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ABSTRACT:

Geographic Information System (GIS) is a computer system designed to capture, store, manipulate, analyze, manage, and present all
types of spatial data. Spatial data, whether captured through remote sensors or large scale simulations has always been big and het-
erogenous. The issue of real-time and heterogeneity have been extremely important for taking effective decision. Thus, heterogeneous
real-time spatial data management has become a very active research domain. Existing research has principally focused on querying of
real-time spatial data and their updates. But the unpredictability of access to data maintain the behavior of the real-time GIS unstable.
In this paper, we propose the use of the real-time Spatial Big Data and we define a new architecture called FCSA-RTSBD (Feedback
Control Scheduling Architecture for Real-Time Spatial Big Data). The main objectives of this architecture are the following: take in
account the heterogeneity of data, guarantee the data freshness, enhance the deadline miss ratio even in the presence of conflicts and
unpredictable workloads and finally satisfy the requirements of users by the improving of the quality of service (QoS).

1. INTRODUCTION

In recent years, spatial applications have become more and more
important in both scientific research and industry. The challenge
of these applications has always been how to represent and under-
stand the fast-paced, constantly changing world, given increas-
ingly real-time data including readings from real world (Xu, 2013).

Traditional static GIS pays more attention to representing his-
toric data and temporal GIS only treats time as a occasional but
not critical factor and can’t support the explicit change represen-
tation. In this context, real-time GIS is put forward as one po-
tential development in the future of GIS (Goodchild, 2012). It
gives users the ability to connect to real-time data streams, per-
form continuous processing and analysis of those data streams,
and send relevant information to users or other systems.

Since information technology is innovating on the way we live,
there is tremendous amount of heterogeneous real-time spatial
data generated everyday. As a result, the growth of the data vol-
ume seems to outspeed the advance of our computing infrastruc-
ture. Conventional data processing technologies, such as database
and data warehouse, are becoming inadequate to the amount of
data we want to deal with. This new challenge is known as real-
time spatial Big Data (Van, 2014).

In the systems that manage the real-time spatial Big Data, trans-
actions arrive at varying frequencies. As the frequency increases
dramatically, the balance of these systems is jeopardized. During
the periods of overload, real-time spatial Big Data will potentially
run out of resources and real-time transactions will then miss their
deadline in greater numbers. In this paper, we propose a new ap-
proach called FCSA-RTSBD (Feedback Control Scheduling Ar-
chitecture for Real-Time Spatial Big Data) to manage the QoS
in the real-time spatial Big Data. In section 2, we discuss the
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related works. Then, in section 3, we present the system model
that we consider. In section 4, we propose an approach of QoS
management in real-time spatial Big Data. Finally, we present
our conclusions in section 5.

2. RELATED WORKS

Researching on the real-time spatial analysis is a hot topic in
Spatial Big Data. Nowadays, spatial characteristics can be used
in real-time Spatial Big Data analysis, providing the necessary
information and knowledge to optimize processes and to solve
problems in real-time GIS.

In (Boyd, 1987), once the positions and other spatial properties
of objects and events are clear, real-time spatial analysis can be
performed, and based on this analysis, decisions can be made.
This process is described by a continuous loop of sensing, an-
alyzing, predicting, and actuating in a Smart City called OODA
(Observe-Orient-Decide-Act) loop where a real-time spatial anal-
ysis of event streams is realized by integrating spatial algorithms
in a SOA-EDA (Service Oriented Architecture-Event Drive Ar-
chitecture) configuration (Zeimpekis, 2006).

In (Marz, 2014), the authors proposed an architecture called Lam-
bda architecture. It is a data-processing architecture designed to
handle massive quantities of data by taking advantage of both
batch and stream-processing methods. This approach to architec-
ture attempts to balance latency, throughput, and fault-tolerance.

In (Martnez, 2014), Martnez and al, based on the foundations
of the Lambda architecture, proposed an other architecture called
SOLID (Service-On-Line-Index-Data architecture): an architec-
ture for real-time management of big semantic data which sepa-
rates the complexities of big semantic data storage and indexing
from real-time data acquisition and consumption. In this architec-
ture, historical data and real-time data are both stored. It ensures
efficient volume management and high processing velocity.
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In fact, SOLID is a good architecture for the real-time manage-
ment of big semantic data. But it does not take into account the
heterogeneity of real-time geospatial data. Thus, our work is to
introduce a specific management of the heterogeneous real-time
geospatial data based on techniques of scheduling with feedback
control called FCSA-RTSBD.

3. SYSTEM OVERVIEW

In this section, we give an overview of real-time spatial Big Data,
heterogeneous real-time geospatial data model and transaction
model.

3.1 Real-time spatial Big Data

GIS are distinguished from other information systems in several
aspects and we can note the following points (Cova, 2014):

• The complexity of spatial data structures (as opposed to tra-
ditional data types of the DBMS).

• An important amount of data (up to Terra bytes in the case
of large systems containing raster data).

• The coexistence of many formats or geographical models.

The growth of spatial data (specially real-time spatial data) has
been explosive thanks to cost-effective and ubiquitous position-
ing technologies, and the generation of data from multiple sources
in multi-forms. Nowadays, current GIS (real-time GIS) manage
huge real-time spatial data. A widely accepted meaning says that
Big Data is ”when the size of the data itself becomes part of the
problem” (Van, 2014). Thus, we propose the use of real-time
spatial Big Data to process such large amount of heterogeneous
data (Loukides, 2012) which is characterized by:

• High-volume: Big Data represent large amounts of data. It
is generally said that 90% of the data available today were
created in the last two years (Lodha, 2014).

• High-velocity: Data are generated, captured and shared with
an important speed. The delays of actualization and analysis
of the spatial data are short and they are treated in real-time.

• High-variety (or heterogeneity): Analyzed data are not nec-
essarily structured. It can be also unstructured data.

3.2 Heterogeneous real-time geospatial data model

As spatial data is collected, it is stored as spatial entities in the
computer as points, lines, and areas which is represented in layers
in the spatial model of GIS. These layers when combine create a
map. When these features of points, lines and areas are needed to
be stored they use one of two models: Raster and Vector. Raster
model stores continuous geographic data in cells within a grid of
a layer. Vector model stores discrete geographic data like road
networks, rivers as points.

The term real-time refers to the capability of management, visu-
alization and analysis of graphical and attribute information as
soon as an event occurs (Nadi, 2003) and a real-time spatial data
is a representation of the entities of the real world composed of
an identity, descriptive properties and spatial properties. While
the identity describes a stationary semantics of the entity, the de-
scriptive and spatial properties can vary in the time and constitute
the dynamic part of the entity.

Real-time spatial applications have a great importance. Examples
of these applications are:

• Emergency management (Cova, 2014).

• Hazards/disaster management (Coleman, 1996).

• Public health including real-time outbreak and disease surveil-
lance (RODS) (Tsui2003a).

• Transportation including management of highway incidents
(Lepofsky, 1995), online feet management and dynamic rout-
ing of the feet in case of congestion using real-time traffic
information (Schafer, 2002).

Stored data in these applications are from heterogeneous sources
and are maintained under heterogeneous formats and structures.
These data can be divided into two types: the structured data and
unstructured data:

• Structured data: Structured data can be processed auto-
matically by machines. As mentioned in (Bishr1998a) (Stuck-
enschmidt, 2005) that illustrate structured data heterogene-
ity through three levels, i.e., semantic schematic and syntac-
tic.

– Syntactic heterogeneity refers to data format differ-
ences. Some organizations are motivated to make their
data accessible through Open Geospatial Consortium
(OGC) formats that provide syntactically unified for-
mats and services such as Geography Markup Lan-
guage (GML) (Cox, 2003) and Web Feature Service
(WFS) (Zhang, 2005).

– Schematic heterogeneity refers to data model differ-
ences. Each spatial database schema reflects an ab-
stracted view of data. Different hierarchical and clas-
sification structures are used to refer to identical or
similar objects. Hence, schematic heterogeneity can
be classified into three main schemes:

∗ Entity versus Entity, i.e., the same entity can ex-
ist in two different databases with different name
or structure;

∗ Attribute versus Attribute, i.e., an attribute re-
lated to a class in one database can exist in an-
other class related to another database;

∗ Entity versus Attribute, i.e., a class in one database
can be designed as an attribute in another database.

– Semantic heterogeneity can be divided into two types:
the naming heterogeneity and the cognitive hetero-
geneity.

∗ The naming heterogeneity arises when the same
data objects are named in a different manner or
when different semantic data objects are named
identically.

∗ The cognitive heterogeneity refers to the differ-
ent domains assigned to each organization.

• Unstructured data: Unstructured data are those in which
the information is within simple text that no common pattern
can be used to process and come from different sources and
have a different format as text, pictures, multimedia content
or numeric traces, etc.

In our work, heterogeneous real-time geospatial data challenges
are essentially data integration and cleaning, data reduction and
data indexing and query:
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1. Real-time geospatial data integration and cleaning: Since
the data is heterogeneous, it is not enough merely to record
it. Data are required to be expressed in forms that are com-
puter understandable and then resolvable. In real-time spa-
tial Big Data, we are talking about two levels of hetero-
geneity (unstructured data - structured data) and (Syntactic
heterogeneity - Schematic heterogeneity - Semantic hetero-
geneity), we have to think first of integrating unstructured
data and structured data; it is important to be able to analyze
unstructured data as well as integrate unstructured data with
structured data, and as a second step we have to handle the
heterogeneous structured data.

2. Real-time geospatial data reduction: Data reduction is the
reduction of multitudinous amounts of data by the trans-
formation of numerical or alphabetical digital information
derived empirically or experimentally into a corrected, or-
dered, and simplified form. Because real-time geospatial
data is complex, we will often find that the data objects have
high dimensionality; each data object is annotated with a
large number of values. The types of values that are shared
among all the different data objects are usually referred to
as parameters. It is very difficult to make much sense of
high dimensional data. It is always best to develop a filter-
ing mechanism that expunges useless parameters. A useless
parameter will often have one of these two properties.

• Redundancy: If a parameter correlates perfectly with
some other parameter, you know that you can safely
drop one of the two parameters.

• Randomness: If a parameter is totally random, then
it cannot tell you anything meaningful about the data
object and you can drop the parameter.

3. Real-time geospatial data query and indexing: The complex
physical organization of real-time geospatial data storing is
considered. The most important requirements for these data
structures are the ability of providing fast access to the large
volumes of data.

3.3 Transaction model

Spatial real-time transactions can be classified into two classes:
update transactions and user transactions (Martnez, 2014).

• Update transactions: update the values of real-time spatial
data in order to reflect the state of real world.

• User transactions (continuous requests): user requests, ar-
rive aperiodically and may read real-time data and non real-
time data.This type of transaction is executed several times
continuously as required by the user.

These transactions are characterized by ACID1 properties as fol-
low:

• Atomicity: All transactions are executed successfully, or not
at all (all-or-nothing). If that fails, the system must cancel
all modifications that have been made by the transaction.

• Consistency: A transaction must pass the base from one
consistent state to another state coherent. If unsuccessful,
the initial state must be restored.

1(Atomicity, Consistency, Isolation, Durability)

• Isolation: Transactions are called isolated from each other,
i. e that their effects on the database become visible to other
transactions only when they perform the commit operation
(COMMIT).

• Durability: When a transaction is committed, its effects on
the database become permanent. The system must ensure
that its modifications (updates) will be retained.

4. QOS MANAGEMENT IN REAL-TIME SPATIAL BIG
DATA

In this section, we propose a definition of QoS in the real-time
Spatial Big Data and we define a new architecture called FCSA-
RTSBD as a new QoS management approach in real-time GIS.

4.1 QoS definition

The QoS can be seen as a metric that permits to measure the over-
all system performance [22]. Indeed QoS is a collective measure
of the service level provided to the customer. It is characterized
by different performance criteria.

Criteria Definition
Lineage Description of the history of the

data
Positional accuracy Evaluation of the gaps between the

nominal positions and the positions
of the data collected in the data
base

Attribute accuracy Difference between the values of
the attributes and the values of their
counterparts in the nominal land.

Completness Appropriateness in the data repre-
sentation for user.

Logical consistency Internal consistency of the data ac-
cording to the rules of modeling.

Table 1: Evaluation criteria of data quality.

In static GIS, the QoS is defined by criteria stored in meta-data
identified by ISO standards as shown in Table 1. These criteria of
quality are defined for static data used by traditional applications
and were designed for geographic data producers.

These criteria do no take into account the qualification of real-
time. Besides, there is not a detailed definition for the QoS in
real-time GIS. Thus, we propose to inspire the definition of the
QoS in real-time spatial Big Data from of the definition of the
QoS in RTDBSs2 and RTDWHSs3. In these systems, the notion
of QoS is defined through two concepts the quality of data (QoD:
precision and freshness) and the quality of transaction (QoT) which
are enhanced by alleviating the risk of transaction miss dead-
line (Ramamritham, 2004)(Leng, 2011) but it doesn’t treat spatial
data.

As a result, we propose the definition of QoS in real-time spatial
Big data through two concepts:

• Quality of data (QoD): Evaluation criteria of QoD are the
same for a static spatial data but we add new criteria to verify
the precision and and the freshness of the real-time spatial
data.

• Quality of transaction (QoT): Estimated by the percentage
of the transactions that finishes their execution without miss-
ing their deadlines.

2Real-Time DataBase Systems
3Real-Time Data WareHouses Systems
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Figure 1: A Feedback Control Scheduling Architecture for Real-Time Spatial Big Data: FCSA-RTSBD.

4.2 A Feedback Control Scheduling Architecture for Real-
Time Spatial Big Data: FCSA-RTSBD

In this section, we propose the design of FCSA-RTSBD that can
provide data services with QoS guarantees. FCSA-RTSBD ex-
ploits a feedback control loop that we will explain. As shown in
Figure. 1, the architecture consists of a router, a precision con-
trol, a handler and a monitor. Admitted transactions are placed
in the ready queue. The transaction handler manages the execu-
tion of the transactions. The system performance statistics are
collected periodically by the monitor. Below we briefly describe
each component.

• Router: forwards user transaction according to the type of
data reached by this transaction.

• Precision controller: rejects update transactions when the
data update is sufficiently representative of the real world
considering the value of MDE4: it determines whether the
transaction wishes to update a real-time data can be dis-
carded (DE<MDE) or not (DE>MDE) with DE (Data Er-
ror) which refers to how the current state of the targeted
environment may differ from the measured data (Ramam-
ritham, 1993). The data error on a data version d is defined
by:

DE(d) = 100×|current value(d) − update value(d)

current value(d)
|

(1)

current value(d) denote the value of d before update and up-
date value(d) denote the value of d after update. Further,
the precision controller decreases the response time of user
transactions with access to fresh data by discarding any un-
necessary freshness.

• Transaction handler: allows the execution of transactions or-
dered in ready queue, through additional modules such as:

4Maximum Data Error

– Freshness Manager (FM): checks the freshness of data.
– Concurrency Controller (CC): In computer systems

the performance can be increased by allowing con-
current execution of operations. The activity of co-
ordinating concurrent access of transactions to shared
data is called concurrency control. Concurrency con-
trol algorithms should ensure consistency of the real-
time spatial Big Data. Concurrency control protocols
resolve data access conflicts in a manner that induces a
serialization order among the conflicting transactions.
The problem of concurrency control in traditional Big
Data has been intensively studied and presented in lit-
erature (Dai, 2009). In FCSA-RTSBD, we must take
into account spatial and timing constraints of transac-
tions.

– Basic Scheduler (BS): Spatial real-time transactions
should be scheduled considering both data consistency
and timing constraints in such a way that they can be
completed before their corresponding deadlines ex-
pire.

• Spatio-temporel Big Data: (Historical Big Data) it stores
raw data. It can never be altered or deleted, only insertions
are allowed.

• Merge: integrates the updated spatial data into the spatio-
temporel Big Data then deletes its old version found in real-
time spatial Big Data.

• Monitor: allows the measurement of system performance
by monitoring the execution of transactions. It measures the
system performance by inspecting an execution of transac-
tions (number of transactions completed, abandoned, who
missed deadline...). The measured values are part of the
feedback control loop that helps to stabilize the system.

• Utilization controller: used to adjust the value of MDE.

FCSA-RTSBD exploits the foundations of the architecture of Au-
rora (Daniel2003) (see the Aurora architecture in Figure. 2). Au-
rora is a data-flow system that process incoming stream according
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Figure 2: Aurora architecture (Daniel2003).

to the requirements of the applications. It includes a set of op-
erators for satisfying the stream processing requirements. Each
operator consumes data input, performs operations, and produces
results in a continuous manner. Among these operators we can
note: windowed operators, filter operator, etc. Aurora can pro-
cess continual queries in real-time processing according to QoS
specifications.

Thus, FCSA-RTSBD allows to limit the deadline miss ratio and
to support freshness for the data accessed by timely transactions
(even in the presence of unpredictable workloads). So the data
used by transactions are fresh. FCSA-RTSBD permits also to
guarantee the QoD and the QoT, and therefore it enhances the
QoS. FCSA-RTSBD can perform very well in this context of
changing user requirements due to the adjustability.

5. CONCLUSION

In this paper, we proposed a new approach called FCSA-RTSBD
to maintain the behaviour of the real-time spatial Big Data in a
stable state and satisfy the requirements of users. We used a pre-
cision control to control the incoming transactions according to
CPU utilization of the system.

The advantage of our approach is to allow users to express their
real needs for their queries and to deal with the transient overload
to better manage the real-time spatial Big Data performance.

As follow, we plan to make simulations and to extend this work
in several different ways. We will consider other aspects to study
different components of the feedback control scheduling archi-
tecture for the QoS management in real-time spatial Big Data.
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