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ABSTRACT:

Laser scanning has become a well established surveying solution for obtaining 3D geo-spatial information on objects and environment.
Nowadays scanners acquire up to millions of points per second which makes point cloud huge. Laser scanning is widely applied from
airborne, carborne and stable platforms, resulting in point clouds obtained at different attitudes and with different extents. Working with
such different large point clouds makes the determination of their overlapping area necessary but often time consuming. In this paper,
a scalable point cloud intersection determination method is presented based on voxels. The method takes two overlapping point clouds
as input. It consecutively resamples the input point clouds according to a preset voxel cell size. For all non-empty cells the center of
gravity of the points in contains is computed. Consecutively for those centers it is checked if they are in a voxel cell of the other point
cloud. The same process is repeated after interchanging the role of the two point clouds. The quality of the results is evaluated by the
distance to the pints from the other data set. Also computation time and quality of the results are compared for different voxel cell
sizes. The results are demonstrated on determining he intersection between an airborne and carborne laser point clouds and show that
the proposed method takes 0.10%, 0.15%, 1.26% and 14.35% of computation time compared the the classic method when using cell
sizes of of 10, 8, 5 and 3 meters respectively.

1 INTRODUCTION

Light Detection And Ranging (LiDAR) mapping techniques en-
able to quickly acquire geometric information in 3D (Vosselman
and Maas, 2010). Compared to airborne photogrammetry, laser
scanning has the advantages of high speed and high quality acqui-
sition of points (Baltsavias, 1999a, Rönnholm et al., 2007). In re-
cent years there is a rapid development of different platforms for
laser scanning, such as Airborne Laser Scanning (ALS), Terres-
trial Laser Scanning (TLS) and Mobile Laser Scanning (MLS).
Laser scanning has already been applied to situations, such as
tunnel inspection and monitoring (Gosliga et al., 2006) and road
engineering (Wang et al., 2013, Jaakkola et al., 2008, Kumar
et al., 2013, Pu et al., 2011), vegetation and land cover classi-
fication (Bater et al., 2011, Antonarakis et al., 2008, Yunfei et
al., 2008, Puttonen et al., 2010), and object extraction and re-
construction (Olsen et al., 2010, Brasington et al., 2012). How-
ever, due to the scanning mechanism of the different systems, the
obtained point clouds have different properties (Vosselman and
Maas, 2010), such as non-uniform point density and occlusion
effects (Wehr and Lohr, 1999, Forest and Salvi, 2002). To fully
sample a complicated scan, it may be required to scan its objects
in multiple runs, and from multiple platforms.

Since different platforms have their own advantageous perspec-
tive, multiple platforms are now combined to obtain complete
coverage of objects (Zhou and Vosselman, 2012, Baltsavias, 1999b,
Holopainen et al., 2013, Sithole and Vosselman, 2004). Once
point clouds from multiple sources are used, the determination of
area of intersection becomes a compulsory operation. 2D and 3D
intersection have been studied and discussed in the fields of com-
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putational geometry, computer graphics and robotics. In (Shamos
and Hoey, 1976), optimal algorithms were developed to deter-
mine the intersection of geometric objects in 2D. In (Dobkin and
Kirkpatrick, 1983) low complexity methods for suitably prepro-
cessed polyhedral intersections were distinguished based on con-
vex. In (Mount, 1992), by constructing an enveloping triangula-
tion called a scaffold two preprocessed simple polygons are de-
tected whether they intersect one another. And in (Wang, 1996)
the intersection curves of two parametric surfaces are presented
based on the concept of normal projection. In (Manocha and
Canny, 1991, Grandine and Klein, 1997) new approaches were
designed by determining numerical solution of differential alge-
braic equations. In 3D, approaches were also developed for in-
tersection detection. In (Chazelle, 1989, Dobkin and Kirkpatrick,
1985), an intersection algorithm based on the checking of the re-
lationship between vertices and planes was presented. In (Pan
et al., 2012), intersection of objects was determined by detect-
ing objects’ bounding boxes, and then objects collision checking
and proximity computations were performed. Those literature
did give the concept of object intersection determination, but the
objects all had a primitive geometry shape and the number of ob-
jects is limited. The latest scanners obtain up to millions of high
precision points (Vosselman and Maas, 2010, Hyyppä, 2011), and
the data sets generated by those laser scanning systems are huge.
To determine intersections either it would be needed to convert
the discrete point clouds to standard geometry objects or using
classic point based methods, which make the procedure compu-
tational expensive.

Currently there is commercial software available for point cloud
processing, but most of them, such as Leica Cyclone (Leica Geosys-
tems, 2015) and Faro Scene (Faro Scene, 2015), don’t support au-

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W5, 2015 
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
Editors: S. Oude Elberink, A. Velizhev, R. Lindenbergh, S. Kaasalainen, and F. Pirotti 

doi:10.5194/isprsannals-II-3-W5-25-2015

 
25



Figure 1: Overall methodology of the algorithm

tomatic intersection determination (Varela-González et al., 2013).
Some open source softwares such as CloudCompare (CloudCom-
pare, 2015) and LasTools (Isenburg, 2015), have segmentation
tools accessible from a Graphical User Interface (GUI) but don’t
have data based intersection tools. Also the classic intersection
determination based on point clouds neighborhood searching is
computational expensive and unable to deal with huge point clouds.
Therefore in this paper a novel point cloud intersection method is
proposed that systematically visits only part of the points in the
input point clouds.

This study presents a method for automatic and scalable area of
intersection determination from two huge point cloud data. The
results are evaluated by computing the minimum distance be-
tween the two overlapping point clouds at different scales. Also,
the quality and efficiency of this method are compared to the clas-
sic point based intersection method.

2 METHODOLOGY

Intersection problems are fundamental to many aspects of geo-
metric computing. In 2D, the intersection of objects is defined
as the set of points or area shared by both objects (Shamos and
Hoey, 1976, Grandine and Klein, 1997). While in 3D, the inter-
section of two objects is the volume that shared by them (Dobkin
and Kirkpatrick, 1985, Dobkin and Kirkpatrick, 1990). However,
those definitions are from objects that have a definite boundary.
For raw point clouds acquired by laser scanning, there are no
clear boundaries. So the proposed method is an approximation
method. As shown in Figure 1, the overall methodology pre-
sented in this paper consists of four steps. (1) Two overlapping
point clouds are imported as input. In the figure, the red and
green points are the two point clouds respectively. (2) The point
clouds are re-sampled as voxel cells and the center of gravity of
the points in each cell is computed. (3) The geometric relation
between two voxels is checked and the area of intersection is de-
termined. (4) The quality of the results is evaluated by computing
the point based distances between the two point cloud data sets
restricted to their determined intersection.

2.1 Point clouds resampling

The imported point clouds are re-sampled as voxel cells. As a
Pixel is a 2D representation, a voxel is a cube with a predefined

edge length in 3D. This edge length defines the resolution of the
voxel resampling procedure. Figure 2 is an illustration of a voxel
cell in 3D, where Pmax is the upper right back point and Pmin is
the lower left front point of the cell.

Figure 2: Voxel cell in 3D

The voxelization step is shown in Figure 3. The coordinate sys-
tem used here is right-hand Cartesian. Firstly the lower left front
point and upper right back point are obtained from the input point
cloud data. With a predefined voxel cell size, the bounding box
of the point cloud is divided into cubic cells. Next the points from
the imported point cloud are assigned to the cells they fall in.

Figure 3: Point cloud resampling using voxel cells.

The data structure designed for a voxel cell includes three entities:
(i) the 3D index of the cell; (ii) a container storing the indices of
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the points that are within the geometric space of this voxel cell;
and (iii), coordinates of the 3D center of gravity of all the points
stored in the point indices container.

2.2 Intersected area determination

We call one of the imported point clouds Source and the other
Target. After the data sets are resampled as voxel cells and the
center of gravity of the points in all cells is computed, the area
of intersection is determined at the voxel cell level. Figure 4 il-
lustrates this strategy. The green rectangles represent the voxel
cells, which are generated from Source where the blue dots are
the center of gravity of the voxel cells from Target. Once the
center point of a cell from Target is detected within a voxel cell
from Source, this cell is then regarded as a cell that belongs to
the intersection. The green shaded cells together denote the area
of intersection.

Figure 4: Determination of the area of intersection of two over-
lapping point clouds

2.3 Point based intersected area determination

In Figure 5, blue points are from Source and green points are
from Target. Point based intersection starts with a predefined
distance threshold R, as depicted by the red dishes in the fig-
ure. Then all the points are traversed and neighborhood points
are searched. All points within this radius are regarded as over-
lapping points. Finally the region of intersection of the two point
clouds is acquired, as denoted by the yellow area in Figure 5.

Figure 5: Point based intersection area determination.

2.4 Result evaluation

The evaluation of the results consists of three parts. First the
method presented in this paper is implemented and applied at dif-
ferent scales, which means the point cloud data are resampled by

voxel cells of different cell sizes. Secondly, point based intersec-
tion determination is carried out with different radii on the same
test point clouds. Finally, the results of the two different methods
are evaluated and compared with respect to their distances.

3 RESULTS AND VALIDATION

3.1 Test data sets

The test data consists of two point clouds from different plat-
forms. One is from airborne laser scanning (ALS) and the other
from mobile laser scanning (MLS). General information of the
two point clouds is given in Table 3.1. Both of the two point
clouds sample part of the campus of Delft University of Technol-
ogy (TUD).

MLS ALS
Nr. of points 27,627,526 1,508,534
Point density 1883 pts/m2 20 pts/m2

Scanner Fugro Drive-Map Unknown
Attributes intensity+RGB+xyz intensity+xyz

Table 1: Information on multiple platform point clouds

Figure 6: Two overlapping multiple platform point clouds.

A top view of the two point clouds is shown in Figure 6. The point
cloud in red is the ALS point cloud from Actueel Hoogtebestand
Nederland (AHN-2) (van der Sande et al., 2010), and the other
in green is the MLS point cloud obtained by Drive-Map (Fugro,
2015). the overlap of the two pint clouds is considerable and
contains several roads and buildings of the TUD campus.

3.2 Scalable testing of the method

Corresponding to the intersection results for four different voxel
cell sizes, cloud to cloud distances are computed between the
Source and Target point clouds. The distances between two
point clouds represents how far of each point in the Source, the
closest point in the Target point cloud is. We employ this as one
aspect of intersection quality evaluation. The bigger the distance,
the coarser the intersection area determination, while the smaller,
the better the results. As can be seen from Figure 7, the smaller
the voxel cell size used for computing, the smaller the distances
between the two intersected point clouds. This denotes that if one
wants better results, a smaller voxel cell size shall be used.

The next step is to quantify the distance computation results. To
do this, statistical analysis is conducted on the results of the four
different voxel cell sizes. Suppose the distances are random.
Since the values of distances are all non-negative, this variable
is a typical Log-Normal distribution (Beaulieu and Xie, 2004,
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Figure 7: Cloud to cloud distances and statistical analysis from four different voxel cell sizes.
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Beaulieu and Rajwani, 2004). The probability density function
is given in Equation 1. Here µ is the mean and σ is the standard
deviation of ln(x), also named location parameter and scale
parameter respectively.

f(x;µ, σ) =
1√
2πxσ

e
− (ln(x)−µ)2

2σ2 (x > 0) (1)

The statistical analysis of the distances computed from the four
intersection determination results are shown in Figure 7. It can
be noted from the figure that the quality of the point cloud inter-
section varies upon the voxel cell size used. The parameters of
the four results are shown in Table 3.2. While the voxel cell size
changes from big to small, the average distances of the results are
getting small as well. As learnt from the precessing with those
different voxel cell sizes, the mean of the distances are around
20% of the voxel cell size. Also the mean and standard deviation
of the Log-Normal distribution follow the same trend.

Cell size (m) Mean Std.dev
10 2.01 10.11
8 1.59 4.88
5 1.05 1.14
3 0.76 0.48

Table 2: Mean and Std.dev. of the distances

3.3 Comparison with point based intersection results

The point-wise intersection method first needs a predefined cloud
to cloud distance as a criterion that defines the area of intersec-
tion. The intersection is defined as the points that are closer than
the 1.0 meter distance threshold from each other. To evaluate the
influence of point numbers to the processing, the original point
clouds are down-sampled to different scales. For each scale, the
computation time of the two methods are compared. In this study,
the processing time of different voxel cell sizes are also com-
pared.

Both algorithms are implemented in C and run on a Dell desktop
computer, with a Intel E5-1620 processor and a memory of 16GB.
During the tests, the original point clouds are down-sampled at
different percentages. As described in Table 3.3, the original
point clouds are uniformly down-sampled to three scales.

Scenario MLS pts number (%) ALS pts number(%)
1 110,254(7.31%) 71,065(6.86%)
2 345,860(22.9%) 261,280(25.21%)
3 885,084(58.67%) 723,068(69.77%)
4 1,508,534(100%) 1,036,417(100%)

Table 3: Scenarios of down-sampled points

For the Source point cloud 7.31%, 22.9% and 58.67% of the
original points are kept and for the Target point cloud 6.86%,
25.21% and 69.77% of the points are kept for comparison. Based
on those scenarios, the two algorithms are compared.

The computational time of voxel based method is related to the
complexity of the algorithm. Suppose the bounding box of the
point cloud is D and the voxel cell size is d, then the number
of voxel cell is N = (D

d
)3. For each cell, its maximum and

minimum boundary points are checked whether this cell contains
the center point or not. So their are at least 32 operations for
each cell. Then the total cost is at least Nt = 2 × (D

d
)3. For

an imported point cloud, its spatial extent is constant and then

the computational time will only related to the voxel cell sizes.
Letting di and dj are two different voxel cell sizes that applied to
the same point cloud, the ratio of their total computational costs is
Rij = Ni

Nj
= (

dj
di
)3, where di and dj are the voxel cell sizes. The

smaller the voxel cell size, the larger the number of occupied cells
and the longer the computational time. However, as the smaller
the voxel cell size, there will also more empty cells. This letting
the increase ratio of the non-empty cells be smaller than (

dj
di
)3.

So the upper bound of computational expenses related to different
cell size is ( dj

di
)3. The computational time of the testing data sets

is illustrated in Figure 8. For the presented voxel based methods,
as denoted by the bottom horizontal label and the blue line, the
computation time of voxel based method on different sizes. For
the point based method, the more of the points number, the longer
of the computation time it takes, as illustrated by the red line in
Figure 8.

Figure 8: Computation time for different voxel cell sizes and
down-sampling scenarios.

In Figure 9 the computation time of the two methods is illus-
trated. The red line is the computation time of the point based
intersection determination. For each intersection the distances
between overlapping points in the intersection were calculated.
In Figure 10 the mean and standard deviation of the distances are
shown. It can be noticed that there is only small variation in the
mean and standard deviation of the four pairs of testing scenarios
when using the same distance threshold. From the first pair to
the fourth pair, the computation time varies from 8.2 seconds to
1255.8 seconds, as shown in Figure 8.

For voxel based method, focusing on the original point clouds,
the computation time of the presented method is 0.10%, 0.15%,
1.26% and 14.35% of the time needed by point based methods
for voxel cell sizes of 10, 8, 5 and 3 meters respectively.

For the voxel based methods, Figure 9 also shows that compu-
tation time is robust to the number of points of the two clouds.
However, the voxel cell size, which is also interpreted as scale of
detail, effects the computation time and quality of results. If the
voxel cell size is smaller, which also means the results get more
accurate, the time expense will be more.
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Figure 9: Computation time of the two methods

Figure 10: Mean and std.dev. of point based method

4 CONCLUSION AND RECOMMENDATION

This paper first introduces a voxel based scalable 3D point cloud
intersection method. Then with the method the intersection of
two overlapping point clouds is determined for different voxel
cell sizes. The evaluation of the results is conducted by comput-
ing the distribution of the distances of points in the area of in-
tersection. Parameters for regressing the distances with a Log −
Normal distribution shows that results gets more and more accu-
rate when the voxel cell size gets smaller and smaller as expected.
However, the computational expense will also get more an more.
Afterwards the method is compared with a traditional point based
method. The processing times are compared for different scenar-
ios of down-sampled point cloud pairs.

Experimental results show that to meet the same quality of re-
sults, voxel based methods take much less time than point based
method. And smaller voxel cell sizes will generate more accurate
results, however, computational expenses will also get higher.
Experimental results show that the quality of tradition point based
method is related to the distance threshold and is generally bet-
ter than that of the proposed method. However, the point based
method is highly dependent on the number of points. While the
voxel based method has more flexible choices on quality and
computation time. Results on quality and computation time are

balanced by the voxel cell size.

During processing and studying the presented methods, we also
learned some experiences. Firstly, to more efficiently determine
high quality area of intersection using this method, a relatively
larger voxel cell size can be applied in the first run to get coarse
results. Then based on these results, finer results can be obtained
with a smaller voxel cell size. Secondly, the voxel cell resampling
is based on uniform space sub-division and locations having no
points are also sampled as empty cells. This introduces redundant
memory space. As a solution, an octree data structure can be
implemented to improve memory efficiency.
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nen, H., Kaasalainen, S. and Litkey, P., 2010. Tree species
classification from fused active hyperspectral reflectance and LI-
DAR measurements. Forest Ecology and Management 260(10),
pp. 1843–1852.
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Wang, J., González-Jorge, H., Lindenbergh, R., Arias-Sánchez, P.
and Menenti, M., 2013. Automatic estimation of excavation vol-
ume from laser mobile mapping data for mountain road widening.
Remote Sensing 5(9), pp. 4629–4651.

Wang, Y., 1996. Intersection of offsets of parametric surfaces.
Computer Aided Geometric Design 13(5), pp. 453–465.

Wehr, A. and Lohr, U., 1999. Airborne laser scanningan intro-
duction and overview. ISPRS Journal of Photogrammetry and
Remote Sensing 54(2-3), pp. 68 – 82.

Yunfei, B., Guopingb, L. and Chunxiang, C., 2008. Classification
of lidar point cloud and generation of dtm from lidar height and
intensity data in forested area. Beijing, pp. 313–318.

Zhou, L. and Vosselman, G., 2012. Mapping curbstones in air-
borne and mobile laser scanning data. International Journal of
Applied Earth Observation and Geoinformation 18(0), pp. 293–
304.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W5, 2015 
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
Editors: S. Oude Elberink, A. Velizhev, R. Lindenbergh, S. Kaasalainen, and F. Pirotti 

doi:10.5194/isprsannals-II-3-W5-25-2015

 
31




