
1. INTRODUCTION

Spatial epidemiology aims to examine and interpret human 
diseases with regard to their geographic distribution (Lawson, 
2006). As many infectious and degenerative conditions occur 
similarly in both humans and animals, the introduction of a 
spatial perspective in veterinary epidemiology is considered to 
provide a better understanding of shared risk factors related 
to specific environmental settings (Scotch et al., 2009). Of 
particular interest is the role of companion animals, which 
are considered sentinels or comparative models for estimating 
human exposures to environmental pollutants (Reif, 2011). An 
important benefit from studying companion animals is that 
they closely share their habitat with humans and thus indicate 
possible risks at the community level that could also be relevant 
for humans (Reif, 2011). This intimate co-existence represents 
a major motivation in comparative epidemiology. However, as 
is the case with human disease data, veterinary data are usually 
only available at spatially aggregated levels, which impede 
quantitative studies in general.

Not only disease incidence data but also demographic data 
are commonly summarized within arbitrary regions, such 
as administrative units, because of privacy concerns (Beale 
et al., 2008). As a consequence, spatial epidemiological 
analyses using such enumerated data are subject to the 
Modifiable Areal Unit Problem (MAUP) as the geographical 
manifestation of ecological fallacy (Openshaw, 1984). Hence, 

statistical relationships between variables, as determined 
from aggregated data, may differ from relationships derived 
at different levels of aggregation (e.g., administrative units at 
finer resolutions) or at the level of individual households. In 
order to improve small area estimates of veterinary disease 
outcomes we propose a binary dasymetric refinement (Eicher 
and Brewer, 2001) of companion dog tumor incidence data. 
The dasymetric refinement aims to improve the quality of 
spatial data aggregated within arbitrary spatial units that 
assume constant values across these units by deconstructing 
them to discontinuous entities better approximating the spatial 
distribution of dogs within human populated land (Johnson and 
Tucker, 2013; Mennis and Hultgren, 2006). This refinement is 
expected to improve the spatial data quality and the estimation 
of statistical relationships between tumor outcomes and 
environmental risk factors, if these relate to localized ancillary 
covariates. 

In this study, municipality-aggregated dog tumor incidence 
counts in Switzerland for the year 2008 are modeled based 
on demographic and confounding variables (Grüntzig et al., 
2015). The analysis is first carried out using the unrefined 
administrative units and then for dasymetrically refined units 
using the residential land as limiting ancillary variable (Mennis 
and Hultgren, 2006). The assessment of the models’ diagnostics 
and residuals provides an effective way to evaluate the model 
performance in different regions of the study area and to 
investigate the changes in spatial autocorrelation and spatial 
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patterns of the residuals (Anselin, 1995; Leyk et al., 2012) 
due to the spatial refinement of administrative enumeration 
units. Such changes have immediate consequences for the 
interpretation of the models and emphasize the benefits of 
implementing a dasymetric framework in veterinary spatial 
epidemiology.

2. STUDY AREA AND DATA

The analysis is performed for the whole of Switzerland, which 
includes a variety of topographic settings. Sixty percent of the 
Swiss territory is located within the Alpine Mountain Region, ten 
percent in the Jura Mountains and the remaining thirty percent 
in the Swiss Plateau. As a consequence of these conditions, the 
population tends to be heterogeneously distributed over space, 
with more than two thirds of the country’s inhabitants living in 
urban areas located in the Swiss Plateau (Vega Orozco et al., 
2015). This demographic pattern is also visible at a local scale, 
where settlements usually follow the river valley structure 
and are concentrated at lower elevations in close proximity to 
communication routes (Vega Orozco et al., 2015).

We employed the 2008 municipality boundaries from the 
VECTOR200 landscape model of the Swiss Federal Office of 
Topography (SFOT, 2015) for our study purposes. Residential 
land is determined based on the buildings and dwellings survey 
conducted by the Swiss Federal Statistical Office in 2010 
(SFSO, 2015). The data are represented as hectometric polygon 
features, where hectare cells are allocated to municipalities 
based on the location of their centroids. Our case study uses 
3,611 tumor incidence records stored in the Swiss Dog Tumor 
Registry for the year 2008 (Grüntzig et al., 2015). These records 
are available as aggregated data at the municipality level. To 
reflect the characteristics and distribution of the entire dog 
population, we use comprehensive dog count data for 2008 also 
at the municipality level as provided by the Animal Identity 
Service AG (ANIS, 2015). Our statistical model is fit using dog 
population density based on the area of residential lands within 
each municipality. Additionally, we calculate the sex ratio and 
age class structure of the dog population.

We include potential confounding variables such as the 
estimated degree of urbanization and the economic well-being 
of municipalities. Urban lifestyles and higher financial means 
are associated with better monitoring of the companion animal 
health status, and thus accurate reports of dog diseases to 
veterinarians (Grüntzig et al., 2015). The degree of urbanization 
of a municipality is estimated based on the human population 
distribution for 2008 and the attribute indicating the urban 
character in 2000, both provided by the Swiss Federal Statistical 
Office (SFSO, 2015). The economic well-being of a municipality 
is estimated according to federal income tax data collected by 
the Swiss Federal Tax Administration (SFTA, 2015) in 2008. 
Hence, our statistical model is based on the computation of 
human population density, and the average income tax at the 
municipality level. Environmental explanatory variables, 
which can be related to specific tumors (Reif, 2011; Schmidt, 
2009), are not included in this pilot study, as they add further 
complexity and require careful preprocessing.

3. METHODS

A frequentist approach to statistical inference is often 
employed for exploratory spatial epidemiology studies (Beale 
et al., 2008; Lawson, 2006). This approach aims to identify and 

test possible explanatory, predictive or confounding variables 
(Chen et al., 1999; Zeileis et al., 2008). In this framework, the 
variables used for statistical modeling are considered fully 
explanatory components, regardless of possible random effects 
(Lawson, 2006). The incorporation of tests for global and local 
spatial autocorrelation and non-stationarity in the data and 
model residuals (Anselin, 1995; Leyk et al., 2012; Moran, 1950) 
represents another important component in this approach. The 
present study draws on this framework, and consists of the 
three steps described below. 

3.1 Statistical modeling of counts data

Generalized Linear Models (GLMs) are common statistical 
methods for inference in spatial epidemiological studies to 
examine model deviance reduction and predictive power 
(Beale et al., 2008; Lawson, 2006). The incidence counts of 
disease outcomes are usually modeled through a Poisson GLM, 
in which the result is log-transformed (Zeileis et al., 2008). 
The statistical model is tested for overdispersion (i.e., the 
variance is significantly higher than the population mean) as 
well as for possible excess of zero counts (Vuong, 1989; Zeileis 
et al., 2008). Additionally, we test the variables for statistical 
significance and calculate the McFadden pseudo R-Squared 
(McFadden, 1974) to measure the model’s goodness of fit using 
the statistical software R (The R Foundation, 2015).

3.2 Dasymetric refinement of enumeration units

The binary dasymetric refinement of the municipality units 
to residential land within these units aims to examine the 
benefits of increasing the spatial resolution of the analytic 
unit for modeling and interpreting disease patterns (Mennis 
and Hultgren, 2006). In doing so, we assume that the spatial 
distribution of dog and human populations are analogous, 
as people and companion animals share the same living 
environment at the community level (Reif, 2011). In this 
study, we do not expect to observe differences in the statistical 
model through dasymetric refinement because all explanatory 
variables are enumerated at the municipality level as well and 
do not experience any effects through refinement. However, 
here we focus on the investigation of possible changes in 
the spatial structure of the model residuals as an important 
indicator of MAUP and the associated model performance in 
different regions.

3.3 Spatial autocorrelation of the models residuals

We first examine the spatial structure of the model residuals for 
the unrefined municipality units, and then for the dasymetrically 
refined units to evaluate model performance with regard to 
MAUP, by identifying where the model under- or overestimates 
the tumor outcomes and whether the residuals are spatially 
clustered (Lawson, 2006). We first select the distance weights 
to determine neighboring units used in the computation of 
autocorrelation coefficients for unrefined and refined units. 
The centroids of refined and unrefined spatial units are used 
in this computation (GeoDa, 2015). Next, we compute global 
spatial autocorrelation through Moran’s I (Moran, 1950) and 
test for statistically significant local clusters, through Local 
Indicators of Spatial Association (LISA) (Anselin, 1995) using 
the GeoDa (2015) software. Differences in the distributions of 
residual clusters between the unrefined and refined models can 
be useful in interpreting the benefits of a binary dasymetric 
refinement related to model performance and spatial patterns 
of the statistical associations as well as to evaluate the effects 
of MAUP on residual spatial autocorrelation.
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4. RESULTS AND DISCUSSION

4.1 Poisson GLM of tumor incidence counts

Dog population density, human population density, urban 
character, and average income tax per capita are statistically 
significant variables in modeling dog tumor incidence counts 
(p<.001) with a Poisson GLM. The influence of sex ratio and 
specific age classes appears to be insignificant (p<.1). Among 
the significant variables, the ones estimating the degree of 
urbanization and economic well-being are positively associated 

with increasing tumor incidences. Conversely, increasing dog 
density seems to have a negative impact on the tumor incidence 
counts at the municipality level.

The overall performance of the Poisson GLM is measured with 
the McFadden pseudo R-Squared (McFadden, 1974) indicating 
a value of 0.39, which suggests some improvement over the 
null model i.e., the model that does not include explanatory 
variables. One reason could be the presence of overdispersion. 
In fact, testing for equidispersion (Cameron and Trivedi, 1990) 
reveals significant overdispersion (p<.001). The Vuong (1989) 
test, which assesses the Poisson GLM against its zero-inflated 
extension, additionally reveals that the zero-inflated model is 
significantly (p<.001) superior to its standard counterpart. This 

confirms that there is an excess of zero counts restraining the 
application of a Poisson GLM.

4.2 Model residuals and spatial autocorrelation parameters

To investigate the Poisson GLM performance across space and 
identify possibly missing spatial variables in modeling incidence 
counts, we map the model residuals, i.e., the difference between 
the observed and the modeled tumor incidence counts (Beale 
et al., 2008). We produce two spatial representations of the 
Poisson GLM residuals to assess under- and overpredictions, 

one for unrefined municipality units (Figure 1, left) and one for 
the dasymetrically refined units (Figure 1, right). Although the 
depicted values are identical in the two representations, a visual 
comparison suggests that a spatial refinement may improve the 
interpretation of local-scale patterns. This is especially true in 
the mountainous regions, where the spatial refinement results 
in more realistic estimation of population distributions and 
local contexts (i.e., places where population resides and thus 
where most likely incidences occur).

A non-random distribution of the residuals within the 
study area and the presence of spatial autocorrelation could 
indicate the absence of important explanatory factors or 
misspecification of included variables (Beale et al., 2008). We 
are interested in assessing how the spatial relations between 
neighboring units and their respective residual values change 
through spatial refinement. To account for this issue, we use a 
Nearest Neighbors weighting method, which is often retained 
when units have unequal sizes (GeoDa, 2015). We use different 
numbers of nearest neighbors, to understand the sensitivity of 
the autocorrelation to this parameter. We produce two models, 
based on refined and unrefined units, to produce the most 
distinct spatial patterns and reveal the displacement of centroids 
as a consequence of refinement. Figure 2 shows that the highest 
percentage of high-high and low-low residual clusters in the 
spatially refined model is produced for a weight parameter of 
seven nearest neighbors. With this parameter, which is used 
below for computing spatial autocorrelation, 156 units (out of 
2,771 municipalities) represent centers of either high-high or 
low-low clusters in the refined model only.

4.3 Spatial autocorrelation of unrefined and refined units

To compare these two models, we test for global spatial 
autocorrelation and spatial patterns of the models’ residuals 

Poisson GLM 
Residuals
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Figure 1. Dog tumor incidence count model residuals represented through municipality-level unrefined units (left) and 
dasymetrically refined units (right) (data: SFOT, 2015)
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Figure 2. Proportion of municipalities with high-high and low-
low residual clusters for the unrefined and refined model
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Figure 3. Dog tumor incidence count model residuals clusters for unrefined municipality units (top) and dasymetrically
refined units (bottom) (data: SFOT, 2015)
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in GeoDa with a distance weights parameter of seven nearest 
neighbors. The Moran’s I statistic shows a slight positive 
global spatial autocorrelation of the residuals for both the 
unrefined (I=.15; p<.05) and the refined (I=.14; p<.05) models. 
However, due to the heterogeneity in the study area, this 
outcome needs to be assessed at a local scale through LISA, 
evaluating the Moran’s I for each spatial unit according to 
the statistical significance of its relation to the observations 
in the neighborhood (Anselin, 1995). We tested both models 
for significant (p<.05) high-high and low-low local residual 
clusters to identify places where there is a poor model fit which 
manifests itself in under and overpredictions. Again, the result 
indicates differences between the unrefined (Figure 3, top)  
and the refined model (Figure 3, bottom). The differences are 
visually less striking for clusters located in the Swiss Plateau 
but become apparent in the mountainous regions. 

In Figure 4, we directly compare the LISA outcomes for high- 
high and low-low residual clusters for a selected region located 
in the southwest of the Alpine Mountain Region. This region 
presents two high-high residual clusters located in the western 
part (H1 and H2), and a larger low-low residual cluster located 
in the eastern part of the study area (L1). The binary dasymetric 
refinement results in larger high-high residual clusters because 
the neighborhood relations between refined units have changed 
due to the shifting of the corresponding centroid points (+). In 
contrast, the dasymetric refinement results in a smaller low- 
low residual cluster, since the refinement to residential land 
causes increased distances between displaced centroids, due 
to topographic conditions that separate valleys (-). A similar 
result can be observed in a municipality in the northwest, first 
classified as a high-high cluster center in the unrefined model, 

but not significant after refinement (-). Another municipality in 
the low-low residual cluster is annexed due to the residential 
land proximity to the other cluster centers (+). The refined 
model does not show any distinct change in the lower main 
valley, where the scattered distribution of residential land 
includes locations which are not physically adjacent to the main 
clusters.

4.4 Discussion

These preliminary results suggest that dog tumor incidence 
counts provided as summary statistics enumerated within 
administrative units should be modeled with care when using 
demographic factors as explanatory variables (Grüntzig et 
al., 2015). In contrast, accounting for common confounding 
factors such as the urbanization and the economic well-being 
of municipalities as additional explanatory variables has 
drastically improved the model’s goodness of fit. Limitations 
exist due to the assumption of a Poisson distribution in fitting 
the GLM. Still, we preferred the Poisson GLM to conduct our 
preliminary assessment of MAUP-related effects and spatial 
autocorrelation in the residual spatial distributions, due to its 
simple structure, and because it still provides valuable first 
insights into the key statistical relationships. Some limitations 
exist due to missing or misspecified environmental explanatory 
variables. As mentioned, those have not yet been included in 
the model, to keep preliminary tests simple.

Despite the above limitations, the mapping of the model 
residuals using both the unrefined and refined units provide 
valuable insights to better understand how the residuals’ spatial 
distribution changes as a consequence of binary dasymetric 
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Figure 4. High-high and low-low model residual clusters for unrefined municipality units and dasymetrically refined units
(data: SFOT, 2015)
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refinement. It is important to note that theses models have been 
fit without the incorporation of any spatial explanatory variables 
that would also change their value due to refinement. It can be 
hypothesized that the effects of such “localized” explanatory 
variables would also change with spatial refinement. In this 
study, extents and numbers of significant high-high and low-
low residual clusters show remarkable differences between 
refined and unrefined spatial distributions. These differences 
are most striking in the mountainous regions, where the rugged 
topography can cause great shifts in the locations of residential 
land (i.e., the corresponding centroids). The change in residual 
distributions indicates that spatial context and proximity 
between populated places is important to further improve the 
performance and predictive power of the model and provides 
important indications for regional optimization and advanced 
interpretations.

As has been demonstrated this simple binary refinement results 
in veterinary spatial data of improved quality, providing a solid 
basis for future research that will focus on more complex models 
and conduct more careful interpretation of model coefficients 
and residuals. For example, clusters of model overestimation in 
adjacent valleys could mean that within this region the same 
factor is missing, and thus local estimators could be improved 
(Anselin 1995). It could also mean that in comparison to other 
regions there could be differences in statistical relationships 
between the outcome and the explanatory variables, possibly 
resulting in spatial non-stationarity of these relationships. Such 
effects would remain hidden when using unrefined spatial units 
to model disease incidence.

5. CONCLUSIONS AND OUTLOOK

We presented the potential benefits of implementing a 
simple binary dasymetric framework in veterinary spatial 
epidemiology. This preliminary study assessed the spatial 
autocorrelation and spatial patterns of residuals from models 
of dog tumor incidence counts, while assessing MAUP-related 
effects. Modeling was first carried out using the unrefined 
municipality units and then, for dasymetrically refined spatial 
units, using residential land as a limiting ancillary variable. 
The dasymetric refinement resulted in improved data quality 
(i.e., spatial resolution). The original spatial data that were 
aggregated within arbitrary spatial units have the disadvantage 
of constant attribute values across the whole unit, which is an 
unrealistic assumption for human population. These data were 
deconstructed into discontinuous entities better approximating 
the spatial distribution of dogs within human populated land. 
This pilot study thus provides an enduring basis for a more 
detailed interpretation of model residuals. The results of this 
geographically inspired research advocate the use of a binary 
dasymetric framework in spatial epidemiological research on 
companion animal diseases more generally, and dog tumors in 
particular.

Future research aims at further development of the approach 
proposed in this preliminary study, following three paths. First, 
we intend to further improve the dasymetric refinement of the 
dog tumor incidence counts for smaller areas. Demographic 
attributes at sub-municipality level within residential lands 
(i.e. statistics on dwelling occupation) will be used as related 
ancillary variables that are associated with tumor rates at fine 
resolution. Second, we will further improve the statistical 
framework of dog tumor incidence counts, through the use of 
a Negative-Binomial GLM with a zero-inflated extension in 
order to account for overdispersion and excess of zero counts. 

Finally, we intend to apply this spatial-statistical concept in 
the investigation of specific types of dog tumors and include 
ancillary covariates with spatial effects. Of particular interest 
would be the study of sources of localized environmental 
pollution including distance variables, which could be also 
relevant for humans. 
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