Thereafter, the
contributor considers the guidance provided and responds with
correction (if required). Second, manual checking, when the clas-
sifier is applied directly on an existing data set. The classifier
points out entities with problematic classification, which don’t
match any of the predictive rules. The classifier generates the
problematic entities combined with some recommendations. Af-
terwards, both are presented for assessment and correction (if re-
quired). Through both ways, the guiding could indirectly enrich
the data source, when the contributors add more information to
satisfy the recommended class.

5. EMPIRICAL STUDY

To evaluate the approach, we perform an empirical study. This
study checks the ability of the developed classifier to distinguish
between similar classes. During the study, we use the OSM data
set of Germany dated December, 2013. Reasons behind selecting
Germany for the study are the following: (1) active mappers com-
munities; (2) no authoritative bulks are imported to data, so it still
reflects the voluntary nature; and (3) several studies conclude the
higher quality of OSM data in Germany relative to other places
(Zielstra and Zipf, 2010, Ludwig et al., 2011, Neis et al., 2013).
We extract all entities, that are represented by polygons and clas-
sified as forest, garden, grass, meadow, park, or wood. The en-
tities are extracted from the 10 most densest cities at Germanyto
ensure active mappers communities and acceptable level of qual-
ity. The cities are: Berlin, Bremen, Cologne, Dortmund, Dus-
seldorf, Essen, Frankfurt, Hamburg, Munich, and Stuttgart. The
data set consists of 3,724 forest, 3,030 garden, 7,336 grass, 4,277
meadow, 4,445 park, and 1454 wood entities. We processed each
entity individually by analyzing the topological relations between
pairs of entities within its geographic context. Each entity is de-
scribed by a set of topological relations with other surrounded
features and assigned to a specific class.

5.1 Learning Process

During the learning process, we apply the Apriori algorithm to in-
vestigate the frequent topological relations describing each class.
We consider support threshold of 1% to find the interesting pat-
terns. Each topological relation is processed individually with a
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given class producing a set of predictive rules of the class. The
rules represent the output of Step 1 (see Section 4.1.3).

We extract 9,193 rules; 4,100 describe forest, 215 describe gar-
den, 745 describe grass, 506 describe meadow, 2,938 describe
park, and 689 describe wood.

5.2 Classification Hypothesis

As mentioned previously, the rules resulting from the learning
process represent a challenge for developing the classifier. To
overcome the mentioned difficulties, we do the following:

• Pruning: Redundant rules are removed based on the rules’
conf threshold. The rules with identical bodies are inte-
grated into one rule assigned to the head (class) of higher
conf.

• Filtering using the confidence threshold: The classifica-
tion is done once by considering the entire rule set and once
by considering rules with conf ≥ 50%.

• Grading 1st and 2nd recommendations: During the clas-
sification process, we consider the 1st and 2nd recommended
classes given by the predictive rules.

• Classification assumptions: Due to an unbalanced number
of rules describing each class, depending on the majority of
rules assigned to a specific class might be biased. Thus, we
consider only rules with maximum conf per class to define
1st and 2nd potential classes.

During the classification process, each entity is matched with the
predictive rules. For example, Figure 5 shows an entity5 with
osm id = 25422214. At writing time, the entity has 28 editing
versions and is tagged with leisure=park and name=Revierpark
Wischlingen. It matches 401 rules: 232 park, 132 forest, 25
grass, 8 meadow, 2 wood, and 2 garden. Table 1 shows some of
the matched rules with this entity:

Figure 5: An entity with osm id = 25422214

Rule conf
Class(X, ”park”)← contains(X, [1, 15, 27, 89]) 94%
Class(X, ”park”)← contains(X, [1, 15, 21, 22]) 83%
Class(X, ”park”)← meet(X, [6, 15]) 70%
where 1=leisure playground, 6=highway residential,
15=highway footway, 21=sport soccer, 22=leisure
pitch, 27=building yes and 89=nature water

Table 1: Matched rules for the entity with osm id = 25422214

5http://www.openstreetmap.org/way/25422214

Classification
method

Accuracy
corrected classified ent. %

max(conf )
per class

1st 14418 60
1st or 2nd 18333 75

max(conf )
per class where
conf ≥ 50%

1st 12165 50
1st or 2nd 13487 55
not match
any rule 6276 25

Table 2: General accuracy of the proposed classifier

Regarding rules conf, the top 50 rules have conf range form 94%
to 83% and all of them have head of Class(X, park). While
considering 1st and 2nd recommended classes requires looking
into the maximum conf per class. E.g., the same entity matches
with park, forest, grass, meadow, garden, and wood classes with
descending conf of 94%, 65%, 54%, 48%, 45% and 20% re-
spectively. Hence, the given entity could belong to park (1st pre-
diction) or forest (2nd prediction) classes rather than any other
potential classes.

5.3 Results and Discussions

We depend on the accuracy (acc) measure to evaluate the results,
where accuracy represents the percentage of corrected classified
entities. Table 2 demonstrates results from applying different
classification hypotheses. Due to the classification ambiguity 1st
and 2nd recommended classes are considered.

First, we take into account the entire set of extracted rules. The
classification is based on rules with the maximum conf per class;
when classes of rules with the 1st and 2nd maximum conf are
assigned to 1st and 2nd recommended classes, respectively. Con-
sidering only the 1st recommended class, the classifier correctly
classified 60% of entities. Whereas 75% of entities are correctly
classified considering 1st or 2nd recommendations.

Second, we repeat the previous process, considering only rules
with conf ≥ 50%. As Table 2 indicates, besides lower classifi-
cation accuracies, a large number of entities does not match any
rule. The clarification of that is the filtered rules are not able
to cover all cases and do not give enough descriptions for the
classes; some useful information might be hidden behind rules
with low conf. E.g., Class(X, park) ← meet(X, [highway
footway]) has conf of 38%. However this rule exactly exists in
OSM Wiki recommendations6. To remove redundant rules, we
do the pruning process (see Section 5.2). The 9,193 rules are re-
duced to 5,826 rules, while the accuracies are remaining mostly
the same.

Due to the unbalanced distribution of classes, depending on the
overall accuracy might be biased. Thus, looking into more de-
tails of the accuracy per class is important as well. Table 3 gives
insight into the classification accuracy per class. According to
Table 3, park, grass, and garden have higher classification ac-
curacies (80-94 %, 72-87%, and 71-81%, respectively), whereas
forest, meadow have moderate accuracies with 38-67% and 42-
58%. While wood has a noticeably lower accuracy. The entities
of park, grass, and garden match the 1st recommendations within
70% to 80%. They also match 1st or 2nd recommendations with
higher accuracies between 81% to 94%. In contrast, entities of
forest, meadow, and wood match even 1st or 2nd recommenda-
tions by an average of 46%.

The lower classification accuracy of the class wood might result
from the limited number of entities in the training data set (1454).

6http://wiki.openstreetmap.org/wiki/Tag:leisure\

%3Dpark
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Class
Accuracy

corrected classified ent. %
forest
(3724)

1st 1447 38
1st or 2nd 2501 67

garden
(3030)

1st 2167 71
1st or 2nd 2472 81

grass
(7336)

1st 5355 72
1st or 2nd 6424 87

meadow
(4277)

1st 1826 42
1st or 2nd 2499 58

park
(4445)

1st 3516 80
1st or 2nd 4216 94

wood
(1454)

1st 107 7
1st or 2nd 221 15

Table 3: Proposed classifier accuracies per class

Thus, the generated rules have lower conf ; about 96% of the pre-
dictive rules of wood class has conf <50%. Besides, at OSM
Wiki7 different tagging approaches are presented for forest and
wood. The same regarding meadow classes as 90% of the ex-
tracted rules has conf < 50%. In contrast, 21%, 15%, and 11% of
rules describing the classesgarden, grass, and park, respectively
have conf ≥ 75%. The various classification accuracies might
return to dealing with VGI data itself; some features might be
better mapped than others. Moreover, the training data set is not
free of incorrect classified entities. We assumed the correctness
of a large partition of data.

5.4 Evaluation

Due to the unavailability of an authoritative data for these types
of features, we adopt two ways for the evaluation process. First,
we visually investigate the results to check the recommendations
given by the proposed approach. Figure 6 and 7 illustrate exam-
ples of problematically classified entities and the recommended
classifications. In Figure 6, the entity classified as grass, whereas
the recommended classification is park; it contains sport areas,
footways, etc. and is adjacent to a forest area, thus the appro-
priate classification might be park. While in Figure 7, the entity
is wrongly classified as park and the recommendation given is
grass; it contains nothing and is located between roundabouts.
The findings indicate that applying the proposed classifier and
following the given recommendations might potentially result in
an improved classification quality.

Second, we depend on the intrinsic properties (e.g. tags, version,
mapper, etc.) and extract a data set for the validation process.

7http://wiki.openstreetmap.org/wiki/Tag:natural\

%3Dwood

Figure 6: An entity problematic classified as grass, 1st recom-
mendation park

Figure 7: An entity problematic classified as park, 1st recommen-
dation grass

For example, the proposed class appears to to correctly describe
and classify park entities. Hence, we extract all entities that have
names like park and are tagged by leisure=park as a validation
data set. The extraction done from the entire Germany data set
resulted in 1,856 park entities. We applied the developed classi-
fier on the extracted entities. The results show that 87% of en-
tities are correctly classified by the 1st recommendation; 95%
of the entities are correctly classified by the 1st or 2nd recom-
mendation. The validation reflects the classifier’s is efficiency in
distinguishing a specific class based on learning its intrinsic and
extrinsic properties. Hence, applying the classifier on the entire
park entities of Germany would point out inappropriately classi-
fied entities. The problematic classification might be relevant to
incomplete mapping of an area or incorrect editing attitude of a
contributor, which could be enhanced by applying the classifier
at contribution time.

6. CONCLUSIONS

The increasing utilization of VGI for GIScience research results
in a demand of higher data quality. Contributors’ diversities result
in rich data sources, however with questionable quality. In this
research, we are concerned with classification as a facet of data
quality. Definitely, identical geographic features should be ho-
mogeneously classified to support global applications. As a case
study, we tackled the classification of grass-covered land, where
a piece of land covered by grass could be classified as park, gar-
den, forest, etc. Classifications of these features are difficult and
provide multiple challenges.

This paper presents an approach for rule-guided classification.
The approach harnesses the availability of VGI data to learn the
characteristics of specific feature classes. The proposed approach
has two phases: Learning and Guiding phases. During the Learn-
ing phase, we depend exclusively on the investigation of topo-
logical relations to understand the geographic context of target
classes. Data mining algorithms are applied resulting in a set of
predictive rules, which describe the intrinsic and extrinsic charac-
teristics of target classes. The rules are then organized into a clas-
sifier. Whereas during the Guiding phase, the developed classifier
could be applied in different ways guiding and recommending the
contributors towards appropriate classification.

An empirical study covering the Learning phase was conducted.
The results indicate the feasibility of learning from VGI data. The
classifier we developed is able to predict classes like park, grass,
and garden with higher accuracy. While the approach still has
limited accuracy with other classes like meadow, wood, and for-
est. Further investigations are required to evaluate the generated
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rules. In future work, we will focus on implementing the Guiding
phase and measure the classification improvements based on the
provided recommendations. We plan to study the OSM ontology
(e.g., OSMonto (Codescu et al., 2011)) to determine whether the
semantic distance between the ontological concepts could solve
the ambiguity between similar classes.
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